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1            Introduction 

 In the 200,000 year history of anatomically modern humans, we have never lived 
remotely as long as we do today. The rate of change in our life expectancy has been 
breathtaking. For the past 175 years, the mean age-at-death has increased steadily 
by about 2.5 years per decade, or 6 h per day, among the longest-lived countries [ 1 ]. 
While in the early part of the twentieth century, the rise in life expectancy was 
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  Fig. 1    Distribution of deaths as a function of age among Swedish women from the years 1900 and 
from 2000. Birth and death data from Swede are among the most reliable in the world. Note that 
more than 90 % of the population reached age 65 in the year 2000 compared with only 50 % reach-
ing that age in 1900. Numbers in parentheses are life expectancies at birth (Data from the Human 
Mortality Database (downloaded November 2014))       

 

S.N. Austad



3

driven mainly by reduced infant and young adult mortality, more recently bigger 
advances have been made in combating later life diseases (Fig.  1 ). As a consequence 
chronic health problems associated with aging, such as sarcopenia, osteoporosis, 
and Alzheimer’s disease, which were once rare, have become common. As the 
global population continues to age over the coming decades, maladies of aging 
threaten to overwhelm our healthcare infrastructure, disrupt our national econo-
mies, and potentially poison relations among generations. Fortunately, understand-
ing of the basic biology of aging has also progressed rapidly in the past several 
decades such that the promise of medical interventions that enhance and lengthen 
healthy life is no longer an empty promise promulgated only by avaricious quacks 
and charlatans. The economic impact of generalized health extension could be stun-
ning. According to one analysis, slowing the rate of human aging by 20 % would be 
worth more than $7 trillion over the next 50 years in the United States alone [ 2 ].

   The likelihood that we will ultimately be able to slow human aging depends on 
our understanding of underlying processes. I have claimed that such understanding 
has progressed rapidly in recent decades. What is the evidence for such a claim? 
How realistic is the promise of medically extended healthy life? Those are the topics 
of this chapter.  

2     Aging and Its Relation to Disease 

 No 60 year old – even the healthiest, hardest-training, and most disease-free 60 year 
old – can sprint as fast or throw as far as she could as a healthy 25 year old. This is 
 prima facie  evidence that aging, the progressive decline in physical function that 
accompanies growing older, occurs even in the absence of disease. However aging 
is so intimately intertwined with numerous diseases and disabling conditions that 
almost any discussion that begins with aging ends on disease. Although aging occurs 

   Table 1    Death rates from selected diseases in the United States (2010) * indicates the disease is 
essentially nonexistent at this age.   

 Age group 

 35–44  45–54  55–64  65–74  75–84  85+ 

 Malignant neoplasms  29  112  300  666  1202  1730 
 Diabetes mellitus  4  13  32  68  144  286 
 Diseases of the heart  26  82  187  409  117  4285 
 Alzheimer’s disease  *  0.3  2  20  185  987 
 Parkinson’s disease  *  0.2  1  12  75  166 
 Infl uenza & Pneumonia  2  4  10  28  102  426 
 COPD  2  10  39  146  370  691 
 Stroke  5  13  30  82  288  994 

  Data from Murphy et al. [ 3 ] 

 Rates are per 100,000 population in the specifi c age group based on the 2010 U.S. Census  
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even in the absence of disease, it clearly increases  vulnerability  to multiple diseases. 
In other words, aging is a risk factor for diseases. In fact, it is by far the biggest risk 
factor for virtually all of the chronic diseases that strain our health care system today 
and it increases the chances that a given disease will be fatal (Table  1 ). For instance 
in 2010, an American 75–84 years old had a 42-fold greater chance of dying of can-
cer, and a 45-fold greater chance of dying of heart disease, than a 35–44 year old. 
The chances of dying from Alzheimer’s disease increase more than 600- fold between 
age 50 and 80 [ 3 ]. For comparison, smoking only increases overall mortality rate by 
threefold compared with nonsmokers (  http://www.cdc.gov/tobacco/data_statistics/
fact_sheets/health_effects/tobacco_related_mortality/    ) and having two copies of the 
ApoE4 allele, the most common genetic risk factor for Alzheimer’s disease, increases 
an individual’s chances of contracting that disease by only 12-fold relative to those 
with two copies of the ApoE3 allele [ 4 ]. Looked at from this perspective, aging is by 
far the biggest threat to human health in the developed world today. Geroscience, the 
topic of this book, is an interdisciplinary fi eld seeking to understand the basis for the 
relationship between aging and disease vulnerability.

   The Geroscience Hypothesis posits that, because aging underlies so many dis-
eases and disabling conditions, interventions that would retard aging would also 
simultaneously prevent or delay the onset of multiple chronic diseases. In recent 
years there has been success at delaying cardiovascular diseases. Over the fi rst 
decade of the twenty-fi rst century, the age-adjusted death rate from heart diseases 
fell by more than 30 % and for stroke fell by more than 35 % [ 5 ,  3 ]. One contribut-
ing factor is the discovery of treatments that address underlying risk factors such as 
high blood pressure and high cholesterol. There has also been progress against a 
major behavioral risk factor – smoking. Importantly though, aging is a bigger risk 
to health than high blood pressure, cholesterol, and smoking combined. If we could 
similarly learn to treat the risk factor of aging, the health benefi ts would be enor-
mous, not only for delaying fatal diseases but in delaying many nonfatal conditions 
such as hearing and vision loss, osteoporosis, and arthritis that degrade the quality 
of later life.  

3     Experimental Organisms in Aging Research 

3.1     Uses and Caveats in the Use of Model Organisms 

 For most of its history, basic aging research relied on standard laboratory animals 
such as fruit fl ies, mice, and rats. The chief advantage of these animals was that their 
laboratory husbandry was established and that they were short-lived. That is, rats 
and mice are short-lived among mammals, fruit fl ies are relatively short-lived 
among insects. Initially, basic aging research focused on describing physiological 
changes occurring during aging in the hope that the nature of these changes would 
reveal underlying aging mechanisms. Short-lived animals were useful because indi-
viduals could be monitored throughout their lives and the longevity of different 

S.N. Austad
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groups could be compared and contrasted. Until recently, lengthening of life was 
assumed to be suffi cient evidence that aging had been slowed. This view has recently 
been questioned as will be discussed later, but it has dominated the history of exper-
imental aging research. 

 After dietary restriction (DR), simply reducing the amount of available food, was 
discovered to lengthen life in many laboratory rats and mice, attention shifted to 
searching for mechanism(s) by which DR had these effects and also searching for 
other methods of life extension. Again, the rate limiting step for such studies was the 
length of the animals’ lives. But even the shortest-lived species commonly used in 
this research lived months (fruit fl ies) or years (mice and rats), and because the 
focus was on increasing lifespan, aging studies were particularly time-consuming 
compared with other areas of biomedical research. 

 It is important to understand why the focus so quickly fell on lengthening life 
rather than shortening it. In principle, understanding basic aging processes could 
be studied much more quickly by accelerating them rather than retarding them. 
The practical diffi culty with this logical approach is that there are many ways to 
shorten animals’ lives by inducing pathological processes that may have nothing to 
do with normal aging processes. The problem is how would we know the differ-
ence between those aberrant pathologies and normal aging processes? This doesn’t 
mean that so- called accelerated aging models, which do exist, are not informative. 
It does mean that such models are diffi cult to evaluate with respect to normal aging 
and fi ndings from them need to be interpreted with considerable care. For instance, 
the so-called Senescence Accelerated Mouse (SAM mouse) is a series of excep-
tionally short- lived mouse strains, created by accidental outbreeding of an AKR/J 
inbred strain with an unknown other strain. Despite their short lives – most live 
less than 1 year – they have had virtually no impact on the larger mouse aging 
research fi eld, because like all so-called accelerated aging models, they replicate at 
best a few of the features of normal aging and the fi delity of that replication is not 
clear. 

 Experiments that lengthen life are much less problematic to interpret. Animals 
are unlikely to live longer if we haven’t retarded at least  some  normal aging process, 
such as the increasing susceptibility to cancer. We may not have retarded them all 
(however many that may be), but we must have retarded some. To verify that one 
had identifi ed a mechanism regulating aging, generally, the mantra for many years 
was that both mean (or median) and maximum longevity must be extended. 
Maximum longevity is generally defi ned as the mean longevity of the oldest  x % of 
the starting population, where  x  often equals 10 %. The focus on maximum longev-
ity implies that ameliorating a specifi c disease process may impact mean longevity, 
but only by affecting aging itself would both the mean and the length of life of the 
longest-lived animals be longer. For example, if group A displays longer mean or 
median survival, but no difference in maximum survival than group B, then group 
A must have experienced higher mortality rate than group B in the latter part of life. 
Higher mortality late in life is not a trait that one would associate with slower aging. 
For this reason exercise, which consistently increases mean longevity in both rats 
and people [ 6 ,  7 ] and has manifold benefi cial health-preserving effects, is not gen-
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erally considered to retard aging by researchers in the basic aging research com-
munity. By comparison, DR increases both mean and maximum longevity in many 
(but not all) species and genotypes, therefore has generally been considered the 
gold standard of aging retardation. As will be noted later, the over-reliance on lon-
gevity as the cannonical metric of aging is now being re-thought by many 
researchers.  

3.2     Worms ( Caenorhabditis elegans ) 

 A major breakthrough in the fi eld, which had previously relied on fruit fl ies and 
laboratory rodents, was the widespread adoption of the model nematode, 
 Caenorhabditis elegans , for aging research in the 1990s [ 8 – 10 ]. A 1 mm long, free- 
living, soil nematode introduced to the biological research community in the 1960s 
by Sydney Brenner,  C. elegans  proved to be a wonderful model for the study of 
aging as well (Table  2 ). Not only did  C. elegans  develop rapidly and live only a 
couple of weeks rather than a couple of months like fruit fl ies, they could be main-
tained in much larger numbers in much smaller space than fl ies. They were also 
naturally inbred, which mitigated the problem of inbreeding depression and unpre-
dictable genetic background effects, and they were more genetically tractable than 
fl ies, particularly after the discovery that expression of individual genes could be 
suppressed with ease by genetically altering their  E. coli  food to produce RNAi 
against the gene of interest [ 11 ]. A fi nal advantage of worms is that because they are 
transparent, reporters such as green fl uorescent protein (GFP) can be employed on 
living worms to assess gene expression and protein location [ 12 ].

   A key feature of worm biology that turns out to be highly relevant to its aging 
biology is that under conditions of overcrowding, food shortage, or high tempera-
ture – conditions not conducive to successful reproduction – developing worms 
enters an alternative 3rd larval stage called dauer. Dauer is a nonfeeding, metaboli-
cally and transcriptionally quiescent, highly stress-resistant and long-lived stage of 
arrested development from which worms emerge only when crowding eases, food 

   Table 2    Relevant biological traits of traditional animal species used in basic aging research   

  Caenorhabditis elegans  
  Drosophila 
melanogaster    Mus musculus  

 Body size  1 mm (length)  3 mm (length) 
 1–1.5 mg 

 30–45 g 

 Genome size (bp)  1.0 × 10 8   1.2 × 10 8   2.8 × 10 9  
 Stem cells  No  Yes, limited  Yes 
 Neuron number  302  135,000  75,000,000 
 Wild-type longevity a   2–3 weeks  2–3 months  2.0–2.5 years 
 Max. life extension  10×  2×  1.75× 

   a Wild-type longevity equals the longevity of laboratory-adapted animals  
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becomes abundant once again, or the temperature falls. Adult worm longevity, upon 
emerging from dauer and completing development, does not appear to be related to 
the length of time it spent in dauer [ 13 ]. In nature, worms are often found in dauer, 
which appears to be a specialized dispersal phase [ 14 ]. Thus dauer appears to be an 
important part of the worm’s natural life cycle and the genetics of dauer entry and 
exit have been extensively investigated [ 15 ]. Longevity, as typically reported in the 
worm literature, is adult longevity. The 3 day larval period, whether or not worms 
went through dauer, is ignored. 

 The reason that dauer is a key life history feature for aging research is that many 
of the hundreds of known worm longevity genes are part of the dauer regulatory 
network. As dauer larvae are very long-lived, partial induction of the dauer regula-
tory network is likely to lengthen adult life. Possibly for this reason, an order of 
magnitude more longevity-enhancing genes have been found in worms than in any 
other species and the magnitude of genetically-induced life extension achieved in 
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worms is proportionally much longer than any other species. For instance, one 
worm mutant has been reported to increase adult longevity by nearly tenfold [ 16 ]. 

 In addition to changes in mean or median longevity among long-lived worm 
mutants, the  distribution  of deaths varies dramatically among the mutants (Fig.  2 ) 
[ 17 ]. Deaths in the wild-type strain were concentrated between 5 and 20 days. 
Considerably less clumped deaths were seen in the  clk-1  mutant, and in the longest- 
lived  daf-2  mutant, there is virtually no clumping of deaths but a slow steady trickle 
of them for 60 days. This is not a standard pattern of senescence-related mortality. 
Only the wild-type strain has a death distribution resembling to any degree that of 
senescent deaths of humans.

   For all their many benefi ts, worms also have their limitations as aging models. 
They have a limited behavioral repertoire making assessment of their physical and 
cognitive health status diffi cult. The food they are fed in the laboratory,  E. coli , is 
not part of their natural diet and in fact is slightly toxic to them. No one yet knows 
what their natural diet is, but when fed  Bacillus subtilis  rather than  E. coli , wild-type 
worms lived about 40 % longer [ 18 ]. It is diffi cult to monitor food consumption in 
 C. elegans , so controlled feeding trials are challenging. And all somatic cells in 
adult worms are postmitotic, so that studying the aging biology of actively replicat-
ing cells is not possible with worms.  

3.3     Fruit Flies ( Drosophila melanogaster ) 

 The laboratory fruit fl y,  Drosophila melanogaster  has lost its pre-eminence as a 
genetic model for aging studies, but it still has its place in the traditional aging 
research bestiary. Although not as genetically tractable and short-lived as worms, 
they are considerably more tractable and shorter-lived than any vertebrate. Moreover, 
they are behaviorally much more complex than worms, facilitating assessment of 
cognitive as well as physical aging [ 19 ]. Flies also have real organ systems like eyes, 
heart, and Malpighian tubules that have analogs if not homologs in vertebrates. Their 
dietary requirements are much clearer and have been extensively investigated [ 20 , 
 21 ]. Monitoring and controlling food intake in fl ies is not routinely done, but tech-
niques are available to do so [ 22 ] and if employed would add considerably to the 
utility of the model. Adult fl ies, while being mostly composed of postmitotic cells, 
also have several pools of stem cells, which allow the study of tissue maintenance by 
cell replacement. In particular, the  Drosophila  genetic toolkit can be deployed to 
understand stem cell dynamics and functional changes with age [ 23 ,  24 ]. Numerous 
similarities have been identifi ed between fl y and mammalian stem cell behavior [ 25 ].  

3.4     Laboratory Mice ( Mus musculus ) 

 Since the 1980s when targeted genetic manipulation of laboratory mice became 
possible, they have eclipsed rats to assume the role of pre-eminent mammalian 
model for biomedical research of all types [ 26 ]. Basic aging research is no 
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exception. Husbandry practices for mice are particularly well developed, including 
the maintenance of mice under specifi c-pathogen-free (SPF) conditions. Mouse 
physical, sensory, and cognitive phenotypes and the manner in which they change 
with age have been extensively explored as has the pathophysiology typical of vari-
ous mouse strains (  http://phenome.jax.org/    ). The longevity and disease profi le of 
mouse strains – a strain is the product of at least 20 generations of brother-sister 
inbreeding – varies considerably [ 27 ]. Some strains should be strenuously avoided 
for aging research because they are particularly prone to die early of a single spe-
cifi c disease [ 28 ], meaning that studies of those strains are useful for investigating 
the disease process but not informative with respect to generalized aging processes. 
By far the most common strain used in aging research is C57BL/6 and by far the 
most common sex is male. In well-maintained SPF colonies, median longevity of 
C57BL/6 males is 26–30 months [ 29 ,  27 ]. 

 The dominance of aging research by this single sex and strain is unfortunate. The 
presumed advantage of standardization, facilitating comparison of experimental 
results among laboratories and between studies, is purchased at the expense of gen-
erality. One never knows if a result is an idiosyncrasy of a particular genetic back-
ground or is a more general phenomenon. All inbred strains have their idiosyncrasies. 
For instance, C57BL/6 mice are particularly prone to idiopathic ulcerative dermati-
tis as they age [ 30 ], they are also particularly prone to lymphoma [ 31 ]. Like many 
laboratory strains, they exhibit defective melatonin synthesis due to mutations in 
both necessary biosynthetic enzymes [ 32 ]. Most recently it was discovered that the 
C57BL/6 J sub-strain – and only that sub-strain – has a single nucleotide change in 
a brain-specifi c tRNA that interferes with the protein translation machinery [ 33 ]. 
Although that phenotype was only revealed when a second mutation (in  gtpbp2 ) led 
to a major neurodegenerative phenotype only in the C57BL/6 J sub-strain, it raises 
concern about whether “wild-type” animals of that commonly used sub-strain, 
might be affected in unknown ways by aberrant protein translation in the brain. So 
over-reliance on any single mouse strain or sub-strain limits our ability to spot cryp-
tic aberrancies affecting what is classifi ed as a healthy state. 

 One approach to the problem of cryptic strain idiosyncrasies that combines some 
generality with some genetic control is the use of genetically heterogeneous mice 
generated in a repeatable fashion. An example is the UM-HET3 mouse stock [ 34 ]. 
Originally created for gene mapping studies, this stock is created by interbreeding 
two F 1  hybrids of inbred strains. The resultant F 2  mice are each genetically unique 
full siblings representing a broad swathe of genetic diversity within the laboratory 
mouse.  Populations  with the same genetic diversity can be recreated at any time. 
One reason that inbred mouse strains became so popular was the belief that they 
would be phenotypically more uniform that outbred populations. However, at least 
for longevity, UM-HET3 mice are no more variable than C57BL/6 mice (Miller, 
R.A. 2015, personal communication). This is the mouse stock that is currently used 
in the National Institute on Aging’s Intervention Testing Program (ITP) [ 35 ]. 

 Over-reliance on a single genetic background is not a research phenomenon con-
fi ned to mice or to aging research. Virtually all  C. elegans  research employs the 
same N2 genetic background. However both mice and fl y researchers have discov-
ered that genetic background makes a dramatic difference in the impact of longevity 
interventions. For instance, overexpressing human superoxide dismutase 1 (SOD1) 
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in adult fl y motorneurons signifi cantly increased longevity in both males and 
females, by approximately 30 % and 40 %, respectively, in a particular laboratory 
strain. However the same mutation introduced into ten inbred, wild-caught strain 
found that females lived signifi cantly longer in only 6 of the 10 strains and male 
lived longer in only 1 of the 10 strains compared to controls [ 36 ].  

3.5     Other Species 

 Each of the three animal species described above is well-suited for research in the 
discovery of genetic interventions that modulate laboratory life. Together they rep-
resent more than 600 million years of evolutionary divergence from one another. 
Some phenomena such as reduced insulin/IGF signaling leading to lengthened life 
have been found in all three models. Does this mean that these species are suffi cient 
for investigating  both  fundamental aging processes  and  age-related disease pro-
cesses relevant to people? I would argue that these species are not enough for either 
and that we need to expand the traditional bestiary of aging models for the following 
reasons. First, our workhorse invertebrate models have undergone extensive gene 
loss since their divergence from our common ancestor. This can be seen by noting 
that more than 10 % of genes identifi ed in a more distant human relative, the cnidar-
ian  Acropora millepora , have clear human orthologs that are missing from worm 
and fl y genomes [ 37 ]. Thus there is a genomic universe of unknown size that may 
be relevant to aging processes not susceptible to investigation in worms or fl ies. 
Additionally, worms have no somatic cell division in adulthood and fl ies have lim-
ited cell division or regenerative capacity. Consequently, a key anti-senescence pro-
cess – regenerative capacity – is diffi cult to study in these species. Finally with 
respect to these traditional invertebrate models, both worms and fl ies employ spe-
cialized nonaging life history stages during times of environmental stress (dauer in 
worms, reproductive diapause in fl ies) which have no human equivalent. Partial 
induction of these stages could retard aging via mechanisms not available to humans. 
In this sense, worm and fl y fi ndings could provide false clues to a deeper under-
standing of human aging biology. Thus new models, both vertebrate and inverte-
brate, with additional human orthologs, greater regenerative capacity, or lacking 
some type of diapause would be valuable to develop [ 38 ,  39 ]. 

 Second, the use of the laboratory mouse as the sole representative of our own 
mammal clade warrants rethinking. Mice are the main species we rely on to model 
specifi c human disease processes and develop interventions to mitigate these pro-
cesses. Yet despite their comparatively close relationship to us and the sophistica-
tion of genetic manipulation which we can deploy in mice, therapeutic successes in 
mice across a number of diseases such as stroke, cancer, and Alzheimer’s disease 
(AD) have not translated well to patients. Alzheimer’s disease is the most spectacu-
lar example of translational failure, with more than 300 drugs showing signifi cant 
benefi t in mouse models, but to date none have replicated that promise in humans 
[ 40 ]. A largely unexplored possibility that warrants attention is that mouse disease 
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models may fail because researchers typically induce diseases of aging in young 
animals. For instance, various AD mouse models have been created using a wide 
variety of genetic strategies leading to cognitive defi cits in the mice by 3–18 months 
of age [ 41 ]. Even the latest onset of these is barely in the comparable range of age 
as a fraction of lifespan of the most aggressive human familial mutation [ 42 ]. It may 
be that aging is a critical component of the disease etiology, say for instance, requir-
ing some vascular injury as an initiating event. Therefore, aged mouse models might 
be more representative of the human disease. The problem may lie even deeper than 
the age of onset in the mouse models. It may be that the mouse brain just cannot be 
humanized with respect to AD suffi ciently to make it a therapeutically useful tool. 
Provocatively, cage enrichment of current mouse models of AD signifi cantly 
improve cognitive defi cits and reduce neuropathological hallmarks of the disease 
[ 43 – 45 ]. In this case, other species may serve better. A transgenic rat model has 
been developed that replicates a fuller spectrum of AD pathology than any mouse 
model [ 46 ], for instance, and the emergence of CRISPR-Cas9 technology [ 47 ] may 
allow the development of a better AD model in a small, short-lived primate such as 
a mouse lemur or marmoset. However, some aspects of human biology may be 
unique to humans, and AD is a good candidate for a human-specifi c condition. 
Nothing representing the full spectrum of cognitive and pathological signs of AD 
has been found even in our closest relatives, chimpanzees and gorillas [ 48 ]. 

 Third, all model organisms currently used in aging research are distinguished by 
their lack of success in resisting fundamental aging processes. That is, they deterio-
rate and die quickly. That is one of their advantages for the type of aging research 
that requires lifespan studies. However, there is another research paradigm available 
for basic aging research. Some species are already well-known for their exception-
ally long and healthy lifespans in the natural world and for being able to resist aging 
processes much better than the longest-lived, most robust model species. So a com-
plementary research paradigm is to investigate the cellular mechanisms underlying 
their resistance [ 49 – 51 ]. Given the phenomenal advances in sequencing power in 
recent years, insight into the genomes and transcriptomes of some of these excep-
tionally senescence-resistance organisms as well as tools for their further investiga-
tion could follow rapidly. An unresolved issue is whether the aging research 
community is more likely to gain novel insights about aging from the study of ani-
mals that are long-lived for their body size such as naked mole-rats or any of a large 
number of bat species, but not long-lived relative to humans, versus animals that are 
absolutely long-lived – substantially longer-lived than humans – as some whales, 
fi shes, or diverse taxa of invertebrates such as sea urchins or bivalve mollusks [ 52 ].   

4     Is It Really Possible to Change the Rate of Aging? 

 I stated rather blithely above that the promise of medical interventions that enhance 
and lengthen healthy life is no longer an empty promise. What evidence do I have 
for that claim? The most obvious evidence is that nature has achieved this feat many 
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times over the course of evolution. Lifespan has approximately doubled, for 
instance, in the 6 million years since humans split from our chimpanzee ancestors. 
However, this evidence is not completely satisfactory as change over that time 
period could involve hundreds to thousands of variations in genes or gene expres-
sion. By far the most compelling evidence – presented below – is that we now are 
able to lengthen life and enhance a number of aspects of health in multiple ways by 
simple interventions in model organisms in the laboratory. Some of those ways are 
likely not to be relevant to humans, who are after all, many times more successful at 
resisting aging than any of our model organisms. The hope is that some of our suc-
cesses with model animals will be relevant and translatable to humans and the more 
targets we identify in animals, the more likely this will be. 

4.1     Dietary Restriction: The First Experimental Paradigm 

4.1.1     Rodent Studies Past and Present 

 In the 1930s while investigating the impact of energy intake on growth rate, Clive 
McCay discovered that feeding rats substantially less than they would eat if given 
unlimited food increased their longevity [ 53 ]. Follow-up studies by McCay and a 
host of others confi rmed this longevity-enhancing result of DR in both sexes of rats, 
mice, and a number of invertebrate species. Generally these studies found increases 
in both mean and maximum longevity (defi ned in the rest of this chapter as the 
longest-lived 10 % of the population) in both sexes and gradually over the next 
several decades information accumulated that many, although not all, maladies of 
aging laboratory rodents were also delayed [ 54 ]. By the 1990s a generalized – albeit 
premature – consensus emerged among aging researchers that DR universally 
extended life and health and that reduced caloric intake rather than restriction of 
specifi c macronutrients or the timing of food availability was the key to this “DR 
effect.” 

 It is tempting to speculate on whether, if McCay’s research had focused on obe-
sity rather than growth rate, might DR might have been considered merely the 
absence of obesity or excess fat rather than a special ultra-lean state? This thought 
also illustrates how diffi cult it is to translate the circumstances of laboratory animals 
into human terms. The issue of whether DR is the absence of obesity or something 
else has not yet been determined, as the differing interpretations of the two existing 
macaque studies of DR illustrates. Although both studies report health benefi ts of 
DR, one study fi nds no effect on survival [ 55 ], the other does [ 56 ]. Control animals 
in the study that fi nds a survival effect weigh roughly 6–11 % more than the national 
average for captive monkeys of the same species whereas control animals in the 
study that fi nds no effect are roughly 8–16 % below the national average. Captive 
monkeys, in fact captive mammals of virtually all species including mice, are typi-
cally obese compared to animals in the wild [ 57 ,  58 ]. So how to think about the 
results in terms of which animals should be considered obese, which normal, which 
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restricted, is anything but obvious. One approach, implemented in fruit fl ies, could 
be to observe the reproductive effects of different dietary regimes and designate a 
regime as DR only if it is accompanied by a reduction in reproductive output due to 
nutrient limitation [ 59 ]. Again though, how to translate this to humans remains 
problematic. 

 Because calorie intake per se was assumed to be the key to the DR effect, consid-
erable research effort went into exploring the energetic consequences of 
DR. Particularly after the damaging effects of reactive oxygen species (ROS) 
became known [ 60 ], a clean and neat mechanistic hypothesis to explain the DR 
effect was developed. This hypothesis proposed that restricting energy intake 
reduced daily metabolic rate, which in turn reduced ROS production and its conse-
quent tissue damage. This led  ipso facto  to increased health and longevity. Like 
many a clean and neat hypothesis before it, the reduced metabolism hypothesis 
crashed on the rocks of experimentation and biological complexity. Both mice and 
rats experiencing DR have an initial transitory period where metabolic rate really 
did fall; however, after a few weeks energy consumption stabilizes at about the same 
rate in ad lib-fed and DR animals when measured as metabolic rate per gram of lean 
body mass [ 61 ,  62 ]. While these observations seemingly killed the reduced metabo-
lism hypothesis, the reduced ROS hypothesis was left largely unscathed, as it 
became clear that there is not a simple one-to-one relationship between metabolic 
rate and ROS production. DR mice and rats in fact were consistently found to pro-
duce lower levels of ROS than controls [ 63 ]. The ROS hypothesis was seriously 
challenged, though, by a series of genetic manipulations of mouse cellular antioxi-
dants, both under- and overexpressing them, which in turn reduced or increased 
ROS damage to tissues, yet which produced no consistent changes in lifespan [ 64 ]. 

 A number of other simple physiological hypotheses were advanced by logic and 
slain by experimentation, including the glucocorticoid cascade hypothesis [ 65 ,  66 ] 
and the advanced glycation end-products hypothesis [ 67 ,  68 ]. This simple dietary 
manipulation, reducing food intake, alters so many cellular and physiological 
aspects – hormones, growth factors, infl ammation, cell and protein turnover, body 
temperature, etc. – of rodent biology that no single factor could be determined to 
completely explain the DR effect. One notable discovery has been that chronic DR 
consistently enhances a range of protective responses from apoptosis of damaged 
cells to increased expression of DNA repair enzymes to elevated xenobiotic detoxi-
fi cation processes to the activation of the proteostasis network [ 69 – 74 ]. Indeed, DR 
was found to protect rats and mice from a broad range of carcinogens, cardiotoxins, 
hepatotoxins, and neurotoxins [ 75 ]. 

 By the early 2000s the consensus on the primacy of reduced calories over spe-
cifi c dietary macronutrients and the universality of the DR effect began to come 
apart. That consensus, particularly as it related to reduced caloric intake per se, had 
been based on one study on one sex, male, of one inbred rat strain, F344, fed a diet 
that made that sex/strain particularly prone to age-related nephropathy [ 76 ,  77 ]. 
Several reports that restriction of sulfhydryl-containing amino acids in otherwise 
isocaloric diets extended mean and maximum longevity in the F344 rats were pub-
lished in the 1990s, but in the early 2000s these studies were extended to several rat 
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genotypes [ 78 ] and then to mice [ 79 ]. More recently, a thorough “nutritional geom-
etry” approach to mouse diet composition and caloric content – this approach sys-
tematically varies macronutrient ratios and caloric density – has called into question 
several aspects of the standard rodent DR paradigm [ 80 ]. The results of this study 
are complex, but two basic themes emerge. First, reduced caloric intake does not 
necessarily increase longevity. Unlike previous studies, caloric intake was manipu-
lated by diluting individual diets with indigestible cellulose, which is more like the 
typical DR paradigm used in invertebrate models. Second, median longevity, though 
unrelated to total caloric intake, was related to the balance of macronutrients. 
Specifi cally, mice lived longer when fed diets that were low in protein and high in 
carbohydrates. Whether the lengthened lifespan associated with reduced protein 
consumption was due to reduced consumption of specifi c amino acids as the earlier 
studies might suggest, was not investigated. It should be noted that this was a single 
study with a single mouse genotype with modest sample sizes for each of the 25 
dietary/survival groups. Nevertheless when combined with the methionine restric-
tion studies published earlier, and the invertebrate studies discussed below, it cer-
tainly calls into question the traditional wisdom that calories – not specifi c 
macronutrients – are what modulate lifespan. 

 Also called into question has been the conventional wisdom that the DR effect is 
close to universal. Despite the fact that laboratory mouse or rat strains, due to the 
random fi xation of alleles during inbreeding, are expected to have their idiosyncra-
sies, DR had been reported to extend life in a wide variety of strains and outbred 
stocks of laboratory rodents [ 54 ]. Even exceptionally long-lived Ames dwarf mice 
were observed to live longer with DR [ 81 ]. However, recent work on a panel of 41 
recombinant inbred (RI) mouse lines at two independent animal facilities found that 
slightly more of the strains had their lives shortened by 40 % DR – the standard 
mouse protocol – as had their lives lengthened [ 82 ,  83 ]. This was true for both sexes 
at one facility (Fig.  3 ). Only females were examined at the other. The results were 
strikingly similar to fi ndings with respect to variation in replicative lifespan in 166 
single gene deletion strains in yeast [ 84 ]. The mouse results should be considered 
preliminary, as the number of individual lifespans per treatment and strain was 
small (N = 5 in one study, N = 10–12 in the other) and the strain results varied some-
what between facilities. Yet the indication of substantial genetic variability in the 
response to DR offers a promising tool for the genetic dissection of the rodent DR 
effect and its physiological mechanisms the same way it has proven to be a useful 
tool in yeast.

4.1.2        Dietary Restriction in Flies 

 The lack of success in discovering mechanisms of the DR effect in rodents even 
after decades of intensive study led by the 2000s to exploration of its effects in 
worms and fl ies, the hope being that the genetic power available in these model 
invertebrates would provide insight into DR not easily available in mice. In addi-
tion, because fl y and worm lifespans are short and large numbers of animals can be 
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easily maintained, experimental refi nements such as including many dietary treat-
ments within a single experiment can be routinely done. An implicit assumption of 
these studies – that DR affected longevity and aging via similar mechanisms in 
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laboratory rodents and invertebrates – is an assumption that has yet to be validated. 
Both fruit fl ies and worms had previously been shown to respond to reduced food 
availability with longer life [ 85 ,  86 ]. Investigation of DR in these small inverte-
brates turned out to have its own diffi culties, but has also provided its own insight 
into both genetic and nutritional processes. 

 The major issues in performing DR experiments in worms and fl ies is determin-
ing the composition of the diet and even more important how much food is actually 
being eaten. In rodents, it is well-known what their natural diet consists of (seeds 
plus associated insect larvae) and there had been years of investigation into formu-
lating healthy diets, even specialized breeding versus maintenance diets [ 87 ]. More 
importantly, food consumption can be, and often is, directly measured. 

 The normal laboratory diet of fruit fl ies is an agar-base combination of yeast, 
sugar or molasses, cornmeal, and other carbohydrates [ 88 ]. In most laboratory diets, 
yeast is the primary protein source. There is no true standard laboratory diet and the 
nutrient concentration of the food can vary as much as tenfold among laboratories. 
Flies typically eat only 1–2 μg of food daily, so quantifying food consumption is 
technically challenging, although possible [ 89 ]. As a consequence, food consump-
tion in fl y studies is rarely assessed. Given the different nutrient concentrations of 
different laboratories’ standard diets, nutrient consumption of standard-fed fl ies can 
vary dramatically among laboratories. Until recently, DR experiments in fl ies were 
typically performed by simply diluting the lab’s standard diet and as long as only a 
crude relative change in food intake was needed to interpret the experimental results, 
this procedure was adequate. However as fl y nutrition and longevity studies became 
more sophisticated, experimental procedures also became more sophisticated. It has 
now been established that fl ies will compensate for nutrient density by altering 
overall consumption. One particularly rigorous study found that increasing nutrient 
density by fi vefold from a base diet less than doubled total food intake. Increasing 
nutrient density from fi ve- to tenfold above the base diet increased consumption 
only 33 % more, and increasing from 10 to 15-fold above the base diet did not alter 
food intake at all [ 89 ]. To emphasize the diversity of fl y diets in use, the 15-fold 
higher density in this study is the standard diet in other studies. Now it is common 
for nutritional studies to include an array of food concentrations, both less than and 
more than, the standard diet for the lab. 

 Fly research has shown most compellingly that macronutrient composition rather 
than calories alone has the most dramatic effect on longevity. In particular, several 
studies have concluded that reduced protein rather than calories is the key determi-
nant of fl y longevity [ 90 ,  91 ,  21 ,  92 ]. The role of specifi c amino acids has not yet 
been completely clarifi ed, although as with laboratory rodents methionine appears 
to be a particularly important amino acid [ 91 ]. Recently Piper formulated a chemi-
cally defi ned diet for fl ies that should allow further refi nement of the relationship 
between nutrition and aging in this species [ 93 ]. One particularly interesting discov-
ery is that even the aroma of extra yeast is enough to shorten fl y lifespan [ 94 ]. 

 Nutritional research in fl ies has also illuminated a potentially serious confound in 
assessing genetic or even the pharmacological infl uence on aging and longevity in 
studies that rely on ad lib feeding as virtually all do. The impact of a gene or a drug 
may be sensitive to dietary factors or may affect the amount of food eaten. For 
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instance, certain mutations in the  Drosophila  gene  chico  have been reported to extend 
life [ 95 ]. However, this life extension was seen only at some food densities [ 96 ]. At 
other densities  chico  is shorter-lived than controls (Fig.  4 ) and at no density is  chico  
longer-lived than the control fl ies on their own optimal-longevity diet. As the food 
density of a “normal” diet in fl ies is completely arbitrary, the fi nding that this  chico  
mutation extends life is a happenstance of a particular standard diet. Other labs would 
have observed the same mutation to be life-shortening under their standard condi-
tions. As long as studies are performed over a broad range of food densities, this 
should not be a problem. However, genetic studies of longevity rarely examine a 
range of nutrient conditions. In mouse studies, for instance, it is virtually never done.

4.1.3        Dietary Restriction in Worms 

 Turning to worms, their normal diet is unknown. Furthermore, the standard labora-
tory diet, live  E. coli  OP50, while having numerous advantages in terms of conve-
nience and standardization, is clearly not a healthy worm diet. In fact, it is toxic. 
Worms fed killed  E. coli  live 16–40 % longer than worms fed live  E. coli  [ 97 ,  98 ] 
and worms fed a different bacterial species,  Bacillus subtilis , live about 40 % longer 
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than those fed live  E. coli  [ 18 ]. Despite these fi ndings, the standard worm diet con-
tinues to be live  E. coli . An obvious interpretive diffi culty this presents is whether 
longevity enhancement resulting from feeding less of a toxic diet is in any way 
analogous to the rodent DR paradigm. Worms can also be fed a chemically-defi ned, 
axenic diet [ 99 ], which avoids the problem of frank toxicity – worms typically live 
much longer on an axenic versus an  E. coli  diet – but for either type of diet it is dif-
fi cult to determine how much is being eaten. Because it increases longevity and 
decreases fertility relative to standard worm diet, axenic rearing is considered by 
some a form of DR [ 100 ]. 

 Greer and Brunet (2011) identifi ed 12 methods of life-extending DR that have 
been used in worms, including two synthetic liquid diets and one mutation that 
reduces pharyngeal pumping rate. Surprisingly few worm studies use more than two 
feeding levels (control vs restricted) even though considerably more information 
can emerge from multiple feeding level studies [ 101 ]. Any hope that the powerful 
genetic tools available in the worm would quickly clarify the molecular pathway or 
pathways responsible for the DR effect in other species has been dashed however as 
the genes that are necessary and suffi cient for life extension by DR depend on the 
method of DR employed. Which of the various paradigms is most analogous to 
rodent DR is not obvious. One of the favored hypotheses among rodent DR special-
ists, that reduced insulin or IGF signaling is responsible for much of the DR effect, 
does not appear to be the case for worms. 

 So, as these examples illustrate, after 80 years of research the key mechanisms 
by which DR lengthens life remains an unsolved puzzle.   

4.2     Genetic Approaches to Retarding Aging 

 If worm biology has not yet helped solve the mechanistic mystery of the DR effect, 
it has been instrumental in dissecting the genetics of longevity. Several hundred 
worm genes signifi cantly extend life when wholly or partially inactivated. Given 
that the active forms of these genes were selected over millions of years of evolu-
tion, this large number is surprising to say the least. It will be interesting if anything 
like this turns out to be true of other model organisms or whether this is a quirk of 
worm biology, perhaps due to the centrality of the dauer larval stage in its life his-
tory. Still, some of the largest effects on worm longevity are still due to some of the 
earliest genes discovered to affect aging. Given that a complete review of the numer-
ous genetic infl uences on aging and longevity is beyond the scope of this chapter, I 
will focus on just the two that seem at this juncture to be the most robust. 

4.2.1     Insulin/IGF Signaling 

 The fi rst two longevity mutants discovered in worms were both in the insulin/IGF 
signaling pathway, a phosphatidylinositol-3-kinase ( age-1 ) [ 8 ] and the insulin/IGF 
receptor ( daf-2 ) [ 9 ]. They lengthened worm life by as much as 75–100 %. Insulin 
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and IGF (insulin-like growth factor) signaling are combined in this section because 
in worms and fl ies there is a single receptor that mediates the activity of multiple 
ligands. Subsequent mutations that reduce signaling through homologous pathways 
causing both dwarfi ng and lengthened life were discovered in fl ies [ 95 ,  102 ] and 
mice [ 103 – 105 ]. There is even evidence that reduced IGF-1 signaling may play a 
role in exceptional human longevity [ 106 ]. Thus signaling via insulin and/or IGF 
appears to be a highly conserved modulator of growth, metabolism, reproduction, 
and longevity – at least under laboratory conditions. Some evidence suggests that in 
more challenging circumstances the longevity effect may disappear or even be 
reversed [ 107 ,  108 ]. 

 The evidence in mice deserves some special attention because in some ways it is 
weaker than in other model systems perhaps because the genetic tools are less robust 
but also possibly because the effect is less signifi cant in mice or in mammals. It is 
important to note that too great a reduction in insulin or IGF signaling is life- 
shortening or lethal. It is also important to note that most of the mouse evidence for 
involvement of the insulin/IGF networks in longevity is indirect. For instance, pos-
sibly the most robust longevity-enhancing genetic treatment in mice is to reduce or 
eliminate signaling, not through insulin or IGF, but through the growth hormone 
receptor. The impact on longevity is substantial in both sexes (25–50 % increase) 
and unlike most mouse genetic longevity enhancements, it has been replicated in 
multiple genetic backgrounds, in multiple laboratories, and multiple times in the 
same laboratory [ 105 ,  109 – 111 ]. Although eliminating growth hormone signaling 
dramatically reduces circulating (but not locally produced) IGF-1, growth hormone 
also has effects independent of circulating IGF-1. Directly reducing IGF-1 activity 
by using mice haploinsuffi cient for the IGF-1 receptor has a substantially smaller 
longevity effect (5–11 %) in females and no effect in males [ 112 ,  113 ]. 
Haploinsuffi ciency of other members of the IGF signaling cascade such as insulin 
receptor substrate 1 or 2 also have small or sex-specifi c effects on longevity [ 114 , 
 115 ]. Knocking out insulin – as opposed to IGF – signaling specifi cally in adipose 
tissue also modestly extends life (~18 %) in both sexes in mice [ 116 ]. Another effect 
of disruption of the growth hormone receptor is reduced plasma insulin. So poten-
tially the large longevity increase with growth hormone receptor disruption is a 
combination of alterations to both insulin and IGF. On the other hand, researchers 
may be overlooking a key component of growth hormone signaling that is indepen-
dent of insulin or IGF or it may be that haploinsuffi ciency or complete inactivation 
of activity in specifi c tissues are too crude manipulations to understand the context- 
specifi c roles of the signaling activity Both worm and fl y mutations in insulin/IGF 
signaling that most effectively extend life are modulated reductions in signaling, 
rather than its complete ablation.  

4.2.2     mTOR 

 The mechanistic Target Of Rapamycin (mTOR) is a highly conserved serine/threo-
nine kinase that lies at the hub of a complex cellular signaling network that is cen-
trally involved in metabolic processes, many diseases, and even aging itself. 
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Integrating environmental information on nutrient availability and a variety of 
stressors, mTOR activation promotes anabolism. Its suppression does the reverse – 
plus it modulates various stress responses [ 117 ]. First described in yeast, mTOR is 
a component of two distinct complexes, mTOR Complex 1 (mTORC1) which medi-
ates most of the processes mentioned previously, and is directly inhibited by the 
drug rapamycin, and mTOR Complex 2 (mTORC2), which functions in the modu-
lation of metabolism and various aspects of the cell’s cytoskeleton and is not directly 
responsive to rapamycin. It attracted the attention of aging researchers due to its 
nutrient responsiveness and the known effects of DR on longevity [ 118 ]. Genetic 
inhibition of mTOR or its downstream mediators increases longevity in worms 
[ 119 ], fl ies [ 120 ], and mice [ 121 ]. Some types of DR in worms are ineffective when 
components of the mTOR network are suppressed. In fl ies, lifespan extension by 
reduced essential amino acid availability is also modulated by mTOR and not by 
insulin/IGF signaling [ 122 ]. DR in mice inhibits mTOR activity and pharmacologi-
cal inhibition of mTOR extends life and health (see below). Therefore, it seems 
reasonable to speculate that inhibition of mTOR may play a role in DR’s effects on 
health and longevity. Now that mouse genotypes that fail to respond to DR with 
increased life and health have been identifi ed [ 82 ,  83 ], the role of mTOR and insu-
lin/IGF signaling in the mouse DR response should be accessible.  

4.2.3     Healthspan Versus Lifespan 

 What if an apparently frail and feeble mouse genotype seems to live on and on com-
pared to more robust and vigorous control mice? To a number of researchers, the 
Ames or Snell dwarf mice appeared to be just such mice. Although they live dra-
matically longer than littermate controls (24–60 % longer), they are tiny, and 
because of their small size, they are particularly sensitive to cold. Females are ster-
ile, males sub-fertile, and, when young, animals of neither sex moved around in 
their cages as much as controls. However, some aspects of their aging process 
appear to correlate with better health, rather than simply increased longevity. For 
example, some cognitive abilities appear better preserved with age [ 123 ], and neu-
rogenesis continues later in life. Specifi cally, while early in life their spontaneous 
neuronal activity rate is lower than controls, Ames dwarf mice maintain this activity 
rate with age, such that later in life, it surpasses that of old control mice. Nevertheless, 
their small size and seeming frailty, I believe, led many researchers to raise ques-
tions about the quality of life associated with the longer lives Ames or Snell dwarf 
mice lived – particularly as people begin to consider the possibility of translating 
these successes from laboratory species to humans. These are legitimate questions 
with enormous societal implications. The simple assumptions that extended life 
equals extended health or that extended life will reduce the period of debility near 
life’s end need to be critically evaluated and more diffi cult questions may follow. 
For instance, if we medically retard aging, giving most of us an extra 10 years of 
healthy life, but an additional 10 years of unhealthy life as well, is this worthwhile? 
Philosophers and economists might well differ in their opinions, but without 
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evidence, these will be sterile debates. We need information. The Geroscience 
Hypothesis dictates that basic aging researchers need to defi ne and evaluate health-
span as well as lifespan in their experiments. 

 Assessing healthspan in laboratory animals turns out to be considerably more 
diffi cult – and prone to interpretation – than assessing lifespan. The easiest case to 
evaluate would seem to be rodent DR, because researchers have been investigating 
its impact on a spectrum of physiological variables throughout life for decades [ 54 ]. 
There is consensus that many rodent genotypes on DR are still physically fi t at ages 
when their ad lib-fed brethren are all dead and that DR animals are more likely to 
die without detectable pathological lesions than fully-fed animals. Whether the 
known downsides of DR – reduced libido, muscle mass, and bone density, slower 
wound healing and some immunosuppression – would be worth the extended lifes-
pan, assuming that the health benefi ts in humans were the same, would be a matter 
of personal psychology. However, as obesity rates are rising world-wide, this is one 
treatment that even if proven to effectively extend health and reduce morbidity, 
would not likely be adopted  en masse . 

 However, rodent DR is an exception to the rule. Generally, we know relatively 
little about the health consequences of our various life-extending treatments, par-
ticularly with invertebrate species – and what we do know is not necessarily reassur-
ing. For instance, one reasonable metric of health might be resilience in the face of 
physiological stress, an increase in which often accompanies increased longevity 
[ 124 ,  125 ]. Yet, genetic variation for reduced mortality in ten inbred lines of 
 Drosophila  failed to exhibit any correlation with genetic variation for resilience to 
cold-stress, even though both traits varied [ 126 ]. Only recently has substantial effort 
gone into assessing the health consequences of some of the many longevity- 
enhancing mutations found in  C. elegans  [ 127 ]. A recent examination of four differ-
ent worm longevity mutations, including the most robust of the known mutations, 
 daf-2(e1370) , employing four carefully thought out metrics of worm health (heat 
and oxidative stress resistance plus activity in liquid or solid media) found that none 
of the mutations compressed morbidity (defi ned as a loss of ≥50 % the capacity of 
a young adult) relative to wild-type by any metric. Moreover, in only 5 of 16 pos-
sible cases (4 longevity mutations × 4 health measures) was healthy life extended, 
and in all of these the unhealthy period of life was also extended. In 7 of 16 possible 
cases, the period of healthy life was actually shortened compared to wild-type and 
the unhealthy period extended. While these results should be considered provisional 
as the investigation of  C. elegans  health is in its infancy, they are clearly 
provocative. 

 Research into laboratory rodent health has a much longer history, is considerably 
easier to assess, and is undoubtedly more relevant to what we might expect in 
humans. Moreover, what is known about the health consequences of life-extending 
interventions in mice is considerably more promising than evidence to date from the 
invertebrates (see below). However, functional metrics are performed (or at least 
reported) haphazardly and it is never clear whether all investigated metrics have 
been reported or there was a selection for reporting those that improved. What is 
needed in rodent aging research is a widely-agreed upon panel of functional indica-
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tors that is implemented for any new life-extending interventions. Such a panel is 
currently under development (Richardson, et al., in press).   

4.3     Pharmacological Approaches to Retarding Aging 

 Arguably the biggest and most exciting advance in basic aging research recently is 
success in extending mouse life pharmacologically. Although various drugs and 
supplements have been reported to extend the lives of laboratory rodents at least 
since the early 1960s [ 128 – 132 ], until recently none had withstood the test of inde-
pendent replication. A diffi cult problem with rodent longevity studies is that the cost 
and time involved in doing them makes replication rare. However, this is essential, 
so that scientists do not spend years pursuing dead ends arising from anomalous 
experimental results. A recent example is the 1999 report that a targeted mutation in 
the mouse p66 shc  gene increased lifespan by 30 % [ 133 ], a fi nding that was never 
independently validated until 15 years later when it could not be replicated [ 134 ]. 

 For this reason and others, the National Institute of Aging’s (NIA) Interventions 
Testing Program (ITP) represents a major advance in the implementation of drug 
testing protocols for mouse life extension. A key feature of the ITP is that com-
pounds are tested at three independent research sites (University of Michigan, 
Jackson Laboratories, University of Texas Health Science Center San Antonio) 
using identical experimental protocols at the three sites [ 34 ]. As a consequence, a 
positive hit for longevity is immediately confi rmed. A second key feature is the use 
of both sexes of genetically heterogeneous mice – the previously mentioned UM 
HET3 mouse stock – which prevents a positive hit because of a quirk of an indi-
vidual inbred strain like C57BL/6 or because of a difference between the sexes. 

 To date, results from 16 different compounds have been published (Table  3 ). 
Some of the compounds have been tested at several doses and/or initiated at several 
different ages. One major result is that none of the compounds tested to date has 
signifi cantly shortened mouse lifespan. Another rather astonishing result is that so 
far 5 of the 16 compounds have signifi cantly extended life in either males alone or 
in both sexes.

   Each of these successful interventions deserves a few words. Aspirin is a familiar 
nonsteroidal anti-infl ammatory drug with anti-thrombotic and antioxidant proper-
ties. As chronic, low level infl ammation is a hallmark of aging itself and damage 
from ROS have been implicated in numerous disease processes, aspirin had multi-
ple rationales for being tested. At the single dose tested, there was a small (8 %) but 
statistically signifi cant lengthening of median lifespan in males but no signifi cant 
effect in females and no effect on maximum longevity (last surviving 10 %) in either 
sex [ 135 ]. Further investigation indicated that females had less bioactive plasma 
levels of aspirin and its metabolites. As a large (19,000 participants), multinational 
randomized clinical trial of low dose aspirin, looking at its impact on variety later 
life maladies is now underway [ 136 ], there is no follow-up to the aspirin study 
planned for the NIA ITP at this point. 
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 NDGA (nordihydroguaiaretic acid) is a natural product produced by the creosote 
bush with both anti-infl ammatory and antioxidant properties, which is used in some 
traditional medicine pharmacopeias. NDGA had a slightly larger (12 %) effect on 
median lifespan than aspirin also in males only [ 137 ] with no statistical effect on 
females and no effect on maximum longevity in either sex (Table  3 ). Males appear 
to metabolize NDGA considerably slower than females and so maintain its levels in 
their blood considerably longer [ 137 ]. Although complete survival data are not yet 
available, NDGA follow-up studies begun a little earlier in life (6 months versus 9 
months for the original study) using a lower dose, the same dose, and twice as high 
a dose as the original study appear to have very similar results. At all doses median 

    Table 3    Compounds tested and results from the NIA Interventions Testing Program   

 Compound 
 Concentration in 
food 

 Age at initiation 
(months) 

 Effect in 
males 

 Effect in 
females 

 Aspirin  20 ppm  4  8 %  0 
 NFP  200 ppm  4  0  0 
 NDGA  2500 ppm  9  12 %  0 
 NDGA  800 ppm  6  8 % a   – 
 NDGA  2500 ppm  6  10 % a   – 
 NDGA  5000 ppm  6  9 % a   0 
 4-OH-PBN  315 ppm  4  0  0 
 CAPE  30 ppm  4  0  0 
 CAPE  300 ppm  4  0  0 
 Enalapril maleate  120 ppm  4  0  0 
 Rapamycin  14 ppm  20  9(28)% b   13(38)% b  
 Rapamycin  14 ppm  9  10 %  18 % 
 Rapamycin  4.9 ppm  9  3 %  16 % 
 Rapamycin  14 ppm  9  13 %  21 % 
 Rapamycin  42 ppm  9  23 %  26 % 
 Simvastatin  12 ppm  10  0  0 
 Simvastatin  120 ppm  10  0  0 
 Resveratrol  300 ppm  12  0  0 
 Resveratrol  1200 ppm  12  0  0 
 Resveratrol  300 ppm  4  0  0 
 Oxaloacetic acid  2200 ppm  4  0  0 
 Green tea extract  2000 ppm  4  0  0 
 Curcumin  2000 ppm  4  0  0 
 Medium chain 
triglyceride oil 

 60,000 ppm  4  0  0 

 17α-estradiol  4.8 ppm  10  12 %  0 
 Acarbose  1000 ppm  4  22 %  5 % 

  Effect = % median lifespan increase (all statistically signifi cant) 
  a Survival curves not yet complete, results provisional 
  b Numbers are percent life extension from the time (20 months) the mice began receiving 

rapamycin  
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male survival of those getting the drug is 8–10 % greater than controls and at no 
dose do females appear to be living longer [ 138 ]. 

 A nonfeminizing estrogen with little or no affi nity for the classical estrogen 
receptors, 17α-estradiol has been repeatedly reported to have neuroprotective and 
antioxidant properties [ 139 ]. It was hypothesized that males in particular might ben-
efi t from 17α-estradiol. Males did. Median longevity of males increased by a statis-
tically signifi cant 12 %, but as with aspirin and NDGA there was no signifi cant 
effect on median longevity of females or on maximum longevity of either sex. An 
interesting aspect of the 17α-estradiol studies is that there was a dramatically larger 
effect (28 % increase in median longevity) at one facility than either of the others (a 
nonsignifi cant 3 % at each). The larger effect was not due to longer-lived treated 
mice at that site but to shorter-lived controls [ 138 ]. So this general result should be 
treated somewhat cautiously until more research is done. 

 The fourth compound found to extend mouse longevity is acarbose, commonly 
used clinically particularly in Europe in the treatment of type II diabetes. It amelio-
rates the postprandial spike in plasma glucose. Acarbose is not metabolized, it 
inhibits α-glucosidases in the intestines and therefore slows the breakdown of 
dietary carbohydrates into glucose. For that reason, it was hypothesized that it might 
act as a DR mimetic. Median male longevity was increased at all sites by 22 % for 
the pooled data. Maximum male longevity was also increased signifi cantly (by 11 
%). For females, the data are more complex. The pooled data showed a 5 % increase 
in median female longevity, which reached statistical signifi cance (p = 0.01). 
However, there was essentially no absolute median difference at one site, a non- 
signifi cant 7 % increase at another site, and a marginally signifi cant (p = 0.04) 7 % 
difference at the third. As no statistical corrections were done for multiple compari-
sons, this result, like the female 17α-estradiol results, should be interpreted with 
caution. Surprisingly, maximum longevity of females was increased at all sites in 
absolute terms, by 9 % overall, a highly signifi cant (p = 0.001) result. Recall that 
these are genetically heterogeneous mice, so the puzzling results where there are 
large inter-site differences or a marginal result in median longevity but a more sig-
nifi cant result in maximum longevity could be a consequence of that genetic hetero-
geneity. The drugs could be benefi cial for some genotypes and not for others. 

 To summarize the ITP results to this point. Four of 16 drugs tested have shown 
highly statistically signifi cant effects on median male longevity, only one of those 
four (acarbose) showed a statistically signifi cant increase in median female longev-
ity and there is reason to interpret that one result cautiously. Only one of the four 
drugs – again, acarbose – increased maximum longevity signifi cantly, and it did so 
in both sexes. Follow-up studies on acarbose are currently underway. 

 By far the biggest success of the NIA ITP has been the discovery that rapamycin 
treatment increases longevity robustly in both mouse sexes even when initiated 
 relatively late in life [ 140 ]. Used clinically as part of an antirejection cocktail pri-
marily for people receiving kidney transplant [ 141 ,  142 ], for some cancer chemo-
therapeutic regimes [ 143 ], and to inhibit overgrowth of coronary artery stents [ 144 , 
 145 ], rapamycin and its close chemical relatives (“rapalogs”) are well-known to 
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directly inhibit mTOR kinase [ 146 ]. The biology of mTOR and the effects of its 
inhibition are too complex to cover here except cursorily as above, but many fi ne 
reviews are available [ 118 ,  147 ,  117 ]. In 2009 the NIA ITP reported that rapamycin 
when initiated at 20 months of age (the demographic equivalent of about 60 years 
old in human terms) lengthened life 9 % in male mice and 14 % in female mice as 
well as signifi cantly extending maximum lifespan in both sexes [ 140 ]. Measured 
from the time at which rapamycin feeding had begun though, males lived 28 % 
longer than controls and females lived 38 % longer than controls. Follow-up studies 
with mice begun on the same dose of rapamycin at 9 months of age found a highly 
signifi cant 10 % increase in median lifespan in males and an 18 % increase in 
females as well as 16 and 13 % increases in maximum longevity, respectively. 

 The longevity enhancing impact of rapamycin has now been replicated in both 
sexes, in both genetically heterogeneous and inbred mice, in a variety of labs, when 
administered in food or injected, at a variety of doses, and when started in adoles-
cence, adulthood, or later in life [ 148 – 152 ]. In addition, it has now been shown to 
delay or even reverse cognitive defi cits in mouse models of Alzheimer disease [ 153 –
 155 ] and Huntington’s disease [ 156 ], attenuate the progression of atherosclerotic 
plaques in atherosclerosis models [ 157 ,  158 ], prevent or delay both spontaneous and 
genetically-induced mouse cancers [ 149 ,  159 ,  160 ], and delays the onset of symp-
toms in a progeria model [ 161 ]. 

 On top of these improvements in mouse models of various human diseases, 
rapamycin also improves a number of mouse health indicators. For instance, it 
enhances and broadens vaccine response [ 148 ,  162 ], delays normal cognitive 
decline during aging, reduces anxiety and depression [ 155 ,  151 ], increases sponta-
neous physical activity, improves cardiac function, and enhances sleep consolida-
tion in older mice [ 163 ,  164 ,  151 ]. In sum, rapamycin administered to mice increases 
longevity, prevents or delays many diseases, and preserves many aspects of health. 
It might almost be said to retard aging itself. 

 All drugs have side-effects, rapamycin is no exception. Are any of these side- 
effects severe enough to eliminate it from consideration as a potential senescence- 
retarding intervention in humans? Because it has been in clinical use for years 
already, we know quite a bit about rapamycin’s side-effects in people with various 
serious diseases. However because it is typically used in combination with other 
drugs and never given to completely healthy people, we know little about its side- 
effects in healthy people. From what is known, however, the side effects of most 
concern are immunosuppression, hyperglycemia, glucose intolerance, and insulin 
resistance [ 165 – 167 ]. However, in a genetically heterogeneous mouse stock, these 
effects were seen in young male mice during the fi rst 6 weeks of rapamycin treatment 
but were substantially diminished and even reversed in some cases by 5 months of 
treatment [ 168 ]. Similar metabolic dysregulation was seen in both genetically hetero-
geneous and C57BL/6 J male mice for the fi rst 4 months of treatment whether the 
mice were fed a normal or high-fat diet, but these effects disappeared within 2 weeks 
after cessation of treatment [ 167 ]. So at least in male mice, metabolic changes pro-
duced by chronic rapamycin treatment disappear quickly when treatment is halted 
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and may be transient even with continued treatment. It will be enlightening to see 
whether these effects also occur in female mice and in both sexes of other species. 

 The use of rapamycin as a component of anti-rejection therapy following organ 
transplant suggests that if used chronically it may enhance susceptibility of infec-
tious diseases. Without question rapamycin suppresses aspects of immune func-
tion [ 169 – 171 ]. However, it enhances other aspects, and consequently has been 
termed an immunomodulator rather an immunosuppressant [ 148 ,  172 ]. Chronic 
enteric rapamycin administration has been found to enhance resistance to pneu-
mococcal pneumonia in elderly mice [ 173 ], although no such protection – and 
possibly reduced protection – was found against West Nile virus [ 174 ]. Moreover, 
a 6 week course of injected rapamycin prior to infl uenza vaccination has been 
found to enhance protection again infl uenza in both mice and humans [ 148 ,  172 ]. 
Therefore, the impact of chronic rapamycin on disease susceptibility in healthy 
humans is far from clear and should not by itself discourage trials in species other 
than mice.   

5     Future Directions 

 As previously shown, dietary, genetic, and pharmacological interventions have been 
found that robustly extend life in model organisms and some have also been shown 
to extend multiple features of health. Where do we go from here if we are serious 
about ultimately discovering new ways to prolong human health? One obvious way 
forward is to solidify our knowledge base. That means replicating and optimizing 
successful interventions for both health and longevity in both sexes in other geno-
types and other species. A surprising number of successful longevity interventions, 
both genetic and pharmacological, have had sex-specifi c effects (Austad & Bartke, 
 Gerontology , in press). That also means evaluating interventions that have not 
already been approved for human use in other mammal species. Mice, particularly 
laboratory mice, are not an acceptable stand-in for all mammals. They have dis-
played a notable lack of success in predicting therapeutic effi cacy in human diseases 
such as Alzheimer’s disease, stroke, or even cancer. Mice have their obvious quirks 
such as their extreme susceptibility to cancer and limited cognitive sophistication. 
Their robust longevity response to constitutively-reduced growth hormone signal-
ing has never been seen in another species and has failed to be observed even in their 
close relative, the laboratory rat [ 175 ]. Fortunately, additional mammal species such 
as the domestic dog and the small, short-lived primate, the common marmoset, 
appear to be excellent candidates for such studies. 

 Geroscience, as I hope this chapter has shown, is advancing more rapidly than 
almost anyone supposed. Its promise to enhance and extend human health could 
transform not only human health in the twenty-fi rst century but also all the social 
institutions that depend on human health. In the year 2100, we may look back at the 
year 2000 and consider it as medically unsophisticated as we now think of the year 
1900.     
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1            Premise – Evolution of the Science of Chronic Diseases 
and Current State of the Field 

1.1     Introduction 

 According to Wikipedia, “ Epidemiology is the science that studies the patterns , 
 causes ,  and effects of health and disease conditions in defined populations. It is 
the cornerstone of public health ,  and informs policy decisions and 
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evidence - based practice by identifying risk factors for disease and targets for 
preventive healthcare ”. Consistent with this definition, over the last few 
decades, epidemiological studies identified a number of genetic and environ-
mental risk factors for the majority of chronic diseases. There is no doubt that 
epidemiology has contributed tremendously to both the science of understand-
ing of disease and to the science of prevention, both of which are necessary to 
achieve population health. It is currently believed that the increased longevity 
in the population and the decline in cardiovascular morbidity and mortality 
resulted from interventions on risk targets that were first identified in epidemio-
logical studies. 

 Notably, however, the research on etiology of chronic diseases, which initially 
was mostly on cardiovascular disease and cancer, has been carried out in ways 
that, inadvertently, precluded understanding their relationship with aging. Since 
age and sex were considered unchangeable risk factors, they were generally fac-
tored out from all analyses as “potential confounders”. “Adjusting for age and 
sex” was almost a  mantra  for seasoned epidemiologists; this, unfortunately, trans-
lated into a lost opportunity. Indeed, age is by far the strongest and most pervasive 
risk factor for almost all chronic diseases and medical conditions. The effect of 
aging on the risk of developing cardiovascular disease, cancer, diabetes, osteoar-
thritis and dementia, just to cite a few diseases, is several magnitudes higher than 
the risk attributed to all other known risk factors. The idea of “adjusting for age” 
obscures consideration of the effect of age, and also overlooks the critical nuance 
that chronological age is a poor approximation of biological aging. There is 
increasing heterogeneity with age between individuals in the physical and func-
tional consequences of the aging process, which probably results from differen-
tials in exposures across the life course and the intrinsic rate of biological aging. 
Understanding how the intrinsic biological mechanisms of aging affect most 
aspects of health in humans is a fascinating scientifi c challenge that has captured 
the attention of the greatest scientifi c minds over the centuries. However, with the 
current aging of the population, estimating biological aging is now also recog-
nized as important for practical clinical purposes. To some extent, geriatricians 
and gerontologists have approached this problem through the conceptualization 
and operational defi nition of frailty as a diagnosable clinical syndrome that is a 
hallmark of the aging process and is marked by susceptibility to stress, defi nable 
biology, underlying loss of resiliency and diminished functional reserve. However, 
as research on the biology of aging in animal models progresses, it complements 
the work on mechanisms of aging-related dysregulation in humans; the two lines 
of investigation together suggest that a core set of mechanisms may reside at the 
basis of aging and resulting frailty. These same mechanisms may also contribute 
to disease and may be modifi able with appropriate interventions. In this chapter, 
we propose the idea that many chronic diseases in older age and frailty both origi-
nate, at least in part, from accelerated aging, and may mutually precipitate or 
exacerbate one another. We propose that this concept has enormous translational 
potential and is consistent with the new evidence emerging from the fi elds of 
Geroscience and Precision Medicine.  

L.P. Fried and L. Ferrucci
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1.2     Traditional Approach to Chronic Diseases 

 The study of chronic diseases, etiological mechanisms, signs, symptoms and conse-
quences, as well as potential treatments, has been focused primarily on analysis of 
organ-specifi c diseases and their clinical manifestations. Over the last 60 years, sci-
ence has gone through a number of stages of such analysis and evidence. This progres-
sion began with population-based epidemiological studies that described the prevalence 
and incidence of chronic diseases, identifi ed their etiologic risk factors and mecha-
nisms, and led to the development – and evaluation – of clinical and population-based 
interventions, from Coronary Care Units to behavioral and pharmacologic therapies 
and primary prevention initiatives. Further, epidemiologic investigation led to evi-
dence that there were independent predictors, namely environmental and behavioral 
risk factors, for specifi c chronic diseases that were potentially modifi able. Randomized 
controlled trials have shown that modifi cation of such risk factors resulted in substan-
tial primary prevention of morbidity and mortality. At the same time, intrinsic risk 
factors, such as the presence of hypertension, diabetes or elevated LDL cholesterol, 
have been shown to be predictive of subsequent cardiovascular disease and that screen-
ing for early identifi cation of these conditions can lead to behavioral change or treat-
ments that are effective in primary or secondary prevention of subsequent disease. 
Clinical and community-based guidelines, as well as health policies, have gone on to 
implement these recommendations on a population scale. These advances in knowl-
edge and delivery of public health and medical science have been followed by a dra-
matic decline in cardiovascular morbidity and mortality. Age-adjusted death rates per 
100,000 persons in the U.S. decreased from a peak of 307.4 in 1950 to 134.6 in 1996, 
an overall decline of 56 %; and they are continuing to decline today [ 1 ]. 

 Overall, much population-based and clinical research has demonstrated that sig-
nifi cant portions of chronic disease mortality and even the incidence of morbidity 
and resulting disability are either preventable, or can be delayed in onset. Following 
this line of research, geriatricians and gerontologists hypothesized that interven-
tions could be developed to promote healthy and active aging, and that those inter-
ventions would include – but not be limited to – the primary and secondary 
prevention of chronic diseases [ 2 ]. The ultimate aim of those interventions is the 
“compression of morbidity” to the latest years in the human life span, including the 
delay of chronic disease morbidity and the onset of physical and cognitive disabil-
ity. There is now a substantial literature to support the effectiveness of prevention of 
chronic diseases into the oldest ages [ 3 ], while the possibility to ultimately prevent 
physical and cognitive disability is still unanswered. 

 The many decades of science briefl y summarized above have followed two path-
ways of reasoning. The traditional medical approach to chronic disease is to accom-
plish a diagnostic classifi cation that is as precise as possible, based on symptoms, 
signs, clinical tests and other clinical elements. A correct and precise diagnosis allows 
access to the wealth of experience acquired in clinical medicine, including prognosis, 
and effective disease-modifying and symptomatic treatment of a specifi c disease. 
Physicians tend to work backwards in the etiologic pathway from making a disease 
diagnosis based on external clinical elements to generating hypotheses about patho-
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physiological mechanisms and the risk factors. Treatments aimed at prevention and 
cure are then administered that work ‘forward’ in the etiologic pathway, thereby cor-
recting the clinical manifestation of diseases. A corollary of this method is the assump-
tion that each syndromic manifestation has an underlying specifi c pathophysiology. 

 The traditional medical approach to human diseases has been quite successful in 
the care of young and middle-aged patients and prevention in these age groups. 
However, it has substantial limitations in the care of older patients for several rea-
sons. First, the signs, symptoms, clinical manifestations, prognosis and response to 
treatment for many chronic diseases vary with age, and the specifi city of symptoms 
decreases with increasing age. For example, in older persons episodes of hypogly-
cemia are often asymptomatic and signs of a previous acute myocardial infarction 
are often found in people with no history of symptoms. Second, the high likelihood 
of geriatric conditions and multimorbidity in older ages blurs diagnostic boundaries 
between diseases and complicates treatment choices. Third, in many older adults, 
the manifestations and clinical course of diseases are strongly affected by the under-
lying status of the “host” as well as by other coexisting diseases. Because of these 
reasons, considering aging as a ‘confounder’ in the study of chronic diseases ignores 
the complexity of the interactions between aging, disease and frailty. We now know 
that aging plays a central role in the pathogenesis, clinical presentation and response 
to treatment of many chronic diseases. Therefore, the patient’s age (both biological 
and chronological) should be a primary clinical element that should affect choices 
of diagnostic, preventing and therapeutic interventions. 

 Emerging evidence on multi-morbidity and the frailty syndrome lays out the basis 
for making substantial progress in translating these concepts into improved care of 
older patients. Promising developments are coming, as well, from the rising interest in 
Geroscience and Precision Medicine [ 4 ]. The convergence of these scientifi c disci-
plines can be transformative in our understanding of the interplay between aging, frailty 
and disease, with the potential of producing dramatic improvements in public health. 

 In this chapter, we explore the evolution and current state of the science pertain-
ing to possible links between aging and chronic disease(s), with a specifi c focus on 
the epidemiological evidence that such association is robust and not exclusively 
explained or sustained by a stochastic process. We seek to link together the mount-
ing evidence that biological mechanisms that underlie aging lead to dysregulation of 
multiple physiological systems, loss of homeostatic capabilities and increased sus-
ceptibility to stress, and that these changes facilitate the emergence of both multi- 
morbidity and clinically apparent frailty. Then, we consider whether the 
epidemiological literature is consistent with the stated hypothesis. Finally, we 
examine our current understanding of the biology of frailty as a basis for generating 
hypotheses about the biological mechanisms that link aging and chronic diseases.  

1.3     From Clinical Presentation to Etiology and Biology 

 For over a thousand years, chronic diseases have been studied from the starting 
point of their externally apparent clinical manifestations. This approach led to the 
development of a number of classifi cation systems, some relatively simple (such as 
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the now disproven distinction between infl ammatory and degenerative diseases) and 
some extremely precise and sophisticated (such as classifi cation of lymphomas 
based on histological characteristics). While the ability to recognize specifi c dis-
eases and to treat them successfully has increased tremendously, the limitations of 
these approaches have also become apparent. These are evident, in part, from the 
advent of applications such as high throughput genetic, genomic, proteomic and 
imaging biomarkers to the study of chronic diseases, in combination with the evi-
dence from prospective/longitudinal epidemiological, population-based studies. 
Biomarker studies – perhaps better than any other scientifi c approaches – have 
offered evidence that, in many cases, diseases that are driven by different mecha-
nisms converge into the same pathological and clinical manifestations. For example, 
it is now widely accepted that under the label of “Alzheimer’s disease” exist a num-
ber of conditions with different underlying mechanisms [ 5 ]. Conversely, diseases 
that appear quite different from the perspective of phenotypic and end-organ mani-
festations are now known to have shared etiologic biomarkers (e.g., infl ammation); 
this suggests that they are driven by the same pathophysiologic mechanisms, and 
that multiple, seemingly unrelated, chronic diseases share biomarker signatures. 
Interestingly, such biomarkers are often also related to aging itself and predict the 
development of frailty, a major adverse health outcome associated with aging. This 
is consistent with evidence that the biology of aging is associated with chronic dis-
ease development through mechanisms beyond the length of time for exposure and 
cumulative risk from external risk factors; rather, the evidence actually points to 
aging as playing a powerful causal role in development of chronic diseases.   

2     Epidemiologic Interrogation of Chronic Disease 

 Over the last 60 years, we have learned – in large part through epidemiologic inves-
tigations - how the causes of morbidity have dramatically changed in our popula-
tion. With the increase in longevity due to the demographic transition, chronic 
diseases have become the dominant causes of morbidity and mortality in the devel-
oped world, and are rapidly reaching that dominance globally. According to a recent 
report, over 85 % of US Medicare benefi ciaries have at least one of nine chronic 
diseases [ 6 ]. 

 The frequency of most of the major chronic diseases rises with age. However, we 
should not assume that the relationship between aging and disease is monotonic; in 
fact, it is quite complex. Some chronic diseases, such as those due to genetic defects, 
exposures during gestation, or environmental perturbation may become clinically evi-
dent early in life and are unlikely to emerge after a certain age. Some other diseases 
have a typical age of emergence and only rarely occur outside a certain time window 
(e.g., rosacea or lupus). However, the majority of chronic diseases such as dementia, 
cardiovascular diseases, cancer or osteoarthritis, show increased incidence and preva-
lence with aging, although many individuals never develop those diseases during their 
lifespan. Finally, some pathological conditions occur in everyone with aging (e.g., 
decline in renal function, decline in lean body mass) and, because they occur in every-
one, we assume they are not a disease but rather part of “normal aging”. 
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 Given the extreme variability of human pathology, making a generalization is 
diffi cult. However, it is plausible that biological aging plays an important patho-
physiologic role in diseases whose incidence and prevalence increase with aging. To 
offer the counterarguments fi rst, there are basically two objections to this theory. 
The fi rst is that not everyone develops those diseases as they age, although for some 
diseases, such as Alzheimer’s disease, it has been argued that if they lived long 
enough, everyone would eventually develop the disease. The second argument is 
that not everyone develops diseases in the same sequence. In both cases, objections 
can be easily overcome by hypothesizing that the clinical emergence of disease 
results from a tradeoff between organ or tissue-specifi c susceptibility, the rate of 
progression by which subclinical processes become clinical, and the overall dys-
regulation induced by the aging process. As an example of the latter, aging can 
facilitate an imbalance in cholesterol metabolism, but such imbalance may never 
emerge clinically in individuals who do not have a certain genetic susceptibility and 
maintain a healthy diet and weight. Further, the clinical presentation of disease may 
be delayed by behavioral compensations, such as walking more slowly in patients 
with pulmonary diseases – so as not to experience the symptoms – or increased 
walking to improve muscle effi ciency in utilizing oxygen in patients with peripheral 
artery disease – and thus decreasing the symptoms. 

 Unfortunately, modern medicine, public health and much of science has focused 
almost exclusively on mechanisms that create susceptibility to a single disease, and 
have substantially ignored the clues as to the potential direct contribution of aging 
and related biology to health as well as to chronic diseases. In this context, it is 
understandable why age has been considered merely a ‘confounder’. In surveying 
the literature on chronic disease, the attributable fraction of the burden of chronic 
diseases to the health burden of aging appears quite high across diseases, even when 
the effect of powerful risk factors such as hypertension or smoking are factored out. 
However, such analyses have rarely been conducted comprehensively, because most 
studies have focused on one disease outcome and ignored the effect of competing 
risk or aggregate impact. Future studies are needed to estimate in large, representa-
tive cohorts the population-attributable fraction to aging and health of multiple 
chronic diseases after adjusting for known risk factors and using a multivariate 
approach that addresses competing risk and selective mortality. Such studies would 
help to estimate the extent to which the burden of morbidity in older persons is 
attributable to aging per se.  

3     Where Does Aging Fit in the Study of the Etiology 
of Chronic Disease? 

 An interpretation of the epidemiologic literature strongly suggests that aging con-
tributes independently to the pathogenesis of many chronic diseases, and there are 
truly very few exceptions, largely in the form of rare diseases. Almost counterintui-
tively, the only diseases that have been interrogated to reveal aging effects are the 
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differential mechanisms for congestive heart failure by age [ 7 ], and the progeroid 
syndromes. Whether progeroid syndromes truly recapitulate the effect of aging in 
their early emergence of the aging phenotypes is unclear [ 8 ]. In general, very few of 
the fi ndings of these studies have been translated into better understanding of the 
interface between aging and disease in people who have an average lifespan. 

 To go beyond “age as a confounder” or “aging as a process” independent of – and 
unrelated to – chronic diseases in the study of human pathology requires a shift in 
perspective. It is essential to go from the study of the clinical manifestations of a 
given disease and then its proximal drivers, to an agnostic consideration of the 
pathophysiologic events that precede the development of single and multiple 
disease(s) over the aging process, and to relate these outcomes to the processes and 
outcomes of aging including, but well beyond, disease(s). Theoretically and ideally, 
such a shift would require:

    1.    A basic understanding of the biological mechanisms of aging in humans. While 
we are far from having this knowledge in its entirety, some of the basic theories 
of aging have been developed and, to some extent, supported experimentally in 
model organisms (mostly yeast and worms, and in some cases, mice). Technology 
is currently available or in an advanced stage of development that should allow 
the testing of some of these theories in humans. Fully developing and testing 
such technology – and then the theories themselves – is clearly an important 
priority in aging research.   

   2.    Criteria for disease diagnosis and multimorbidity classifi cation should be devel-
oped that are not exclusively based on clinical manifestations and that do not 
ignore the role of the aging process or novel insights about causal pathways [ 9 ].   

   3.    A list of potential biomarkers that change with aging and may be modifi ed by 
chronic diseases – or that themselves modify disease – should be developed, and 
their ability to predict the decline in physical and cognitive function that occurs 
with aging should be evaluated. Ideally, these biomarkers should belong to path-
ways that have been demonstrated to be altered in animal models of aging and 
frailty.     

3.1     Multi-morbidity and Aging 

 As outlined above, one of the landmarks of the interface between aging and diseases 
is multi-morbidity. In the U.S., nearly 80 % of Medicare benefi ciaries 65 and older 
have at least 2 chronic conditions, and more than 60 % have at least 3 chronic condi-
tions [ 10 ]. In fact, the condition of multi-morbidity is the most frequent medical 
condition that affects individuals 65 years and older. In a cross-sectional study that 
included 1.7 million patients in Scotland, UK, Barnett and colleagues found that 
30.4 % of the population aged 45–64 years, 64.9 % of people ages 65–84 years, and 
81.5 % of people aged 85 years and over reported at least two chronic conditions. 
Data from the InCHIANTI study, a longitudinal study of aging performed in Italy in 
a population-based sample, suggest that the average number of chronic diseases 
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present in a person increases exponentially with aging, and the longitudinal rise in 
multi-morbidity is even higher than what can be estimated from a cross-sectional 
survey because of selective mortality [ 10 ]. Of course, the scenario of morbidity is 
more complex than just the counts of specifi c chronic diseases or considerations 
about their individual etiology. For example, in most studies on multimorbidity only 
a limited number of diseases are considered, typically 10–20, which is only a frac-
tion of the diseases that affect aging humans. Prior reviews have discussed the sig-
nifi cance of multimorbidity in the context of aging [ 11 – 17 ]. 

 The development of multiple diseases in the same person occurs, in part, by 
chance alone, as a result of the length of exposure and cumulative development of 
the resulting pathophysiologic alterations. However, recent data suggest that the 
development of multi-morbidity is not merely the result of multiple independent, 
disease-specifi c pathophysiological processes. Their development can derive from 
shared etiologic factors, which predict many different chronic diseases that are age- 
related. That is, there are many environmental and behavioral risk factors (e.g., 
smoking) and shared intrinsic mechanisms, such as chronic infl ammation, which 
drive development of many seemingly unrelated end-organ manifestations and dis-
eases, from cardiovascular disease to diabetes to cancers and COPD [ 11 ]. Further, a 
number of studies have recently suggested that this is only part of the story. A land-
mark paper that tested the hypothesis that certain diseases tend to appear in clusters 
in some specifi c individuals was published by van den Akker and colleagues in 
1998 [ 15 ]. Working in a large general practice, they used data on disease prevalence 
and co-prevalence to calculate the expected prevalence of multi-morbidity under the 
assumption of association by pure chance. The authors found that more people than 
expected did not have any disease or had four or more diseases, while less than 
expected had one or two diseases. This suggests that some individuals develop a 
global susceptibility to multiple diseases, while others appear to be unusually resis-
tant, and that the co-occurrence of some specifi c diseases is not due to chance alone. 
These authors and others have suggested that “the force of aging” is different in 
different individuals and makes them more or less susceptible to multi-morbidity. 
This hypothesis has never been empirically evaluated, due to lack of data. However, 
since 1998, numerous studies, largely heterogeneous for sample size, age, settings, 
indices of multi-morbidity and statistical methods (observed-to-expected ratio, 
cluster analyses, factor analyses and multiple correspondence analyses), have been 
trying to describe possible patterns of associative multi-morbidity in order to gener-
ate helpful evidence for actual clinical practice and management [ 10 ,  17 ]. 
Compromising this research is the absence of standardization of methods, which 
has resulted in high variability among studies and inconsistency in results, making 
it diffi cult to compare them. Interestingly, chronological aging appears to be a 
strong predictor of mortality even in analyses that take into account the contribu-
tions of multiple diseases and risk factors [ 18 ,  19 ]. While this is not a surprising 
fi nding to clinicians, it clearly underlines the fact that that the parameters that are 
usually observed and considered in medical care do not exhaust all of the changes 
in health status that occur with aging. In other words, there are biological processes 
that occur with aging that are not revealed by clinically evident disease. It is quite 
possible that the excess mortality associated “purely” with old age may be due to 
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subclinical disease, unobserved confounding and/or measurement error in assessing 
the full effect of diseases on prognosis. However, an alternative hypothesis is that 
some fundamental biological processes essential for life across cells, tissue and the 
entire organism deteriorate with the aging process and facilitate the emergence of 
both diseases and a general decline in health status that is not classifi ed as “disease” 
but increase the risk of mortality. 

 An example based on the mitochondrial theory of aging may clarify this idea. A 
number of studies have found that aging is associated with loss of mitochondrial 
function; the mitochondrion being the key organelle responsible for cellular energy 
production in tissues and organs. Although mitochondrial volume appears to 
increase with aging, the electrical and chemical trans-membrane potential of the 
inner mitochondrial membrane is generally reduced and there are also functional 
defects in the electron transport chain that impair the effi ciency of oxidative phos-
phorylation and limit the production of adenosine-5′-triphosphate (ATP) [ 20 ]. In 
addition, impairment in mitochondria may affect apoptosis as well as autophagy 
mechanisms. 

 When mitochondria are not functioning properly, tissues that have high energy 
demands suffer fi rst. This is manifest in genetic mitochondrial disorders, which 
mostly affect the nervous system, heart and skeletal muscle [ 21 ]. A decline in mito-
chondrial function, regardless of its origin, has also been associated with central 
obesity, sarcopenia, fatigue, loss of physical fi tness and diabetes [ 22 ]. Studies in 
animal models and in humans have demonstrated that the macroautophagy mecha-
nisms aimed at removing and recycling defective mitochondria (mitophagy) become 
defective with aging, leading to the persistence of damaged mitochondria that gen-
erate excessive Radical Oxygen Species (ROS) and trigger a chronic infl ammatory 
response. It is notable that inadequate energy support, excessive and unopposed 
oxidative stress as well as chronic infl ammation have all been associated with the 
syndrome of frailty and with almost all chronic diseases whose incidence and preva-
lence increase with aging as well as with sarcopenia, gait disorders, and brain dys-
function. The translation of these biological events into both multi-morbidity and 
frailty is direct and intuitive. Further, it is easy to see how age-associated 
 mitochondrial dysfunction can produce a number of vicious cycles that further 
impair mitochondrial physiology, for example, by causing ischemia or metabolic 
derangement. There are now many other examples implicating a single biological 
mechanism that, while driving the development of aging as a phenotype and aging-
related frailty, also causes multi-morbidity. What is important here is that the trian-
gle of aging-multimorbidity-and frailty may derive from the same root cause and, 
plausibly, they may all respond to the same interventions.  

3.2     Frailty 

 We suggest above that the process of aging, and in particular “accelerated aging”, 
may be best approximated by the concept of frailty. We develop further here the 
concept and the evidence that underlying mechanism(s) of aging – as exemplifi ed 
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above by the example of mitochondrial changes - may lead to this syndrome of 
frailty. Frailty is associated with a dysregulation of the complex adaptive mecha-
nisms that support organismal resilience; the dysregulation leading to loss of 
homeostatic capabilities and increased susceptibility to stress. The net result is the 
emergence of a distinct clinical syndrome with a characteristic phenotype that is 
predictive of a range of adverse clinical outcomes. 

 We will fi rst describe frailty as a prototypical constellation of signs and symp-
toms that allows a clinical diagnosis and then, working backwards in the causal 
pathway to etiology, we will consider how what we currently know about frailty 
informs understanding of aging and “accelerated aging”. 

 There is now strong evidence to support frailty as being a clinical syndrome 
characterized by a constellation of symptoms and signs: muscle weakness, slowed 
gait, low physical activity, perceived low energy or “exhaustion”, and weight loss 
that is not explained by a distinct disease process [ 23 ]. When a critical number of 
such signs and symptoms occur in the same individual they identify the frailty syn-
drome [ 23 ]. It is noteworthy that studies have demonstrated that the phenotypic 
criteria of frailty co-occur in ways that are consistent with the defi nition of a medi-
cal syndrome [ 24 ]. That they predict the clinical outcomes associated with being 
frail provides criterion validity. 

 The clinical presentation of frailty is consistent with dysregulation in multiple 
systems and organs [ 23 ], although it is, as yet, unknown whether such dysregulation 
is the primary causal event, a collateral, or a consequence. Operationally, when 
multiple of these criteria are present (three or more) the individual is considered 
“frail” and consistently, “frail” individuals have high risks – over 3 years – of mor-
tality, disability, falls, hospitalization, loss of independence, and slower recovery 
from illness or surgery and greater postoperative adverse outcomes [ 23 ,  25 ]. Further, 
those who meet these criteria for frailty show decreased responsiveness to treat-
ments, for example for HIV or renal failure [ 26 ]. This susceptibility to adverse 
outcomes occurs frequently in the context of a stressor, such as illness, hospitaliza-
tion or surgery. 

 Clinical frailty develops progressively, so that testing positive for one or two 
criteria predicts the development of the full syndrome, with weakness and slowed 
gait being the most common earliest predictors [ 27 ]. Studies have found that the 
greater frailty is associated with greater risk for disability and loss of independence, 
for example, in the absence of an acute precipitant [ 28 ]. 

 Clinical frailty is also associated with the presence of specifi c chronic diseases, 
particularly those with an infl ammatory etiology, and the risk of frailty rises with 
the number of such diseases present [ 29 ]. While frailty incidence rises with increas-
ing age, independently of ongoing chronic diseases, the association with the  subse-
quent  appearance of chronic diseases, including cardiovascular, kidney and 
rheumatologic diseases, suggests that there may be both a primary, aging-related 
phenotype of frailty, and a phenotype of frailty that is secondary to chronic disease. 
Further, new evidence indicates that obesity and aggregate risk for coronary artery 
disease in midlife predicts the development of pre-frailty and frailty 26 years later. 
Together these observations may implicate a shared etiology of aging (the process) 
and frailty (the clinical syndrome) [ 29 ]. 
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 Although epidemiological research suggests that frailty is likely to cause an irre-
versible deterioration of health, there is some initial evidence that frailty can be 
prevented. For example, as shown by the InCHIANTI study, following a 
Mediterranean diet was protective against development of frailty as well as the 
development of cardiovascular diseases over a 6-year follow-up [ 30 ]. 

 A large body of evidence indicates that frailty in all its clinical manifestations 
could be driven by a specifi c, although complex, pathophysiology that leads to dys-
regulation of multiple physiologic systems. Since aging is pervasive across the 
entire body, the more systems that are dysregulated, the greater the likelihood that 
the clinical manifestation is the result of accelerated aging or frailty rather than to 
specifi c disease. Longitudinal studies have found that dysregulation and loss of 
function tends to occur harmonically across multiple systems (Fig.  1 ), thus suggest-
ing the existence of an underlying biological alteration, such as mitochondrial dys-
function, that may be altering energy availability and function for many systems. 
However, many of the systems affected (hormonal, infl ammatory, muscle, anemia, 
autonomic) also mutually regulate each other, suggesting interrelatedness driving 
mutual dysregulation and consistent with one of the principles of a complex adap-
tive system. Further, the relationship goes beyond any particular dysregulated sys-
tem: simply counting the number of systems dysregulated predicts the frailty 
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phenotype, and the risk increases exponentially with the number of physiological 
systems involved [ 31 ]. The latter is consistent with the fraying of a complex dynam-
ical and adaptive system that is essential for a resilient and robust organism. In other 
terms, we can hypothesize that some fundamental housekeeping mechanism impor-
tant for homeostasis and probably related to energetics becomes impaired and 
diminishes the functionality of important physiological systems at the organismal 
level. To generate frailty, the level of physiological impairment should be severe 
enough to impair other downstream compensatory mechanisms– towards a down-
ward spiral that leads to the clinical presentation of frailty [ 23 ], an emergent state 
which tends be irreversible.

   The alteration of specifi c physiologic functions may be involved in the vulnera-
bility to adverse outcomes characteristic of frailty. For example, in the Women’s 
Health and Aging Study II, women 85–95 years old underwent a glucose tolerance 
test (GTT) to evaluate glucose, insulin and metabolic responses to this physiologi-
cal stressor [ 32 ,  33 ]. Women who were frail had a signifi cantly greater increase in 
insulin and glucose during GTT than those not frail or pre-frail. Further, at 120 min 
after the oral glucose load, the frail old-old women had glucose levels 67 mg/dl 
higher than non-frail women (adjusting for age and BMI), and normalization of 
glucose back to baseline was delayed, compared to non-frail women. Further, frail 
women showed a pattern of elevation in glucose- raising hormones and decrease in 
glucose-lowering hormones not seen in the non-frail [ 33 ]. These fi ndings indicate 
that the entire physiological network of signals that regulate glucose homeostasis 
tends to be altered in frailty. Interestingly, most of the genetic mutations that have 
been associated with longevity in animal models are related to the insulin/IGF-1 
pathway, which is involved in carbohydrate metabolism. Importantly, the dimin-
ished regulation of physiological responses to a stressor identifi es the frail. However, 
while the frail were highly dysregulated compared to pre-frail and non-frail indi-
viduals, dysregulation was a generalized state for these women 85 and older, with 
the difference being only one of degree between the non-frail, pre-frail and frail. 
Specifi cally, only 27 % of the entire group of old-old women evaluated in this study 
had normal fasting glucose and normal OGTT, while 71 and 78 % of the full group 
met criteria for prediabetes and diabetes, respectively [ 34 ]. This suggests that fi nd-
ings of frailty are at the more severe end of dysregulation associated broadly with 
aging, and that the dysregulation of aging is interpretable, in this case, as 
disease [ 4 ]. 

 The fi ndings summarized above suggest that some specifi c cellular alterations 
might be key to maintaining the robust complex dynamic system of the human 
organism which is essential for health and resilience. The case of mitochondrial 
dysfunction described above is just an example of the many potential mechanisms 
that could be involved. The true underlying mechanisms of biological alteration that 
lead to frailty, and aging itself, remain unknown. The existence of a common causal 
pathway between aging and frailty could explain why the prevalence of frailty 
increases geometrically with aging and why the criteria used to defi ne the frailty 
syndrome clinically include dimensions, such as sarcopenia and mobility, that are 
strongly modifi ed by aging in all individuals and across species.   
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4     Conclusion 

 The analogies between aging and frailty may also explain why the clinical manifes-
tations, evolution, prognostic implications and response to treatment of many 
chronic diseases are substantially different according to the age of the affected indi-
viduals. The multisystem nature of frailty, and of aging itself, may further offer 
insights into why many trials of single-agent replacement therapies in older adults 
have failed to improve targeted health outcomes. Thus, an important area of future 
research is to determine the physiological links that explain such age-associated 
differences in the manifestations of chronic morbidity – incorporating appreciation 
of multisystem phenomena and underlying drivers - so that this knowledge can be 
inserted into new clinical guidelines for the diagnosis and treatment of a series of 
pathologies in older, complex patients. Knowledge of the change in disease mecha-
nisms, as well as the development of multimorbidity and frailty in association with 
age, offer the framing for breakthroughs in these research areas. 

 In summary, a focus on disease that avoids considering the biological processes 
of aging can lead to misunderstanding of the full scope of disease etiology in older 
patients and miss new therapeutic opportunities. Considering aging illuminates the 
question of how it is that biologic drivers of disease differ in the old compared to the 
young. Ultimately, it is possible that, as our understanding of the biology of aging 
grows, a new chapter of geriatric medicine will open. Perhaps the next generation of 
precision medicine is a disruptive vessel through which to accomplish some of this 
goal. Precision medicine is an emerging approach for disease treatment and preven-
tion that takes into account individual variability in genes, environment, and life-
style for each person. The extension of this method to aging and frailty appears to 
be the natural evolution of this idea and one that synergizes well with the new 
impetus of the Geroscience initiative. Placing this information in the context of the 
full human population experience can lead to understanding of the place of aging 
itself and the generalizable import of processes observed.     
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1            Introduction 

 In higher organisms, cancer refl ects the cost of the need for long-lived self-renew-
ing somatic stem cells in proliferative tissues functioning throughout the lifespan. 
Such cells are necessary for the constant production of new cells to replace dam-
aged or shed effector cells, thereby maintaining tissue and organ homeostasis. 
Somatic stem cells and their replicating progeny exhibit a staggering capacity for 
proliferation, but they also can undergo malignant transformation. DNA mutations 
in these cells along with changes of their epigenetic state almost inevitably allow 
for the emergence of aberrant self-renewing clones on their way to full neoplastic 
conversion. Mutations occur in these self-renewing compartments as a result of 
exposure to external carcinogens and genotoxic agents, but also occur solely 
through bad luck; for example, as an error of DNA replication [ 1 ]. These mutations 
provide the fi nite number of genetic alterations required for malignant transforma-
tion. Given the daily production of immense numbers of new cells, it is actually 
remarkable that highly replicating tissues only very rarely undergo neoplastic con-
version. The fi nding that oncogenic events that characterize malignancy are very 
common, even present at birth [ 2 ], whereas cancer is an unusual disease mainly 
affecting the elderly, demonstrates the existence of very effective tumor suppression 
mechanisms. 

 In this Chapter, we will discuss the molecular basis of cancer and aging, with 
particular emphasis on the mechanisms that associate increased incidence of cancer 
with aging. Specifi cally, we will discuss how time-dependent accumulation of 
genetic and epigenetic alterations in self-renewing cells as a result of imperfect 
homeostatic mechanisms can act as a common molecular basis for aging and can-
cer; how tumor suppression mechanisms that have evolved to prevent cancer can 
cause age-related functional attrition of self-renewing cells, which in turn contrib-
utes to certain aging-related pathologies; and how aging-associated physiological 
changes can contribute to cancer initiation and progression. From these discussions, 
we hope to identify preventive measures that can minimize the risk of cancer while 
slowing the rate of aging.  

2     Molecular Basis of Cancer 

 Cancer can largely be considered a genetic disease. That is, aberrant expression of 
proteins that normally regulate cell growth and proliferation cause cancer, either by 
over- or under-expression of normal versions of cellular proteins, or expression of 
mutant proteins that acquire de novo oncogenic functions. These changes in protein 
expression largely arise from fi xed DNA mutations that occur as a result of replica-
tion error, carcinogen exposure and other genotoxic stresses. Cancer-causing muta-
tions are grouped into two classes: activating events on  oncogenes  and inactivating 
events on  tumor suppressor genes  (Table  1 ). Ample evidence suggests that both 
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classes of mutations are needed for full malignant transformation, and generally 
multiple (>5) such events are required in adult cancers.

2.1       Oncogenes 

 Oncogenes are genes whose protein products promote neoplastic transformation of 
normal cells. They are often mutated or over-expressed forms of normal cellular 
genes (sometimes termed “proto-oncogenes”), but can also be encoded by certain 
strains of oncogenic viruses and acquired by normal cells following viral infection 
(e.g. SV40 large T antigen). Cellular proto-oncogenes encode proteins that play 
essential roles in regulating cell growth, survival, proliferation and differentiation. 
As a result, many proto-oncogenes are important regulators of embryonic develop-
ment [ 3 ,  4 ], while some are specifi cally required for somatic stem cell maintenance 
and tissue homeostasis in adult mammals [ 5 ]. Given their unique ability to regulate 
cell growth and survival, proto-oncogenes are the targets of oncogenic mutations. 

    Table 1    The role of oncogenes and tumor suppressors in cancer and aging   

 Cellular function  Role in cancer  Role in aging 

 Oncogenes  ↑Cell cycle 
 ↑Cell growth 
 ↑Survival 
 ↓Differentiation 
 ↓Apoptosis 

 Gain-of-function mutation 
 “One-hit” model 
 Commonly initiating event 
 “Oncogene addiction” 

 Loss-of-function impairs stem 
cell maintenance (pro-aging) 
 Gain-of-function enhances 
stem cell self-renewal 
potential (anti-aging), but can 
activate tumor-suppressor 
response to induce senescence 
or apoptosis, or lead to clonal 
dominance of stem cells with 
defective differentiation 
potential (pro-aging) 

 Gatekeeper 
Tumor 
Suppressor 

 ↓Cell cycle 
 ↑Differentiation 
 ↑Apoptosis 

 Loss-of-function mutation 
 “Two-hits” Model 
 Inactivation is required for 
tumor maintenance 

 Loss-of-function enhances 
stem cell function (anti-aging) 
but may induce stem cell 
exhaustion (pro-aging) 
 Aberrant activation impairs 
stem cell function (pro-aging), 
but physiologically regulated 
increase in gene dose can in 
some cases extend lifespan by 
preventing cancer. 

 Caretaker 
Tumor 
Suppressor 

 DNA repair 
 Telomere 
maintenance 
 ROS detoxifi cation 
 Epigenetic 
maintenance 

 Loss-of-function mutation 
 “Two-hits” Model 
 Inactivation promotes 
(epi-) genomic instability 
 Inactivation is not required 
for tumor maintenance 

 Loss-of-function impairs stem 
cell maintenance (pro-aging) 
 Gain-of-function effects on 
aging are currently unclear 
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 Oncogenic mutations either increase the gene’s normal activity, or confer de 
novo oncogenic function to the mutated genes. Upon activation, a proto-oncogene 
becomes an oncogene, gaining the ability to confer growth and survival advantage 
to normal cells and promote cancer development. Since only one copy of the proto- 
oncogene needs to be mutated to exert its oncogenic function, activating mutations 
of proto-oncogenes can follow the “one-hit” model and often occur early during 
cancer development. 

 Oncogenes can be activated in a number of ways. For example, the mutant pro-
tein product possessing enhanced enzymatic activity or resistance to degradation/
inactivation can be generated as a result of DNA mutations in the coding region of 
the oncogene (e.g. BRAF-V600E). Alternatively, increased expression of the onco-
gene protein product can occur as a result of gene amplifi cation or promoter muta-
tion (e.g. TERT), or DNA mutations affecting transcription effi ciency or transcript 
stability. Lastly, chromosome rearrangement events involving one or more onco-
genes can generate fusion proteins that acquire increased transcript stability or de 
novo oncogenic function (e.g. BCR-ABL, MLL-AF9). 

 An important concern is whether a given oncogene contributes only to cancer 
initiation or is it also required for the continued survival and expansion of cancer 
cells (termed ‘tumor maintenance’ or ‘oncogene addiction’). Inhibiting oncogenic 
pathways involved in tumor maintenance from cancer cells causes tumor regression 
through increased cell death and/or cell cycle arrest [ 6 ]. Clearly, oncogenes to which 
a cancer is ‘addicted’ make better targets for cancer therapy. For example, the devel-
opment of inhibitors against mutant BRAF (Vemurafenib) or the BCR-ABL fusion 
protein kinase (Imatinib) have substantially improved the treatment of BRAF- 
mutant melanoma and Philadelphia chromosome-positive chronic myelogenous 
leukemia (CML) patients, respectively. However, as with any disease based on 
clonal evolution, drug resistance frequently emerges in cancer cells. Thus a better 
understanding of the molecular function of oncogenes and their normal cellular 
counterparts may help to identify cooperating pathways which, when inhibited, can 
cause synthetic lethality of the drug resistant cancer cells. 

 While oncogenes are best known for their roles in cancer, dysregulation in their 
activity may also contribute to aging under physiological or pathological condi-
tions. Because many proto-oncogenes are critical regulators of somatic stem cell 
function and maintenance in adult tissues, insuffi cient proto-oncogene activity may 
contribute to age-related functional attrition of somatic stem cells and aging of self- 
renewing tissues. This is best illustrated by studies of telomerase reverse transcrip-
tase ( TERT ). Telomerase is activated in human cancers through several genetic 
mechanisms and is critical to transformation in some tissues (e.g. melanocytes). 
Loss of telomerase activity with attendant telomere shortening and dysfunction 
causes attrition of certain self-renewing cells and the manifestation of certain 
aspects of aging (e.g. pulmonary fi brosis, hair greying, cirrhosis, and bone marrow 
failure) in humans [ 7 ]. Another potential example is EZH2, a histone methyltrans-
ferase that is activated in a variety of cancers including lymphoma, melanoma and 
certain forms of lung cancer. EZH2 is a critical mediator of stem cell epigenetic 
state and self-renewal capacity [ 8 ], and EZH2 inhibitors are a promising new class 
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of anti-cancer agent undergoing active clinical testing. However, a concern is that 
long-term use of EZH2 inhibitors may promote aging by augmenting somatic stem 
cell attrition. 

 A second way proto-oncogenes can contribute to aging is through the activation of 
tumor suppressor genes. Oncogene activation can trigger tumor suppressor responses 
in host cells, resulting in oncogene-induced apoptosis, senescence or differentiation. 
As activating mutations of oncogenes can accumulate in the stem cell pool over time, 
this can cause functional attrition of stem cells with age, resulting in reduced regen-
erative potential of aging tissues (discussed in detail in the next section). 

 A third and related way whereby oncogenic events can contribute to tissue aging 
is through the induction of advantaged clones that are defective for normal stem cell 
function. For example, work in human hematopoietic stem cells (HSCs) has shown 
that clones harboring a small number of oncogenic events may exhibit a modest 
increase in replicative capacity, in the absence of frank transformation [ 9 – 11 ]. In 
this case, these pre-neoplastic HSCs can out-compete normal HSCs, thereby “ taking 
over” the bone marrow compartment. Although these pre-neoplastic HSCs may 
have an advantage in terms of proliferation and self-renewal compared to normal 
HSCs, they may also be defective in the production of differentiated blood ele-
ments, and thereby contribute to anemia and leukopenia, which are not uncommon 
features of hematopoietic aging in humans. It is likely that this type of stem cell 
competition resulting from oncogenic events that cause tissue dysplasia contributes 
to aging phenotypes in tissues beyond the bone marrow.  

2.2     Tumor Suppressor Genes 

 Given the danger posed by stochastic oncogene activation or acquisition of viral 
oncogenes, mammalian cells are equipped with a variety of tumor suppression 
mechanisms to prevent and counter oncogene activation. These tasks are performed 
by so-called tumor suppressor genes. Tumor suppressors function to either prevent 
the emergence of neoplastic cells by maintaining genomic stability or to restrict the 
growth and proliferation of already damaged cells. For malignant transformation to 
succeed, tumor suppressor genes must be inactivated either by DNA mutations or 
epigenetic silencing. As both copies of tumor suppressor genes usually need to be 
inactivated to abolish their function, mutations of tumor suppressor genes in cancer 
cells often follow the “two-hit” model. There are some exceptions, as tumor sup-
pressor genes can be ‘haploinsuffi cient’, meaning the loss of a single copy of the 
gene is suffi cient to confer growth advantage to mutant cells; in other cases, muta-
tion of the tumor suppressor proteins can create dominant negative or a gain-of-
function form of the protein that is suffi cient to drive neoplastic transformation. In 
these cases, mutations of tumor suppressor genes can act as an initiating event in 
malignant transformation. 

 Tumor suppressor genes have been functionally divided into at least two major 
categories (Table  1 ). One group of tumor suppressor genes are constitutive 
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 housekeeping genes that act as “caretakers” in the cells to maintain genomic and 
epigenetic stability thereby minimizing the risk of oncogene activation. Examples 
of this are genes such as  BRCA1  or  ATM  whose protein products prevent cancer by 
promoting genomic stability. In contrast, a second group of tumor suppressor genes 
are thought to be activated by characteristic features of early neoplasms, such as 
DNA damage or uncontrolled mitogenic signaling. Such tumor suppressor genes 
have been termed “gatekeepers” whose function is to restrict aberrant cell growth 
and proliferation [ 12 ]. While this classic distinction has intellectual appeal, limita-
tions of this conceptual framework have emerged with a modern understanding of 
the cellular mechanisms of tumor suppression. For example, certain tumor suppres-
sor genes such as  TP53  perform both caretaker and gatekeeper types of functions. 
Moreover, several recently appreciated tumor suppressor genes (e.g.  LKB1  or 
 PTEN ) are potent regulators of intracellular signaling, and their loss augments 
metabolism and growth in a way that does not obviously fi t into either category. 
These limitations notwithstanding, we will discuss these tumor suppressor mecha-
nisms and their relation to aging as grouped through this framework. 

2.2.1     Caretaker Tumor Suppressor Genes 

 Caretaker tumor suppressors act to maintain genomic integrity or epigenetic stabil-
ity, and do not directly regulate cell growth or proliferation [ 13 ]. The best character-
ized examples of caretaker tumor suppressors are genes involved in DNA damage 
response and repair. 

 DNA lesions occur constantly in all cells as a result of the intrinsic chemical insta-
bility of DNA, errors in DNA replication, or exposure to cell intrinsic (such as reac-
tive oxygen species (ROS) generated from cellular metabolism) or extrinsic genotoxic 
agents (such as UV, radiation or chemical carcinogens). To deal with the many types 
of DNA lesions, mammalian cells have evolved diverse DNA repair mechanisms. 
When the lesion only occurs on one strand of the DNA double helix, it can be faith-
fully repaired using information from the complementary strand through mechanisms 
such as base excision repair (BER) or nucleotide excision repair (NER). In the case 
of DNA double strand breaks (DSBs), the lesions can either be repaired by the 
homologous recombination (HR) mechanism that uses the information from the 
homologous sister chromatid to faithfully repair the damage, or by the more effi cient 
but error-prone non-homologous end joining (NHEJ) mechanism. In each case, the 
cell detects DNA lesions through sensor proteins, which recruit the appropriate DNA 
repair machineries; if the lesions occur during the cell cycle, additional checkpoint 
proteins are activated to arrest the cell cycle, allowing enough time to repair the lesion 
before resuming division. If the repair is not  successful, more familiar gatekeeper 
tumor suppressors such as p16 INK4a  and p53 are activated to induce programmed cell 
death (apoptosis) or permanent cell cycle arrest (e.g. cellular senescence or terminal 
differentiation) to prevent the damaged cells from further propagation. 

 Given their critical role in maintaining genomic integrity, mutations in DNA 
repair genes are frequently associated with an increased incidence of cancer [ 14 ]. 
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For example, women with a single copy of a germline mutation in  BRCA1  or 
 BRCA2 , which contribute to HR-mediated DSB repair, are at signifi cantly increased 
risk of developing cancers of the breast, ovary and other tissues; while patients with 
 ATM  inactivation are most predisposed to leukemia and lymphoma. Interestingly, 
many congenital DNA repair defi ciency diseases show a varying degree of acceler-
ated aging in addition to their cancer-prone phenotype [ 13 ,  14 ]. Likewise, with the 
prominent exception of Hutchinson-Gilford progeria, nearly all the genetic segmen-
tal progerias result from mutations in genes associated with DNA metabolism (e.g. 
WRN), and generally lead to a cancer-prone phenotype. This relationship between 
DNA metabolism and aging is not entirely due to the secondary effects of cancer as 
patients of DNA repair defi ciency diseases such as Cockayne Syndrome and 
Trichothiodystrophy do not have increased risk of cancer while still exhibiting some 
features of premature aging [ 13 ]. Likewise, external exposures that cause DNA 
damage also induce aspects of premature aging, providing an additional link 
between DNA metabolism and life-long somatic stem cell function. These observa-
tions, together with the fi ndings that DNA repair genes are essential for maintaining 
long-term self-renewal potential of somatic stem cells throughout life at least in 
mouse [ 15 ], suggest DNA repair genes are not only essential for preventing neo-
plastic transformation, but may also play a role in regulating the rate of physiologi-
cal aging. It is however unclear whether enhancing the activities of caretaker genes 
could delay the onset of stem cell aging. 

 While mutations of DNA repair genes can promote cancer initiation and clonal 
evolution, their continued inactivation is generally not required for cancer cell growth 
and proliferation. In fact, due to frequent defects in various DNA repair mechanisms, 
many types of cancer cells are critically dependent on specifi c DNA repair pathways 
for survival. This cancer cell specifi c dependency can be exploited therapeutically to 
target cancer cells without harming normal cells with a wholly intact repertoire of 
DNA repair activities [ 16 ,  17 ]. For example, cancer cells with  BRCA1/2  gene muta-
tions are defective in the repair of double strand breaks via homologous recombina-
tion, and treating these cells with PARP1 inhibitors that cause accumulation of single 
strand breaks, which are later converted into DSBs, results in synthetic lethality in 
the mutant cells but not wild type cells [ 18 ,  19 ]. These fi ndings of in vitro synthetic 
lethality in turn translate into signifi cant clinical antitumor activity of PARP inhibi-
tors in  BRCA1/2 -defi cient malignancies. Several other defects in DNA repair and/or 
DNA damage-induced checkpoints are exploited therapeutically to allow for 
enhanced killing of cancer cells versus non-malignant tissues. 

 DNA repair genes are not the only caretaker tumor suppressors; genes involved 
in telomere maintenance, reactive oxygen species (ROS) detoxifi cation and 
 epigenetic modifi cation are often also characterized as caretaker genes due to their 
ability to maintain genomic and epigenetic stability of the cell. However, their roles 
in cancer are more context-dependent. For example, telomerase is essential for 
maintaining genomic integrity by protecting chromosomes from fusing to each 
other, therefore acting as a caretaker against neoplastic transformation. However, 
several lines of data now show that telomerase activity is also oncogenic, presum-
ably by enabling the immortalization of neoplastic cells. Similarly, while DNA and 
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histone modifi cation enzymes are important for maintaining the integrity of epigen-
etic information in the cell, aberrant activation of these genes is an emerging theme 
now noted in many types of cancer. A fi nal example is the surprising role of NRF2 in 
squamous cancers of the aerodigestive tract. NRF2 regulates many genes involved 
in the detoxifi cation of ROS. Excess ROS has traditionally been considered onco-
genic, through effects on intra-cellular signaling as well as by inducing macromo-
lecular damage. Large tumor sequencing studies such as the Cancer Genome Atlas, 
however, have fi rmly established that excess NRF2 activity is potently oncogenic in 
squamous cancers of the lung, oropharynx and esophagus, challenging the long held 
view of ROS as being oncogenic [ 20 ]. It is perhaps not a coincidence that the notion 
that ROS promotes physiological aging, as in the “free radical theory of aging”, is 
also being seriously questioned in modern gerontology [ 21 ,  22 ]. Therefore, unlike 
gatekeeper tumor suppressors (discussed next), the activity of caretaker tumor sup-
pressors does not directly inhibit cancer cell growth, and depending on the cellular 
context, can actually promote cancer progression.  

2.2.2     Gatekeeper Tumor Suppressor Genes 

 Gatekeeper tumor suppressor genes are negative regulators of cell proliferation. 
Unlike the caretaker genes, gatekeeper genes are generally not essential for routine 
cellular function; instead they are only activated upon sensing persistent cellular 
stress such as chronic DNA damage or oncogene activation. 

 Perhaps the best known gatekeeper tumor suppressor gene is  TP53 , the so-called 
“guardian of the genome”.  TP53  is the most highly mutated gene across all human 
cancers, and mice with heterozygous or homozygous loss of  TP53  are highly prone to 
sporadic cancers.  TP53  encodes a multifunctional transcription factor (p53) that, in 
response to a variety of stresses, controls the expression of genes involved in a wide 
range of cellular activities including DNA damage repair, cell cycle control, apoptosis 
and autophagy. Critically shortened telomeres and double strand DNA breaks can 
activate p53 through the checkpoint kinases ATM and CHK2, which then upregulate 
the expression of the cyclin-dependent kinase (CDK) inhibitor p21 CIP1  to induce cell 
cycle arrest to facilitate DNA repair. Moreover, p53 can also respond, in a poorly 
understood manner, to excess mitogenic signaling (e.g. “oncogenic stress”) mainly 
through activation of the ARF (a.k.a. p19 ARF  in mouse or p14 ARF  in human) tumor 
suppressor protein (Fig.  2 ). ARF is encoded by the  CDKN2A  locus, which also 
encodes another important gatekeeper tumor suppressor, p16 INK4a , and  CDKN2A  
expression is induced by a wide-variety of oncogenic signals [ 23 ,  24 ]. ARF binds to 
and inhibits the activity of MDM2, a potent negative regulator of p53, thereby leading 
to p53 protein stabilization and p53-mediated cell cycle arrest or apoptosis. Similar to 
p53, mice lacking one or both alleles of  Arf  are cancer-prone, and deletion of  ARF  is 
common in human malignancies. The cellular response to p53 activation depends on 
the nature and duration of the cellular stress, as well as the cellular context [ 25 ]. While 
strong, persistent signals are likely to induce apoptosis or senescence; low intensity, 
transient signals tend to induce reversible cell cycle arrest [ 26 ]. 
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 A second group of important gatekeeper tumor suppressors involves the control 
of mammalian cell cycle progression, including the Retinoblastoma (RB) family 
proteins and several types of cyclin-dependent kinase inhibitors (Fig.  1 ). RB family 
proteins (RB, p107, and p130) are important regulators of the G1-S cell cycle transi-
tion, and they play a redundant role in binding and inhibiting the activity of E2F 
family transcription factors, which control the expression of genes important for 
DNA synthesis and cell division. Among the RB-family proteins, RB in particular 
is important for the induction of cellular senescence and for tumor suppression [ 27 , 
 28 ]. RB protein activity is regulated by various cyclin/CDK protein complexes. 
Upon sensing mitogenic signals, activated cyclin-CDK complexes promote cell 
cycle entry by phosphorylating and inactivating RB proteins. The activity of the 
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  Fig. 1    The p16 INK4a -RB and ARF-p53 tumor suppressor pathways. The  CDKN2A/B  locus on 
human chromosome 9p21 encodes three archetypical tumor suppressor proteins: p16 INK4a , ARF 
and p15 INK4b . p16 INK4a  and ARF share common second and third exons, but are transcribed from 
separate promoters and fi rst exons in alternative reading frames, thus yielding different proteins 
with distinct cellular functions. p16 INK4a  and p15 INK4b  belong to the INK4 family of cyclin depen-
dent kinase inhibitors, which bind to CDK4/6 and inhibit the formation of cyclin D-CDK4/6 holo-
enzyme, leading to the stabilization of the RB family transcription factors and blocking cell cycle 
entry. ARF binds to and inhibits the activity of MDM2, a potent negative regulator of p53, leading 
to p53 protein stabilization. Activation of the p16 INK4a -RB and ARF-p53 pathways upon oncogenic 
stress or persistent DNA damage can lead to cellular senescence or apoptosis, which serve as 
important tumor suppression mechanisms to prevent malignant transformation       
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cyclin D-CDK4/6 complex is regulated by the INK4 family proteins (including 
p16 INK4a , p15 INK4b , p18 INK4c  and p19 INK4d ), which bind to CDK4/6 and inhibit the 
formation of cyclin D-CDK4/6 holoenzyme [ 29 ]. While the INK4 family proteins 
appear to be structurally similar, mouse genetic models and mutational studies in 
human cancers suggest p16 INK4a , and to a lesser extent p15 INK4b , carry out the most 
important tumor suppression functions. This may be due to the different expression 
pattern and activation mechanism of each INK4 protein.

   As mentioned, p16 INK4a  and ARF are encoded by the  CDKN2A  locus located on 
human chromosome 9p21 (Fig.  1 ). Their open reading frames share two exons 
translated in alternate reading frames, as well as different fi rst exons and promoters. 
The  CDKN2A  locus is the most frequent site of cytogenetic deletion in human 
 cancers, and point mutation or epigenetic silencing of the locus is also well-
described. For the most part, p16 INK4a  and ARF are not expressed by normal prolif-
erating cells in vivo, and are largely dispensable for normal development (with the 
exception of a role for Arf in eye development). Mice lacking both  p16   INK4a   and  Arf  
demonstrate normal development, but are highly tumor prone, even more so than 
animals lacking only  p16   INK4a   or only  Arf . Although these genes do not participate 
in normal cell cycle control, they are highly activated, albeit with delayed kinetics 
(1+ weeks), by a variety of oncogenic stimuli including in vitro culture, excess 
mitogenic signaling, increased cell density, disordered chromatin structure and 
many noxious stimuli (e.g. UV light and ionizing irradiation). The precise origin 
and nature of the signals that induce p16 INK4a  expression in vivo are poorly under-
stood, and can be both intra-cellular and extra-cellular. For example, we recently 
showed that the presence of a small number of neoplastic cells within a given tissue 
will rapidly induce  p16   INK4a   expression in nearby non-malignant cells [ 30 ]. Unlike 
p21 CIP1 , p16 INK4a  is not acutely induced by DNA damage and does not play a role in 
the initial DNA damage-induced cell cycle arrest. Instead, the main function of 
p16 INK4a  appears to be to initiate and/or maintain a highly durable if not permanent 
cell cycle arrest (called ‘cellular senescence’) to prevent malignant transformation. 
In addition to the INK4 family proteins, another group of CDK inhibitors, the CIP/
KIP family proteins (including p21 CIP1 , p27 KIP1  and p57 KIP2 ), also represses the cell 
cycle by inhibiting the activity of the cyclin E-CDK2 complex. Their role in tumor 
suppression appears to be more limited. With the exception of bladder cancer where 
p21 CIP1  mutation is seen in 15 % of tumors, mutations of these proteins are unusual 
in most human malignancies, and mice defi cient for p21 CIP1  or p27 KIP1  only exhibit 
a mildly increased risk of cancer. 

 Some evidence suggests the ARF-p53 and p16 INK4a -Rb tumor suppressor path-
ways are inactivated, through a wide variety of mechanisms, in almost all human 
cancers. Unlike caretaker tumor suppressors, the continued inactivation of gate-
keeper tumor suppressors is required for cancer cell survival and proliferation, as 
re-expression of key gatekeeper genes such as p53 is suffi cient to cause cancer 
regression [ 31 ,  32 ]. Activation of these tumor suppressor pathways may contribute 
to the therapeutic response to certain classes of anti-cancer agents; e.g. p53- mediated 
apoptosis may be important in the response to certain DNA damaging chemother-
apy drugs. To date, however, re-activation or re-introduction of tumor suppressor 
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genes in established cancers has proven technically diffi cult, and is currently not 
achievable in most cancers. 

 In addition to its critical role in cancer prevention, there is a large literature link-
ing p53 with physiological aging (reviewed in [ 33 ]), but this relationship is com-
plex. For example, as a critical regulator of genomic stability, p53 has been suggested 
to play a critical anti-aging role by minimizing the accumulation of macromolecular 
damage. Alternatively, excess p53 activation has been suggested to be age- 
promoting, perhaps through the induction of decreased function in somatic stem 
cell compartments. In support of this notion, mice expressing constitutively acti-
vated p53 exhibit a premature aging phenotype and have reduced life spans [ 34 ,  35 ], 
and hematopoietic stem cells isolated from these mice are functionally defi cient in 
competitive transplantation settings [ 36 ]. However, mice engineered to carry an 
extra copy of the entire  Cdkn2a  locus and/or  p53 , whose activities are under physi-
ological regulation, exhibit enhanced cancer resistance without detectable negative 
effects on aging and lifespan [ 37 – 39 ]. Therefore, excess, unbridled p53 may pro-
mote aging, whereas physiological p53 activation is likely anti-aging. 

 There are even stronger data linking p16 INK4a , and to a lesser degree ARF, to 
mammalian aging. The expression of both products of the  CDKN2a  locus increases 
exponentially with aging in all mammalian species studied [ 40 – 42 ], and this is 
thought to represent the accumulation of senescent cells with aging (covered below). 
The deletion of p16 INK4a  in mice appears to partially rescue the functional defects of 
old somatic stem cells in the nervous and hematopoietic system [ 43 ,  44 ], as well as 
improve the regenerative potential of aged lymphocytes and pancreatic beta cells 
[ 45 – 48 ]. Therefore, activation of p16 INK4a  appears to lead to a reduced replicative 
capacity in several somatic, self-renewing compartments, with an attendant decrease 
in physiological reserve. Alternatively, p16 INK4a  expression also appears to restrain 
forms of excess proliferation, malignant and non-malignant, that are pathogenic. 
For example, aberrant macrophage proliferation in atherogenic plaques appears to 
be restrained by p16 INK4a  and Arf expression, with reduced atherogenesis [ 49 ]. 
Beyond a wide range of murine studies supporting these relationships, there are also 
compelling genome-wide unbiased evidence for this model in humans. Genome 
wide association studies (GWAS) have linked regulation of the  CDKN2A  locus to 
many age-associated conditions such as cancer susceptibility, stroke, myocardial 
infarction, aortic aneurysm, glaucoma, and type 2 diabetes [ 50 ]. For cancer and 
atherosclerotic disease, it appears increased expression of  CDKN2A/B  transcripts is 
protective, but it is believed that excess expression of these transcripts may alterna-
tively underlie the susceptibility to some of the other linked phenotypes.  

2.2.3     Other Important Tumor Suppressors 

 As mentioned, there are additional genes that perform important tumor suppressor 
functions, but which do not fi t neatly into either the caretaker or gatekeeper cate-
gory. The Phosphatase and Tensin homolog (PTEN) protein converts phosphati-
dylinositol (3,4,5)-trisphosphate to phosphatidylinositol (4,5)-bisphosphate to 
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inhibit downstream AKT signaling, thereby negatively regulating cell growth and 
proliferation [ 51 ]. PTEN mutations are frequently found in human brain and epithe-
lial cancers, and mice engineered to delete  Pten  in somatic cells are cancer-prone. 
The human  STK11/LKB1  gene encodes a serine/threonine kinase that regulates 
energy metabolism and cell polarity through activation of a wide range of down-
stream kinases including the adenine monophosphate-activated protein kinase 
(AMPK) family of kinases. Somatic mutations of  LKB1  are found in a large fraction 
of human lung adenocarcinomas and cutaneous melanomas, and murine studies 
suggest loss of  LKB1  promotes cancer development, with a particularly strong asso-
ciation with distant metastases [ 52 ,  53 ]. The  NF1  gene encodes neurofi bromin, a 
RAS GTPase-activating protein that negatively regulates RAS signaling. Loss of 
 NF1  causes hyperactive RAS signaling, leading to enhanced growth and decreased 
apoptosis of the mutant cell. Germ line mutation of  NF1  causes the tumor predispo-
sition syndrome neurofi bromatosis type I in humans, and somatic mutations of  NF1  
are found in a wide range of human cancers. In all cases, these genes function as 
negative regulators of growth factor signaling and clearly act as tumor suppressors. 
Certainly the pathways regulated by these proteins, e.g. cellular growth and metabo-
lism, have been linked to physiological aging through a variety of approaches, but 
the role of these specifi c proteins in human aging is unclear.    

3     Cellular Mechanisms for Tumor Suppression 

 Upon detecting oncogenic stress, a proliferating cell can activate three major cellu-
lar tumor suppression mechanisms to prevent malignant transformation: permanent 
cell cycle arrest (cellular senescence), programmed cell death (e.g. through apopto-
sis, necroptosis or autophagy), or terminal differentiation (in the case of somatic 
stem and progenitor cells) (Fig.  2 ). Although much is known about the respective 
molecular biology of these processes, under which circumstances a damaged cell 
chooses each of these potential fates is not well-understood. Failure to activate the 
tumor suppression mechanisms, however, is a cardinal feature of all cancers.

3.1       Cellular Senescence 

 Among cellular tumor suppression mechanisms, the most important appears to be 
“cellular senescence”, an irreversible form of cell cycle arrest, which is also inti-
mately associated with aging. Senescence occurs in response to cellular stresses and 
displays features that distinguish it from other forms of growth arrest such as “qui-
escence” or “terminal differentiation” (reviewed in [ 54 ]). Several lines of evidence 
suggest that the senescence mechanism has benefi cial features such as preventing 
cancer as well as non-neoplastic diseases characterized by pathogenic proliferation, 
and may also play an important role in wound healing. Importantly, however, 
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signifi cant human and murine data suggest that senescence plays a causal role in 
some aspects of aging. 

 With regard to tumor suppression, senescence appears to be more critical than 
apoptosis or other forms of regulated cell death such as Autophagy. Mice with even 
mild defects in senescence activation are highly tumor-prone. In contrast, animals 
with near-complete defi ciency in apoptosis (e.g. lacking Bax and Bak) display sev-
eral developmental phenotypes and excess numbers of certain classes of hematopoi-
etic cells, but are not generally cancer-prone [ 55 ]. In humans, unbiased genome-wide 
screens have demonstrated that inactivation of the senescence-promoting  CDKN2A  
and  TP53  loci are common in familial cancer syndromes, and the Cancer Genome 
Atlas has established that loss of p16 INK4a  and p53 functions are the most  common 
somatic genetic events in human cancers, with possibly all tumors harboring one or 
multiple events targeting senescence (reviewed in [ 56 ,  57 ]). Even for a gene like 
 TP53 , which modulates both apoptosis and senescence, the available data suggest 
that its ability to promote cell cycle arrest is considerably more important to its abil-
ity to repress tumors than its effects on cell death [ 58 ,  59 ]. Therefore, not only is 
p53- and p16 INK4a –mediated cell cycle arrest (e.g. senescence) important for 
 preventing tumorigenesis, it appears to have evolved in mammals to be the  most 
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  Fig. 2    Cellular tumor suppression mechanisms. Upon sensing oncogenic stress or persistent DNA 
damage, somatic stem cells and proliferating progenitors can activate three major cellular tumor 
suppression mechanisms to prevent malignant transformation: terminal differentiation, permanent 
cell cycle arrest (cellular senescence), or programmed cell death (e.g. through apoptosis, necrop-
tosis, or autophagy). The choice to activate which specifi c mechanism is cell type and developmen-
tal stage dependent, and can lead to distinct physiological consequences       
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critical  anti-cancer mechanism. This fact suggests that senescence possesses some 
evolutionary advantage over apoptosis as a tumor suppressor mechanism. 

 One potential explanation for this observation is teleological: senescence did not 
evolve to suppress tumors, but rather was perfected through evolution to enhance 
species fi tness by playing a role in physiologic processes such as the stress response 
or wound healing. By this argument, tumor suppression is merely a collateral ben-
efi t of the senescence mechanism, in the same way that decreased cancer is a benefi t 
of more faithful DNA repair. This argument may be correct, but it has been hard to 
demonstrate what other function certain components of the senescence machinery 
(e.g. p16 INK4a ) perform beyond limiting aberrant proliferation. For example, mice 
(or even in some rare cases, humans [ 60 ]) lacking p16 INK4a  appear phenotypically 
normal until the development of a wide variety of malignancies at an early age. So, 
even if the senescence response developed for additional reasons, the main pheno-
typic readout in mammals appears to be tumor predisposition. 

 Another possible reason for an evolutionary preference of senescence over apop-
tosis to censor tumors might be that apoptosis can produce new problems (Fig.  3 ). 
Since organ size and function of many tissues is regulated throughout the mammalian 
lifespan, a damaged cell censored by apoptosis would leave a niche “hole” that would 
then be fi lled either by hypertrophy of the remaining cells, or through increased pro-
liferation of somatic stem cells. Hypertrophy is associated with tissue dysfunction in 
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  Fig. 3    Problems of Apoptosis vs. Senescence. While both are effective at preventing damaged 
cells from further propagation, programmed cell death (apoptosis) and cellular senescence have 
distinct advantages and disadvantages as tumor suppression mechanisms. The major advantage of 
apoptosis is that it irrevocably removes the damaged cells in question, however, this can leave 
“holes” in the tissue that need to be fi lled either by hypertrophy of remaining cells or increased 
proliferation of somatic stem and/or progenitor cells, which can compromise stem cell or tissue 
function. In contrast, while cellular senescence may have the advantage of preserving semi- 
functional cells after damage thus requiring less compensatory proliferation of the stem and pro-
genitor cells, senescent cells can secrete harmful cytokines that interfere with normal tissue 
function, and senescent stem cells may occupy limited “niche” space leading to decreased overall 
function of the stem cell pool       
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many organs (e.g. the heart), and would not solve the problem where diversity through 
cell number is important (e.g. the cellular immune system). Additional replication, 
however, may be undesirable as S-phase and mitosis provide opportunities for further 
errors of replication. Furthermore, the loss of certain cells to apoptosis in response to 
cellular stresses might, in particular, be functionally non- advantageous. For example, 
senescence, not apoptosis, is clearly the principal barrier to melanocyte transforma-
tion. As the primary function of melanocytes is to provide protection from damaging 
UV light through the synthesis of melanin, it could be evolutionarily undesirable for 
melanocytes, damaged as a result of UV exposure, to undergo apoptosis. Melanocyte 
senescence leaves a semi-functional, possibly protective melanocyte while diminish-
ing the risk of malignant transformation. Therefore, senescence may be evolution-
arily preferable to apoptosis as it may lead to a reduced lifetime proliferative burden 
on stem cells by leaving resident cells able to perform some desirable functions of 
related non-senescent cells (e.g. melanin synthesis). If correct, this model predicts 
that the clearance of senescence cells, for example through the use of ‘senolytic’ 
small molecules selectively toxic to senescent cells, might have unwanted toxicities. 
In contrast to this line of reasoning, Van Deursen and colleagues have reported that a 
genetic depletion of senescent cells is benefi cial with regard to some aspects of aging 
in a strain of progeroid mice [ 61 ], although these experiments did not extend longev-
ity or address the role of senescent cells in physiological aging. Ongoing experiments 
will address the consequences of senescence ablation in an aged individual.

3.2        Programmed Cell Death 

 As a tumor suppression mechanism, the major advantage of programmed cell death 
(such as apoptosis) over cellular senescence, is that it irrevocably removes damaged 
cells, thereby eliminating the potential for detrimental mutations to further propa-
gate. This may be desirable under certain cellular contexts; for example, during 
early embryonic development it may be advantageous to eliminate cells with DNA 
damage instead of attempting repair, to prevent mutations from being transmitted 
into a large population of the cells. A similar situation may also apply to germ cells 
where the maintenance of genomic integrity is of utmost importance. Consistent 
with this notion, embryonic stem cells, early developing embryos and germ cells are 
all exquisitely sensitive to ionizing radiation-induced DNA damage, and they rap-
idly induce apoptosis without undergoing cell cycle arrest and DNA repair [ 62 ,  63 ]. 
These observations support the hypothesis that apoptosis may have evolved primar-
ily as a mechanism to safeguard the genomic integrity against genotoxic stress, and 
the modest tumor suppression afforded by apoptosis in some tissues is only a col-
lateral benefi t. Nonetheless, apoptosis does play important roles in tumor suppres-
sion. Somatic mutations that affect genes regulating cell survival and apoptosis have 
been found in human cancers, particularly in tissues that have high intrinsic sensi-
tivity to apoptosis such as lymphocytes; and pharmacological or biological means 
to induce cancer cell apoptosis are important therapeutic strategies to treat cancer.  
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3.3     Terminal Differentiation 

 Terminal differentiation is another form of permanent cell cycle arrest distinct from 
cellular senescence in that it is a developmentally programmed process for stem 
cells to generate normal effector cells, whereas senescence is stochastically induced 
by cellular stresses that distort homeostasis. The notion that terminal differentiation 
prevents oncogenic transformation is not new, as it has been demonstrated that the 
tumor suppressor protein APC prevents colon cancer by balancing the self-renewal 
and differentiation of intestinal stem cells through the regulation of cellular beta- 
catenin levels. However, the activity of APC is constitutive and not infl uenced by 
oncogenic stimuli. The fi rst evidence suggesting terminal differentiation may act as 
a checkpoint against oncogenic stress comes from the fi nding that oncogene activa-
tion can induce differentiation. Over-expression of the  MYC  oncogene in the epider-
mis results in a long-term depletion of stem cells while accumulating differentiated 
keratinocytes [ 64 ]. Later, it was shown that DNA damage by ionizing radiation can 
directly trigger the differentiation of melanocyte stem cells and hematopoietic stem 
cells [ 65 ,  66 ]. These observations support the hypothesis that induced differentia-
tion may be a conserved checkpoint mechanism to limit the self-renewal potential 
of somatic stem cells upon DNA damage or oncogene activation to prevent neoplas-
tic transformation. However, it remains to be determined whether this mechanism 
applies to additional stem cell populations, and whether any cancer develops as a 
result of escaping the differentiation checkpoint mechanism.   

4     Oncogenic Mutations Require a Proper Cellular Context 
for Malignant Transformation 

 While activating mutations of oncogenes and inactivating mutations of tumor sup-
pressors are required by nearly every cancer, the particular genes that are preferen-
tially mutated in each type of cancer are highly cancer-type specifi c. This suggests 
the non-genetic cellular context, that is the cellular epigenetic state, also plays a 
critical role in the impact of oncogenic mutations on cell biology. For example, 
activating mutations of the  H-RAS  oncogene cannot promote cancer in cells that do 
not express the  H-RAS  mRNA. Likewise, mutations that occur in replication incom-
petent cells (e.g. that are terminally differentiated) also do not drive oncogenesis. 
More subtly however, there are many examples in which the oncogenic potential of 
a mutant protein is restricted to a specifi c cell type or a particular developmental 
stage. For example, the loss of the VHL tumor suppressor is largely restricted to one 
type of advanced human cancer: renal carcinoma. VHL plays an important role in 
oxygen sensing, and VHL-inactivated cells act as if they are hypoxic. This observa-
tion can be interpreted as a demonstration that hypoxia does not promote cellular 
growth in most contexts, but is a stimulus to grow and divide in specifi c renal cells. 
Therefore, while cancer is a genetic disease, the specifi c cellular context determines 
the ability of oncogenic events to drive particular types of cancers.  
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5     How Does Cancer Relate to Aging? 

 Broadly defi ned, aging is the process of age-dependent decline in body function and 
increase in mortality that affect most living organisms. Aging is not a disease, rather, 
it is a collection of symptoms that refl ect progressively decreased cellular function 
and disrupted tissue homeostasis over time. On the cellular level, aging is character-
ized by the time-dependent functional attrition of non-dividing (terminally differen-
tiated) cells and impairment in somatic stem cell self-renewal and differentiation as 
a result of cell intrinsic and extrinsic stresses. These lead to impaired tissue homeo-
stasis, disrupted tissue architecture, reduced organ function and altered energy 
metabolism, all of which contribute to the reduced fi tness of aged organisms. Since 
aging is not caused by a single factor, no single intervention can be expected to treat 
all aging symptoms. The process of aging is not restricted to the aged. Mammalian 
cells experience DNA damage and other forms of age-promoting stresses on a daily 
basis. We are equipped with sophisticated repair mechanisms to deal with these 
challenges. Only when the extent of cellular and tissue damage exceeds the ability 
of our body to cope with these forms of damage do the symptoms of aging start to 
appear. Therefore, while completely preventing or reversing aging may be unlikely, 
minimizing these forms of daily damage may slow the rate of aging, while also 
reducing the incidence of cancer. 

5.1     Aging as a Result of Time-Dependent Accumulation 
of Cellular Damage 

 One prominent feature of aging is the age-dependent accumulation of damage in 
various cellular components. Terminally differentiated cells such as neurons are 
sensitive to the accumulation of damaged lipids and proteins over time, largely due 
to their inability to dilute such molecules through successive cell divisions. In con-
trast, accumulation of genetic damage, including unrepaired DNA damage, is par-
ticularly detrimental to the function of long-term self-renewing cells including 
somatic stem cells. It is unclear if increases in macromolecular damage that are 
characteristic of aging solely refl ect a lifetime’s accumulation of toxic events, or 
also result from a reduced capacity to clear or repair damaged proteins and DNA 
with aging. 

 DNA damage impairs somatic stem cell function in several ways: it may lead 
to the generation of defective proteins that directly interfere with cellular func-
tion, or it may induce tumor suppression mechanisms as a result of persistent 
DNA damage or oncogene activation, which then limit the self-renewal potential 
of somatic stem cells through mechanisms such as senescence, cell death or dif-
ferentiation. Therefore, the effi ciency of somatic stem cells to successfully 
repair various types of DNA damage is a critical determinant of the rate of aging. 
As mentioned, several human progeroid syndromes (e.g. Bloom, Werner, 
Cockayne, Fanconi Anemia, etc.) are associated with mutations in DNA repair 
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genes [ 67 ]. Telomere dysfunction is a specialized form of DNA damage, and 
mice defi cient in telomerase have reduced somatic stem cells function and 
exhibit features of premature aging [ 15 ]. 

 Therefore, despite their striking differences in presentation, aging and cancer 
seem to share a common origin: that is, the time-dependent accumulation of cellular 
macromolecular damage. When oncogenic mutations occur in a dividing cell as the 
result of DNA damage, the outcomes between cancer and aging depend on whether 
tumor suppression mechanisms can be successfully activated to prevent the dam-
aged cell from further propagation: cancer arises when tumor suppression mecha-
nisms fail, while aging results, at least partially, from the progressive functional 
attrition of self-renewing cells due to tumor suppression.  

5.2     How Is Cellular Senescence Related to Aging? 

 Cellular senescence is thought to promote aging by reducing the regenerative 
potential of self-renewing cells and/or by leading to the production of detrimental 
cytokines and other biomolecules; however, some components of the senescence 
machinery (e.g. p16 INK4a ) also appears to play a benefi cial anti-aging role in some 
tissues by preventing the development of certain aging-associated pathologies 
(such as cancer and atherosclerosis). Therefore, while it may seem attractive to 
attempt to delay aging by attenuating tumor suppressor function or clearing senes-
cent cells, more research is required on this topic to prevent unintended 
consequences. 

5.2.1     Adverse Effects of Senescence with Regards to Aging: Loss 
of Self-Renewal 

 Although the expression of senescence markers is associated with aging, this 
observation does not establish a causal relationship between senescence and the 
loss of tissue replicative capacity associated with aging. To address this issue, a 
number of studies have been performed examining the effect of genetic ablation 
or overexpression of p16 INK4a  in self-renewing tissues and cell types (e.g. beta-
cells, neural stem cells, HSCs, lymphocytes) on aging and age-related stresses. 
In mice, these studies have consistently shown that loss of p16 INK4a  can partially 
ameliorate the loss of tissue-specifi c replicative capacity with aging [ 43 – 48 , 
 68 ], indicating that increasing levels of p16 INK4a  are not only associated with 
aging, but in part play a causal role in these tissues. In each of these compart-
ments, p16 INK4a  defi ciency attenuated the decline in proliferation and function as 
a function of advancing age, and the effects of p16 INK4a  loss are consistent across 
disparate self-renewing tissues. In no organ or tissue studied, however, does 
p16 INK4a  loss completely abrogate the effects of aging, indicating that p16 INK4a -
independent aging also occurs in these compartments. Moreover, tissue specifi c 
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ablation of p16 INK4a  in B-lymphocytes, as opposed to T-lymphocytes, was 
strongly associated with the development of cancer [ 46 ], making explicit the 
organismal costs of diminished p16 INK4a  function in some tissues. 

 Related observations have likewise suggested that activation of p53 or its effec-
tors may compromise self-renewal to promote aging in mice [ 34 ,  35 ,  69 ] and 
humans [ 70 ]. The case for p53, however, is more complicated because it and its 
downstream effectors such as p21 CIP1  play important roles in regulating the DNA 
damage response, explaining why moderately increased gene dosage of  Cdkn2a  and 
 p53  in mice is associated with reduced aging [ 35 ,  37 ]. Additionally, HSCs from 
p21 CIP1 –defi cient mice demonstrate premature exhaustion [ 71 ], consistent with the 
notion that a p53- and p21 CIP1 -dependent cell cycle pause in response to DNA dam-
age or other stressors may be important for enhanced self-renewal and stem cell 
longevity in vivo. These results suggest that p53 activation can be both pro-aging 
and anti-aging depending on the nature and duration of the stress behind its 
activation. 

 Several lines of evidence have suggested that telomere dysfunction may contrib-
ute to mammalian aging by attenuating self-renewal and replicative capacity. 
Telomerase-defi cient mice that have been serially backcrossed to harbor human 
length telomeres demonstrate regenerative failure in multiple organs due to a 
decline in stem cell proliferative capacity and tissue repair ability [ 72 ,  73 ]. In addi-
tion, human CD28 negative T cells, which have lost optimal telomerase activity, 
accumulate in vivo with age and display impaired function [ 74 ], and patients with 
congenital defects in telomerase activity display lymphopenia and lymphocyte 
hypo-proliferation [ 75 ,  76 ]. Together, these results support the notion that 
 age- dependent activation of the cellular senescence program in proliferating cells 
impairs their self-renewal potential and promote aging.  

5.2.2     Adverse Effects of Senescence with Regards to Aging: Gain 
of the Senescence Associated Secretory Phenotype (SASP) 

 In addition to a loss of replicative capacity, the accumulation of senescent cells with 
aging appears detrimental because of newly acquired functions of senescent cells. 
In particular, senescent cells display certain cell surface molecules and produce a 
raft of secreted SASP molecules associated with the ‘sterile infl ammation’ charac-
teristic of aging. While the production of SASP factors may be benefi cial during 
transient episodes such as wound healing [ 77 – 79 ], the exponential accumulation of 
senescent cells with aging produces a monotonic increase in levels of SASP cyto-
kines. Although numerous infl ammatory markers increase with aging, the best stud-
ied with aging is IL-6, which is a reasonable aging biomarker whose expression is 
associated with worsening of age-associated phenotypes (reviewed in [ 80 ]). 

 Although perhaps benefi cial in the short-term (e.g. in wound repair), elaboration 
of SASP cytokines appears detrimental in the long-term for several reasons. SASP 
factors may impair cellular differentiation and disrupt tissue homeostasis in other-
wise undamaged tissues. Additionally, SASP factors appear to promote tumor 
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growth in a paracrine manner [ 81 – 83 ]. Several cytokines associated with increased 
tumor progression are produced by senescent cells including IL-6, IL-8, GRO-alpha 
and VEGF; each of which could potentially promote tumor progression in nearby 
cells harboring oncogenic events. Finally, the chronic activation of immunity and 
associated immune dysfunction resulting from the potent pro-infl ammatory cyto-
kines associated with the SASP is associated with many aspects of aging (reviewed 
in [ 84 ]).  

5.2.3     Benefi ts of Senescence with Regard to Aging 

 Although the fi eld has perhaps focused more recently on the age-promoting roles of 
senescence, it is now clear that the senescence machinery also contributes important 
anti-aging roles. As mentioned, the clearest benefi t of  p53  and  CDKN2A  activation 
is tumor suppression, and since neoplastic disease is strongly associated with aging, 
the anti-cancer functions of senescence attenuate this important age-associated phe-
notype. Animals lacking these pathways rapidly succumb to cancer, whereas mice 
engineered to exhibit a physiologically regulated increase in  Cdkn2a  and  p53  func-
tion exhibit a reduction in tumorigenesis with attendant longevity extension [ 37 ]. 
More recently, it has also become clear that the senescence machinery may limit 
non-malignant, but pathogenic proliferation in other age-associated settings. For 
example, work on humans and mice has suggested that  CDKN2A  expression plays 
an important role in preventing atherosclerosis by limiting disease-causing prolif-
eration of monocyte/macrophage or smooth muscle progenitors [ 49 ,  85 ,  86 ]. It is 
also likely that activation of proteins associated with senescence may play benefi -
cial roles in the prevention of other non-malignant diseases associated with aging 
(e.g. autoimmune conditions). While the notion that cancer and some aspects of 
aging are opposite outcomes based on the failure or success of senescence may be 
generally correct, these observations suggest that one should be careful as to how a 
given age-related phenotype is classifi ed (i.e. as excess, aberrant proliferation, or 
replicative failure). Moreover, while activation of senescence may be “antagonisti-
cally pleiotropic” (that is, benefi cial in young age but adverse in old age), the data 
seem clear with regard to senescence that some of the benefi cial functions in youth 
actually provide a lifelong benefi t, manifesting as a decreased incidence of certain 
classic age-associated conditions such as cancer and atherosclerosis.    

6     Why Does the Incidence of Cancer Increase with Age? 

 The incidence of cancer increases sharply with aging (Fig.  4 ). For example, com-
mon epithelial malignancies of the breast and colon are highly unusual in individu-
als below the age of 40, with an exponential increase in incidence with aging such 
that such tumors are highly common in adults over the age of 65. Several reasons 
have been suggested for this intimate relationship between aging and cancer (Fig.  5 ):
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6.1        Accumulation of DNA Mutations 

 Cancer requires the serial accumulation of a requisite number of DNA mutations in 
a long-lived self-renewing cell. One major source of time-dependent accumulation 
of DNA mutations likely comes from the intrinsic chemical instability of the DNA 
molecules. This is supported by the recent fi ndings that most types of human cancer 
exhibit age-dependent enrichment of C > T substitutions at Np C pG trinucleotides, 
which is likely the result of the relatively elevated rate of spontaneous deamination 
of 5-methyl-cytocine at these locations [ 87 ]. The fact that this particular mutational 
signature is the only type that is strongly correlated with age across many cancer 
types suggests its accumulation is predominantly time dependent. 

 Another major source of DNA mutations likely occurs as accidents during DNA 
replication as cells divide throughout life. Since many of the self-renewing cells 
divide infrequently, the requisite number of mutations needed for malignant conver-
sion may necessarily accumulate over years or decades. For example, HSCs repre-
sent the best understood system of human stem cell transformation. An adult human 
has fewer than 10 5  such cells that divide very rarely, approximately once every 
40 weeks [ 88 ]. It is thought that these cells make roughly one mistake per replica-
tive event, with the vast majority of errors in DNA replication being of no signifi -
cance. As this small number of cells divides over decades, rare DNA mutations 
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  Fig. 4    Cancer incidence increases with aging. The incidence of most common types of human 
cancers, including lung, colorectal, urinary bladder, breast (female) and prostate (male), increases 
exponentially with age. While most types of cancers are extremely rare in young people, they are 
highly common in adults over the age of 65. Cancer incidence data are from the 2011 SEER 
(Surveillance, Epidemiology, and End Results Program) 18 areas. Rates are per 100,000 and are 
age-adjusted to the 2000 US Std Population (19 age groups – Census P25-1130). Cancer incidence 
data include all races and both sexes unless otherwise noted       
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occur stochastically which provide a selective advantage to a specifi c HSC, which 
then begins to overgrow the bone marrow. The increased replicative rate of this 
clone allows for further DNA mutations, and the serial accumulation of oncogenic 
driver events with inactivation of tumor suppressor mechanisms eventually leading 
to HSC cancer; that is, leukemia [ 89 ]. Presumably, cancer arises through similar 

Young

DNA damage or
Oncogenic stress

Somatic stem cells

Differentiating progenies

Senescent cells

Hypertrophic cells

Apoptotic cells

Proliferation rate

DNA mutations

SASP cytokines

Lymphocytes

Old

  Fig. 5    Aging promotes cancer initiation and progression. Aging promotes neoplastic transforma-
tion and cancer development in several ways: (1) The time-dependent accumulation of DNA muta-
tions in somatic stem cells can lead to the emergence of hyper-proliferative clones that may 
progress to full-blown cancer. (2) The functional attrition of somatic stem cells during aging as a 
result of genetic mutations and/or activation of cellular tumor suppression mechanisms can induce 
compensatory proliferation of remaining stem cells, which may lead to accumulation of new onco-
genic mutations. (3) The age-dependent decline in adaptive immune system function as a result of 
reduced number, diversity, and functional competence of lymphocytes can lead to impaired 
immune surveillance and clearance of damaged or senescent cells from the body, which may con-
tribute to increased cancer incidence in the elderly. (4) Accumulation of damaged and senescent 
cells in old tissue can disrupt tissue architecture and secrete pleotropic pro-infl ammatory cytokines 
that contribute to cancer initiation and/or progression       
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mechanisms in other tissues, and in all cases, signifi cant evidence suggests the 
period from the earliest stem oncogenic events to full malignant conversion can in 
some tissues last several decades. The more rapid induction of the same cancer type 
(leukemia) in mice over a much compressed period (~2−3 years) likely refl ects sev-
eral species differences including murine HSC dynamics (e.g. more rapid HSC pro-
liferation) and reduced tumor suppressor barriers (e.g. differences in DNA repair, 
telomere biology and p53/p16 INK4a  function). 

 Besides stochastic DNA mutations, genomic instability can also occur as a result 
of telomere shortening. In cells with intact DNA damage response machineries, 
critically shortened telomeres can trigger p53–mediated cellular senescence or 
apoptosis. In the absence of p53 however, telomere shortening instead causes chro-
mosome end-to-end fusions, leading to chromosome breakage during the subse-
quent round of cell division, which can result in chromosomal abnormality and 
aneuploidy [ 90 ]. Human somatic cells start with approximately 15 kb of telomere 
sequence during early embryonic development [ 91 ]. In the absence of telomere 
maintenance mechanisms, each cell division is accompanied by a net loss of 100–
200 bp of telomeric sequence. Even in stem cells such as HSCs that possess telom-
erase activity, telomere length decreases with age in vivo. Therefore, age-associated 
telomere shortening can contribute to increased cancer incidence in the elderly by 
inducing genomic instability and mutagenesis. Indeed, short telomere length has 
been associated with signifi cantly increased risk of several types of human cancers 
[ 92 ,  93 ], and people with genetic defi ciencies in telomere maintenance are predis-
posed to the development of certain cancers such as leukemia and keratinocytic 
cancers in addition to exhibiting features of premature aging [ 88 ]. Moreover, the 
human  TERT  locus on chromosome 5p has been associated through genome-wide 
association studies with a phenomenal range of human cancers, but in a complex 
manner. For example, common alleles with reduced telomerase activity (and pre-
sumably shorter telomeres) appear to increase human risk for the same cancers 
noted in the syndromes of congenital telomerase defi ciency (e.g. leukemia), whereas 
the same alleles appear to decrease the risk for other cancer types such as mela-
noma, where telomerase clearly appears to be oncogenic [ 94 ].  

6.2     Loss of Stem Cell Function with Compensatory 
Hyper-Proliferation 

 Given this model of how serial mutations occur in self renewing cells to yield malig-
nant clones, it becomes obvious that anything which increases the chances of DNA 
mutation or which increases the rate of proliferation of tissue-specifi c stem cells 
will also increase the risk of malignant conversion. Carcinogens such as UV light 
and tobacco smoke are well known mutagens, which promote cancer by damaging 
DNA. Likewise, however, it is becoming clear that somatic stem cell function is 
compromised with aging in many tissues. This may occur as a result of tumor sup-
pressor mechanisms such as senescence, which in turn occurs as a result of telomere 
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shortening or other intrinsic and extrinsic cellular stresses. Importantly, however, 
the loss of even a fraction of a tissue’s somatic stem cell compartment imposes a 
signifi cant replicative burden on the remaining stem cells of that tissue. This com-
pensatory increase in replication in turn translates into a greater risk of cancer, as 
well as additional possible stem cell attrition. Familiar examples of this process in 
humans are bone marrow failure syndromes such as aplastic anemia and myelodys-
plasia, where HSC numbers are sharply compromised, and malignant transforma-
tion to acute leukemia is highly enhanced.  

6.3     Waning Immunity 

 Indubitably, the cellular immune system plays an important role in the surveillance 
and prevention of neoplastic clones. In fact, it appears that a substantial fraction of 
human cancers develop specifi c mechanisms to evade the immune system, thereby 
allowing for progression into later stages [ 95 ]. The ability of the immune system to 
repress malignancy may be particularly important in certain kinds of cancers that 
are very immunogenic; for example, those resulting from viral infections or which 
have tumor neo-antigens. Since the immune system plays an active role in cancer 
repression throughout life, the waning of immunity with aging, and in particular 
cellular immunity as mediated by T cells, likely plays an important role in tumori-
genesis. Loss of immune function has been suggested to explain an observation in 
human melanoma: tumors driven by mutations of the  NRAS  oncogene (~25 % of 
melanoma) occur in patients signifi cantly older than in those with tumors driven by 
mutations of the  BRAF  oncogene (~50 % of human melanoma). NRAS tumors are 
more strongly associated with chronic sun damage, and exhibit a larger number of 
antigenic mutations than  BRAF  tumors. Therefore, one hypothesis is that  NRAS  
tumors are more effi ciently cleared by younger individuals, but become more com-
mon with aging as cellular immunity decreases.  

6.4     Changes in the Cellular Milieu 

 Beyond cell intrinsic events, it is also likely that extracellular changes that occur 
with aging also promote malignancy. For example, an increase in the number of 
senescent cells in aging tissues is thought to cause a signifi cant increase in the local 
concentrations of pro-infl ammatory cytokines secreted by senescent cells. The mol-
ecules elaborated by senescent cells are highly pleiotropic, causing many effects 
such as disruption of cellular differentiation, increasing proliferation, degradation 
of tissue matrix and increased cellular survival, which may in turn promote cancer 
initiation and/or progression. It should be noted that this model is somewhat contro-
versial, with many authors suggesting senescence-related cytokines can also deter 
tumorigenesis, and therefore the effect of senescent cells with regard to cancer are 
likely tissue- and context-specifi c.   
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7     Preventing Cancer and Aging 

 Clearly, cancer and aging are intimately linked, such that cancer to some extent may 
be an almost inevitable consequence of advanced age in the setting of the accumula-
tion of macromolecular damage, loss of somatic stem cell function, waning immu-
nity, etc. While our understanding of the molecular basis of cancer and aging 
continues to grow, it is possible to design strategies to both decrease the incidence 
of cancer as well as slow the rate of aging. 

7.1     Minimizing Cellular Damage 

 As it becomes increasingly clear that a time-dependent accumulation of cellular 
damage (particularly DNA damage and mutations) serves as a common molecular 
basis for both cancer and aging, reducing the total amount of damage our cells 
experience throughout life can be expected to protect against both cancer and 
aging. One way to achieve this is to minimize the exposure to environmental muta-
gens such as smoking, UV radiation and chemical carcinogens that can cause 
direct DNA damage and mutations. Indeed, it has been shown that quitting smok-
ing has a myriad of health benefi ts in both target tissues such as the lung (e.g. 
reduced risk of lung cancer, emphysema and pulmonary fi brosis), as well as tis-
sues less directly affected by tobacco inhalation (e.g. a reduction of cancer in 
many tissues, enhanced immunity, less vascular disease). Evidence suggests that 
tobacco exposure widely promotes aging-like phenotypes in many tissues, and 
therefore has been argued to represent the prototypical human ‘gerontogen’ [ 96 , 
 97 ]; that is, an environmental exposure that promotes physiological aging. 
Similarly, avoiding UV exposure can dramatically decrease the incidence or cuta-
neous melanoma and slow skin aging. In addition to naturally occurring mutagens, 
cytotoxic agents that directly damage DNA are commonly used for treating a wide 
range of human malignancies. As a result, patients, particularly young children, 
who received cytotoxic cancer therapy, are at increased risk of developing second-
ary malignancies [ 35 ], and often display features of accelerated aging affecting a 
wide range of tissues [ 98 ]. The latter is believed to be partly due to reduced somatic 
stem cell function, either as a direct result of therapy-induced stem cell attrition 
(through cell death, senescence, or differentiation), or as the result of compensa-
tory proliferation-induced exhaustion. Therefore, fi nding ways to protect stem cell 
function in cancer patients may help to reduce the aging-promoting effects of cyto-
toxic therapy in this special scenario. This issue is addressed in more detail in 
Chap.   4    . The Impact of Cancer Treatments on Aging. Another potential way to 
reduce cellular damage is through modulating energy metabolism. It has long been 
observed that interventions such as dietary restrict (DR) and pharmacological inhi-
bition of the mTOR pathway, which slow cell growth and metabolism, reduce the 
incidence of cancer and extend life span. One possible explanation for this is that 
decreased cellular energy metabolism may reduce the generation of harmful 

The Impact of Aging on Cancer Progression and Treatment

http://dx.doi.org/10.1007/978-3-319-23246-1_4


78

byproducts that cause cellular damage including DNA mutations. Alternatively, 
lowered cellular metabolism may slow cell proliferation, resulting in reduced rep-
lication-associated DNA damage and mutations.  

7.2     Enhancing Immune System Function 

 The immune system plays an important role during both aging and tumorigenesis. 
As humans age, the function of the immune system declines sharply, resulting in 
increased susceptibility of the elderly to external infection. This aging-associated 
decline in adaptive immune response may also contribute to impaired immune sur-
veillance and clearance of damaged or senescent cells from the body, which can 
contribute to aging and cancer development. On the other hand, an aberrant immune 
response such as autoimmune diseases also increases with age. Therefore, fi nding 
ways to augment the normal immune system function without over-activation in old 
individuals may ameliorate certain aspects of aging while providing an important 
anti-cancer defense. One suggested approach has been to augment thymic function, 
therefore delaying T cell aging, through supplementation with cytokines such as 
IL-7 [ 99 ].  

7.3     Maintaining a Functional Stem Cell Pool 

 A key feature of aging is the loss of regenerative potential in self-renewing tissues 
as a result of functional attrition of somatic stem cells. Therefore, an important goal 
of aging research is to fi nd ways to maintain functional stem cells throughout life. 
Functional attrition of stem cells with age occurs in part as the result of DNA dam-
age accumulation that subsequently activates tumor suppression mechanisms. As 
DNA damage primarily occurs during DNA replication, the number of cell divi-
sions a given stem cell goes through is expected to be negatively associated with 
their function. In support of this notion, many types of somatic stem cells including 
HSCs are found to be highly quiescent, and loss of quiescence is associated with 
premature stem cell exhaustion. Therefore, reducing the rate of stem cell prolifera-
tion may provide a way to slow stem cell aging. Alternatively, providing an exoge-
nous source of healthy somatic stem cells, for example through a regenerative 
medicine approach, could provide a means to reduce both aging and cancer.   

8     Summary 

 Serial accumulation of mutations in long-lived somatic stem cells as a result of 
imperfect DNA repair mechanism contributes to both cancer and aging. The choice 
between these two seemingly distinct outcomes depends on the effectiveness of 
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cellular tumor suppression mechanisms against oncogenic mutation – failed tumor 
suppression results in cancer, while successful tumor suppression causes functional 
attrition of self-renewing cells, contributing to physiological aging. The increased 
incidence of cancer with aging refl ects the time-dependent accumulation of muta-
tions in somatic self-renewing cells, as well as waning immune surveillance and 
possibly pro-oncogenic changes to the tissue milieu with aging. While preventing 
aging or curing cancer is unlikely, minimizing cellular damage, enhancing immune 
system function, and maintaining a functional stem cell pool may slow the rate of 
aging while simultaneously reducing the risk of cancer.     
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1            Introduction 

 Owing to early detection and improved treatment, cancer survival rates in the US 
have recently been increasing [ 59 ]. This opens a new era in cancer care that is chal-
lenged with not only enhancing treatment effi cacy but also improving the quality of 
the clinical outcome. There is an urgent need to address the highly complex and 
multifaceted problems that arise as a result of the therapy itself. 

 Modern cancer therapy evolved from a cytotoxic approach, using chemothera-
peutics and ionizing radiation that are limited in their ability to distinguish healthy 
and cancerous cells, to drugs with specifi c molecular targets, such as tyrosine kinase 
inhibitors or antibodies recognizing specifi c receptors. Despite the leap in sophisti-
cation achieved through research and development, toxicity still remains the major 
limiting factor for many types of therapy, including the more targeted ones. This is 
especially relevant considering that many of the patients receiving these toxic thera-
pies are older and are likely to have co-morbidities. More importantly, undesired 
side effects pose serious clinical challenges, including a negative impact on the 
quality of life and healthspan of cancer survivors. 

 We are now faced with an unprecedented range of dysfunctions and diseases 
resulting from the very interventions that have signifi cantly improved the chance 
and length of survival after cancer diagnosis. This is an issue with multifaceted 
roots which requires a multilevel approach. There is much to be considered when 
addressing adverse health issues secondary to cancer treatment: (1) age-dependent 
co-morbidities affecting the great majority of patients who are older adults, (2) the 
potential compromise to health- span and quality of life, especially among child-
hood cancer survivors, (3) the incomplete understanding of the complex molecular 
pathways that can sensitize cancer cells while protecting healthy cells, (4) the mul-
timodality nature of cancer treatments that involve a mix of molecular targets, and 
(5) a relatively short time frame to eliminate side effects compared to other chronic 
diseases. 

 The emerging interdisciplinary fi eld of geroscience may hold the key to under-
standing the mechanisms involved in preventing and treating many of these side 
effects. This is especially important as the side effects involve damage to a wide- 
range of tissues, cells, organelles, and molecules that manifest over time and which 
can resemble phenotypes observed during aging. For example, cancer treatments 
such as chemotherapy or radiation can cause DNA alterations and mutations over-
lapping with those caused by oxidative damage and/or replication errors observed 
during aging.  

2     Cancer Therapies 

 Traditionally, surgery has been a key treatment for solid tumors (e.g. breast, pros-
tate, colorectal, gynecologic, and lung). The modern cancer therapy arsenal has 
greatly benefi tted by the addition of therapies including chemotherapy and 
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radiotherapy which have provided a broader control of the disease locally and sys-
temically. Unfortunately, some of these therapies themselves can be toxic to the 
patient and also promote secondary tumors. Here we discuss the adverse effects that 
are known to affect patients during and long-after cancer therapy, ranging from mild 
side-effects, to long-term adverse secondary health problems and secondary 
cancers. 

2.1     Chemotherapy 

 The beginning of modern chemotherapy began with the 1942 toxic mustard nitro-
gen gas studies by Goodman and Gillman, commissioned by the US Department of 
Defense in search for therapeutic properties of chemicals developed for chemical 
warfare during World War II [ 259 ]. After that, it took over 30 years for legislation 
by the US Congress to create the fi rst federal program for anticancer drug discovery, 
leading to major improvements in the effi cacy and reduction of the toxicity of 
chemo drugs. However, chemotherapy remains largely based on semi-targeted cyto-
toxity to rapidly proliferating cells [ 50 ,  143 ,  200 ]. Although chemotherapy was fi rst 
thought to be quite selective, we now know normal cells including non-dividing 
cells also experience severe toxicity, leading to dose-limiting side-effects such as 
cardiotoxicity, myelosuppression, gastrointestinal damage, and fatigue. Although 
all chemotherapy agents produce reactive oxygen species (ROS) during apoptosis, 
some generate particularly high levels of ROS, such as the anthracyclines (doxoru-
bicin, daunorubicin, and epirubicin), alkylating agents (cyclophosphamide and 
busulfan), platinum-based drugs (cisplatin, carboplatin, and oxaliplatin), podophyl-
lotoxins (etoposide and teniposide), and camptothecins (topotecan and irinotecan) 
[ 50 ]. The US Food and Drug Administration (FDA) has approved 132 cancer che-
motherapy drugs, 56 of which have been reported to cause oxidative stress, which 
leads to collateral damage to normal cells which is likely to overlap with that caused 
by ROS endogenously generated during mitochondrial respiration, and believed to 
contribute to aging phenotypes [ 41 ]. 

 Anthracyclines produce the highest level of ROS by redox cycling and iron che-
lation, leading to mtDNA lesions and respiratory chain dysfunction, as well as dis-
ruption of antioxidant defense and repair systems [ 114 ,  115 ,  130 ,  219 ,  244 ]. 
Doxorubicin (a.k.a. Adriamycin) is an anthracycline widely used for the treatment 
of many cancers which exerts its antineoplastic effects by DNA intercalation, topoi-
somerase II inhibition, and oxidative stress. Its clinical use is limited due to com-
mon side-effects including myelosuppression, nausea, fatigue, but above all, 
cardiotoxicity [ 13 ,  137 ]. Cardiotoxicity is exponentially dose-dependent, and sec-
ondary to doxorubicin-induced oxidative stress with an estimated 7 % of patients 
developing congestive heart failure (CHF) after a cumulative dose of 550 mg/m 2  
[ 218 ]. Although rare and generally transient, acute toxicity can be evident within a 
few minutes following administration [ 78 ]. Chronic cardiomyopathy usually occurs 
during the fi rst year following treatment, but can manifest up to 20 years later and is 
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irreversible. Doxorubicin-related cardiotoxicity is probably multifactorial, but most 
of the damage can be attributed to oxidative stress and lipid peroxidation that leads 
to mitochondrial DNA damage and dysfunction, mirroring what is observed during 
cardiac aging [ 62 ,  89 ,  165 ,  168 ,  214 ]. 

 Cisplatin (cis-diamminedichloroplatinum(II)) is another chemotherapy drug 
widely used in many cancers, which suffers from oxidative stress-induced side 
effects, prominently in the kidneys and ear [ 53 ,  58 ,  194 ,  195 ,  202 ,  220 ].  

2.2     Radiotherapy 

 Radiation-based treatment is a major arm of cancer therapy. Irradiating biological 
material leads to a rapid burst of ROS generated primarily because of the ionization 
of water molecules and direct ionization of target molecules [ 72 ,  189 ]. Ionizing 
radiation (IR) such as X-rays and γ-rays can cause direct macromolecular damage 
by energy deposition, but 60 % of damage is caused by ROS which is produced 
through the interaction of energy with water [ 11 ]. Although radiation-dependent 
ROS are effective in killing cancer cells, they also damage normal cells leading to 
dysfunction [ 18 ,  173 ,  256 ,  270 ]. It has been reported that even localized small fi eld 
radiotherapy of the head and neck in patients can cause oxidative damage at the 
organismal level, and may lead to secondary mutations [ 193 ]. The use of the free- 
radical scavenger amifostine signifi cantly reduced the side effects caused by radio-
therapy [ 21 ,  28 ,  30 ], but additional studies are needed to understand how or if it 
affected the toxicity to the cancer cells. 

 Other studies also indicate that administering antioxidant enzymes with radio-
therapy reduces the toxic side effects. For example, SOD was found to protect 
against radiation induced cystitis in bladder carcinoma without reduction in antitu-
mor effi cacy [ 92 ]. However, the use of antioxidants such as vitamin C is not expected 
to provide differential protection effects to normal and cancer cells, although it may 
do so with specifi c types of tumors.  

2.3     Target-Based Therapeutics 

 Beyond the more traditional cytotoxic therapies, a new generation of target-based 
drugs has greatly enhanced the anti-cancer arsenal. There are various approaches to 
interfere with specifi c molecular targets that have been largely executed by antibod-
ies and small molecules [ 121 ]. Although these infl ict much less damage compared 
to the more traditional interventions, they can also promote damage in multiple 
systems, which could affect either the patient’s aging process or cause signifi cant 
damage resulting in loss of redundancy and frailty. For example, a kinase inhibitor 
such as rapamycin, well established to extend longevity in model organisms [ 19 ,  97 , 
 190 ], is also effective in treating kidney cancer, but can contribute to either 
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immunosuppression or immunostimulation, depending on the dose and mode of 
administration, which can have profound implications for the functionality of the 
immune system during aging [ 144 ,  145 ]. 

 The concept of using immunity in cancer therapy was proposed in the late nine-
teenth century [ 47 ,  65 ] but it only progressed thanks to the introduction of hybrid-
oma technology that enabled targeted antibody design and engineering [ 121 ,  204 ]. 
Targeted monoclonal antibodies can attach to cancer cells, based on the presence of 
an antigen on certain tumor cells, and can act as immunomodulatory agents [ 152 , 
 175 ,  251 ], inhibit specifi c receptors or ligands [ 33 ,  135 ,  204 ,  261 ], or deliver cyto-
toxic agents such as radioisotopes, genes, and toxic drugs [ 25 ,  259 ]. Small molecules 
designed to target specifi c molecular pathways have also been actively developed 
recently, including various kinase inhibitors [ 102 ,  138 ,  271 ], cyclin- dependent 
kinase (CDK) inhibitors [ 163 ], drugs acting on hypoxia-related pathways [ 151 ,  257 ], 
and those targeting the PI3K/AKT/mTOR pathway [ 60 ,  79 ,  107 ,  198 ,  241 ,  242 ]. 

 With the increasing appreciation of the role of metabolism in cancer, the concept 
of metabolic targets for cancer therapy has gained traction [ 81 ]. Metabolic dysfunc-
tion and mitochondrial alterations are common underlying characteristics of various 
age-dependent diseases, and several of the drugs have been proposed/tested off- 
label as cancer treatments or have multiple indications including those currently 
approved/developed for diabetes [ 66 ,  182 ], autoimmunity [ 29 ,  234 ], mitochondrial 
function [ 69 ,  80 ,  227 ], and other scopes [ 225 ,  238 ]. Because aging is a leading risk 
factor for most major diseases, older individuals often suffer from multiple condi-
tions. Each disease can affect the other and accelerate the process. For instance, 
obesity and diabetes often develop with age, and a recent study with 5.24 million 
participants showed a strong association between being overweight/obese (BMI 
≥25 kg/m 2 ) and 17 of 22 frequent cancers. Each 5 kg/m 2  increase in BMI was asso-
ciated with higher risks of cancers of the uterus, gallbladder, kidney, liver, etc. [ 16 ]. 
However, obesity is not signifi cantly linked to all types of cancer and the correlation 
shows clear sex-specifi c differences [ 229 ]. Also, diabetes is associated with an 
increased risk of some cancers, including liver, pancreas, endometrium, colorectal, 
breast, and bladder. This could be directly affected by hyperinsulinemia, hypergly-
cemia, and infl ammation [ 84 ]. 

 Although targeted therapeutics cause signifi cantly lower toxicity than the tradi-
tional chemotherapeutics or ionizing radiation, they are not free of side effects [ 9 , 
 85 ,  147 ,  187 ,  205 ,  224 ,  238 ]. Careful long-term follow-up studies on these newer 
therapeutics should be encouraged to better understand their immediate and long- 
term impact on cancer survivors.   

3     The Clinical Impact of Cancer Therapy on Aging 

 Despite the fact that cancer therapeutics enter the clinic after tremendous scrutiny 
on safety, the side effects are still the major limiting factor. It is estimated that at 
least 50 % of cancer survivors will suffer from treatment-related side effects at the 
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physical and psychosocial level [ 231 ]. Furthermore, subtler and less visible altera-
tions secondary to cancer therapy may have profound effects later in life and affect 
the way we age. Importantly, these late-life effects are not scrutinized within the 
FDA process for approval of the drugs. This section discusses the potential impact 
these therapies have on lifespan/healthspan (including secondary tumors arising 
from therapy) and quality of life. The following section will discuss the molecular 
aspects of these events in detail. 

 Clinical and epidemiological studies have shown that long-term cancer survivors 
are at risk for late effects of their cancer treatment including secondary malignan-
cies, cardiac and vascular abnormalities, pulmonary complications, infertility, 
endocrinopathies and other chronic conditions. Understanding the mechanistic 
details of damage, protection and death in both normal and malignant cells will be 
critical to develop adjuvant therapeutics to selectively protect the patient, but not the 
tumor. Because of its interdisciplinary and comprehensive nature, Geroscience is 
well-positioned to address these issues. 

 The treatment of pediatric cancers has witnessed remarkable improvements lead-
ing to a 5-year survival rate nearing 80 % [ 191 ]. Because most pediatric cancers are 
now curable, the adverse effects of treatment as patients age, including growth/
development, fertility, secondary cancer, organ failure, and psychosocial challenges, 
are emerging issues for long-term childhood cancer survivors [ 191 ]. However, the 
more subtle but wider effects of a variety of treatments on cellular and organismal 
aging are likely to be underestimated. Based on a recent study of 10,397 adult sur-
vivors of childhood cancer, it is estimated that by 30 years from their cancer diag-
nosis, 73 % of them develop at least one chronic health condition, and 42 % exhibit 
a severe, life-threatening, or disabling condition or die from a chronic condition 
[ 170 ]. This is considerably higher than chronologically comparable controls [ 170 ]. 
Also, treatment-related secondary malignancies are a serious concern [ 17 ,  169 , 
 255 ]. Ionizing radiation has been favored for the treatment of childhood cancers, 
leaving the survivors at increased risk of secondary malignancies, including those 
arising from the skin, breast, thyroid, and brain [ 8 ,  24 ,  110 ,  166 ,  176 ,  213 ]. Selected 
chemotherapeutics have also been successful for childhood cancers, but they can 
also cause adverse consequences. These include alkylating agents [ 117 ,  154 ], 
anthracyclines [ 125 ,  232 ], antimetabolites [ 7 ,  35 ,  185 ], corticosteroids [ 51 ,  70 ], 
platinum-based [ 253 ], and vinca alkaloids [ 82 ,  112 ]. Notably, long-term childhood 
cancer survivors also experience increased risk for metabolic dysfunctions, includ-
ing obesity, diabetes, and hypertension, that are known to bring about additional 
major age-related diseases.  

4     Geroscience and Cancer Treatment: Current Status 

 Current interventions to treat cancer affect several pathways that regulate the aging 
process. The undesired off-target events and their consequences may cause collat-
eral damage to normal cells, alter the course of aging and also cause secondary 
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damage to the patient as mentioned in the previous section. Here, the latest research 
on aging will be reconciled with some of the major molecular pathways affected by 
cancer therapies. Aging involves complex and interdependent biological processes 
many of which are affected by chemotherapy and radiotherapy and could contribute 
to accelerated aging. 

4.1     Genomic Instability 

 Both chemo- and radiation therapies are aimed at destroying rapidly dividing cells, 
primarily by inducing damage to their replicating DNA. The lack of specifi city in 
their actions, as discussed above, means that adjacent, non-cancerous cells, are also 
damaged. Thus, therapy-induced DNA damage may impede our ability to maintain 
genomic integrity and hasten the aging process. Chemotherapeutics and therapeutic 
irradiation are well known to cause DNA damage to the somatic nuclear and mito-
chondrial genomes, leading to functional decline of multiple organs and various 
diseases [ 26 ,  239 ]. Accumulation and incorporation of these DNA lesions can cause 
genomic instability, a hallmark of aging. Therefore, these therapies can be consid-
ered unintentional accelerators of aging, resulting in several phenotypes observed in 
older individuals; e.g. cardiomyopathies, and secondary malignancies. 

4.1.1     Nuclear DNA 

 DNA is subject to frequent chemical alterations and breaks on a daily basis that 
requires sophisticated surveillance and repair to prevent genomic instability. The fi rst 
line of defense is the chromatin structure where DNA is wrapped around a protein 
core (histones) in units known as nucleosomes. Then, there are highly specialized 
repair mechanisms that mend damaged DNA lesions ranging from error- free base 
excision repair, to error-prone translesion repair and non-homologous end-joining. 
Nevertheless, none of these systems are able to prevent the accumulation of age-
dependent modifi cations and errors, and in fact, the error-prone systems can even 
promote point mutations and small DNA insertions and deletions, in an attempt to 
avoid the more problematic chromosome breaks and rearrangements. Genomic insta-
bility can arise from direct damage to the DNA, including single- and double-strand 
breaks, inter- and intra-strand base cross-linking, and depurination or depyrimidina-
tion, leading to transition or transversion mutations, or by progressive mutations, such 
as additions, deletions, frame-shifts, or substitutions. Chemotherapeutics and ionizing 
radiation can promote virtually all of the lesions listed above, leading to an acceler-
ated genomic aging [ 5 ]. Therefore, further studies are necessary to: (1) assess the role 
of DNA damaging cancer therapy on the level and type of DNA damage and muta-
tions, (2) determine how/if these change/increase during aging, (3) determine whether 
in addition to promoting secondary tumors they may play a role in accelerating multi-
system aging and/or specifi c lesions/diseases. In addition to providing important clues 
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that can help us redesign cancer treatment and improve the information given to 
patients in the informed consent, these studies can help test the genomic instability 
hypothesis of aging. Because each treatment causes a different profi le of DNA muta-
tions/lesions, these analyses could link a type of DNA damage (for example, point 
mutations) to specifi c age- dependent phenotypes (ex. secondary tumors and their 
type). The collaborative involvement of basic scientists, computational biologists, and 
clinicians will be necessary to achieve these goals.  

4.1.2     Mitochondrial DNA 

 Chemotherapeutics and radiation can also damage mitochondrial DNA and cause 
dysfunction. The less sophisticated DNA repair mechanisms present in mitochon-
dria may also contribute to enhancing this toxicity. There have been many reports of 
increased mtDNA mutations during aging, but the exact degree of causal contribu-
tion of mtDNA damage to human aging is still not entirely clear. Oxidative damage 
to the mtDNA has long been proposed to be involved in the aging process, but 
recent studies show evidence that replicative infi delity and spontaneous mutations 
may be more pertinent [ 210 ]. Comparison of mitochondria from the pre-frontal 
cortex of young (<1 year) or old (>75 years) brains showed a non-signifi cant 
increase of oxidative DNA damage (8-oxodG), but a signifi cant increase in DNA 
scars resulting from replication infi delity and spontaneous base hydrolysis, indicat-
ing that age-related mtDNA damage by ROS may be less than previously thought 
[ 116 ]. In fact, the mtDNA mutator mouse, which expresses a proofreading-defi cient 
DNA polymerase γ (PolgA mut ), has increased levels of mtDNA mutations including 
deletions, and shows a premature aging phenotype, although the contribution of 
small mutations to aging phenotypes in these mice is an area of debate [ 3 ,  64 ,  226 , 
 236 ,  237 ,  254 ]. Aging mitochondria have also been reported to carry large deletions 
in their DNA with a concurrent decline of mitochondrial energy production [ 15 , 
 106 ,  124 ,  139 ]. One of the biggest hurdles of understanding mtDNA mutations is 
the lack of technology that is sensitive and accurate enough to detect single muta-
tions with low background error frequencies. 

 Although currently less understood than nuclear DNA, mtDNA is also subject to 
damage by chemotherapy and radiation. Doxorubicin-induced mtDNA damage is 
proposed to occur via oxidative stress, as 8-oxoG adducts were increasingly detected 
preferentially in mtDNA over nuclear DNA following treatment in rodents and 
humans [ 129 ,  208 ]. Also, large mtDNA deletions in cardiomyocytes of mice chroni-
cally treated with doxorubicin have been reported [ 1 ]. Further, doxorubicin-induced 
cardiotoxicity is thought to result from the combined oxidative damage to mito-
chondrial DNA and lipids [ 129 ]. Additionally, platinum-based drugs [ 161 ,  180 ] and 
other chemotherapeutics [ 266 ] can damage mtDNA. Furthermore, ionizing radia-
tion causes signifi cant mtDNA damage, including a common deletion (~5 kb) that 
is more prominent in normal cells compared to cancer cells, and also found in aging 
mitochondria [ 181 ,  274 ]. Also, γ-radiation causes point mutations in the D-loop 
region of the mtDNA in an inconsistent manner [ 162 ]. As for nuclear DNA damage, 
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the role of various chemotherapy drugs in causing different types of mtDNA  damage 
can serve as an invaluable tool to determine the role of different categories of 
mtDNA damage on aging and age-related diseases. Again, it will be fi rst essential 
to determine in mice and possibly human samples, what are the short-term and 
long-term effects of each chemotherapy drug on the mtDNA of different cell types.  

4.1.3     Telomere Attrition 

 Telomeres are protective sequences that defi ne and protect the ends of linear chromo-
somes, consisting of long double-stranded TTAGGG repeats that can reach 9–15 kb in 
humans and 100 kb in rodents [ 168 ]. Telomere length shortens in primary fi broblasts 
from older humans and also with serial passaging in vitro [ 89 ,  95 ]. Critical telomere 
shortening can signal cells to enter an irreversible proliferative arrest [ 20 ,  235 ], a con-
dition known as replicative senescence [ 100 ]. Notably, ectopic expression of telomer-
ase led to the immortalization of human fi broblasts [ 20 ]. Thus, it is not too surprising 
that telomeres have a critical role in cancer biology, Telomere-shortening and cellular 
senescence are thought to be important to protect against cancer [ 233 ]. However, telo-
mere attrition can also promote oncogenesis by causing unregulated chromosomal 
rearrangements and genomic instability, as discussed above [ 260 ,  263 ]. 

 There are numerous reports of telomere shortening after chemotherapy and ion-
izing radiation treatment, with older patients being at a greater risk. An accelerated 
rate of telomere attrition was found after various cancer chemotherapy treatments, 
including cisplatin and irradiation (>100-fold) [ 230 ], two doses of high-dose cyclo-
phosphamide and Ara-C [ 186 ], six to eight cycles of CHOP (cyclophosphamide, 
Adriamycin, vincristine, and prednisone) [ 136 ], in a dose-dependent manner after 
CHOP, 5-FU, and fl udarabine treatments [ 61 ]. Furthermore, in long-term survivors 
of childhood cancers, lower telomerase content was signifi cantly related to 
treatment- related secondary thyroid cancer, resulting from intensive chemotherapy 
and ionizing radiation [ 87 ]. Also, therapy-related damage to hematopoietic stem 
cells (HSC) can cause myelodysplasia or acute myelogenous leukemia in recipients 
of autologous bone marrow and HSC transplant, posing a lethal complication [ 39 ]. 
Further studies should investigate both the potentially negative and positive effects 
of telomere shortening on aging and diseases, and particularly cancer. In fact, telo-
mere shortening may both play an anti-cancer role by preventing the division of old 
and damaged cells but could also contribute to cell senescence and the pro- 
infl ammatory effects of senescent cells [ 32 ,  223 ].   

4.2     Epigenetic Alterations 

 In addition to mutations, cancer therapy can also cause epigenetic changes in nor-
mal and malignant cells. Epigenetics refers to genetic regulation without alterations 
of the DNA sequence. The term was fi rst coined to connect genotype to phenotype 

The Impact of Cancer Treatments on Aging



94

and describe the deeply complex processes between them [ 243 ]. The currently 
understood molecular mediators of epigenetics are DNA methylation on CpG sites, 
histone modifi cation (methylation and acetylation), chromatin remodeling, and 
non-coding RNAs (such as microRNAs and long non-coding RNAs), all processes 
involved in regulating gene expression. Unlike genetic information, epigenetic 
changes are plastic, dynamic, and diverse, making these changes a moving target 
during aging [ 73 ,  104 ]. There have been recent reports suggesting an age-specifi c 
CpG methylation pattern. Horvath reported 353 CpG sites pertinent to cell death/
survival, cellular growth/proliferation, organismal/tissue development, and cancer, 
that can accurately predict chronological age across tissue and cell types to within a 
few years, starting from newborn and including induced pluripotent stem cells 
[ 103 ]. Hannum et al. built a quantitative model of aging based on >450,000 CpG 
markers from the blood of 656 individuals (19–101 years old) and showed that one’s 
aging rate and chronological age can be predicted from this methylome. Also, the 
methylome may help explain the age-dependent epigenetic drift that may impact 
transcriptional patterns over time [ 94 ]. Also, a novel integrative epigenome- 
interactome approach identifi ed tissue independent age-associated methylation 
interactome hotspots targeting stem-cell differentiation pathways with validation 
with independent DNA methylation data sets, encompassing over 1000 samples 
from different tissue types [ 252 ]. Another recent report examined more than 480,000 
CpG sites from 965 individual samples and found 162 CpGs signifi cantly associ-
ated with age, of which 65 were novel sites [ 39 ,  73 ]. 

 Cytotoxic drugs and radiation can affect the DNA methylation profi le and lead to 
epigenetic side effects that can persist much after treatment, including secondary 
cancer [ 52 ,  240 ]. Chemotherapy can affect DNA methylation and ionizing radiation 
can cause stable DNA hypomethylation in both target and bystander tissues. Breast 
cancer patients who received chemotherapy showed hypomethylation in 8 CpG sites 
in their blood cells that persisted 6-months after treatment [ 215 ]. DNA hypermeth-
ylation has also been shown in at least 1 gene in more than half of a set of leukemia 
patients that was associated with shortened average time to develop secondary ther-
apy-related leukemia (49.3 vs. 133.2 months) [ 228 ]. Unlike chemotherapy that is 
usually delivered systemically, radiotherapy is generally focused on the tumor with 
precision. However, the bystander effect, which refers to indirect exposure and dam-
age to neighboring tissues, in part by causing persistent epigenetic changes, still 
poses a serious clinical problem for cancer survivors [ 109 ,  123 ,  247 ]. In summary, 
epigenetic changes could contribute to the long-term effects of cancer therapy 
although they are not expected to promote the severe aging and disease phenotypes 
that mutations and gross chromosomal rearrangements are likely to promote.  

4.3     Mitochondrial Function 

 Mitochondria are a major target for many cancer therapeutics, and are also 
strongly implicated in aging and age-related diseases. As mentioned above, 
mtDNA damage has been long thought to cause mitochondrial dysfunction. 

C. Lee and V. Longo



95

Although the exact mechanisms by which mitochondria contribute to aging are 
still largely unclear, there are several promising theories. Because many oxygen 
species are so reactive, the mitochondrial free radical theory of aging has been 
one of the most cited theories for how mitochondrial and extra-mitochondrial 
damage occurs during aging. Briefl y, the theory states that the superoxide and 
other free radicals that arise as by- products of mitochondrial respiration can 
cause oxidative damage to macromolecules including nucleic acids, proteins, and 
lipids. Indeed, ROS production increases with age and the cellular defense mech-
anisms against it declines. Recently, additional mechanisms of mitochondrial 
contribution to aging have been proposed including mitochondria as a signaling 
organelle [ 26 ,  40 ]. Notably, in worms, inducing a mitochondrial unfolded protein 
response (mtUPR) in neurons has been shown to transmit a mitochondrial signal 
to the gut that in turn leads to extended lifespan [ 63 ,  258 ]. The exact identity of 
the signal is currently under investigation. The emerging biology of mitochon-
drial-derived peptides (MDP) has also been shown to be involved in the regula-
tion of aging and stress responses [ 134 ]. Humanin is a MDP encoded within the 
mitochondrial DNA that was fi rst discovered through a search for neuroprotective 
factors from a cDNA library constructed from an unaffected brain fraction of an 
Alzheimer’s patient [ 98 ]. Humanin levels decline with age and its expression is 
regulated by the growth hormone and insulin-like growth factor 1 axis (GH/IGF-
I) [ 61 ]. Long-lived GH-defi cient mice and the GH-defi cient Ecuadorian cohort 
who are immune to cancer and diabetes have higher levels of humanin compared 
to their normal counterparts [ 61 ]. Notably, as discussed in the next section, huma-
nin has recently been shown to protect against cancer treatment- related toxicity. 
Because cancer survivors experience delayed treatment-induced mitochondrial 
dysfunction that manifests as skeletal muscle dysfunction [ 203 ] and cardiac fail-
ure [ 129 ,  141 ], it would be of great benefi t to be able to identify early markers of 
mitochondrial damage at the genetic, functional and signaling levels, and also 
interventions that can selectively protect mitochondria in normal cells during 
cancer treatment, such as humanin.  

4.4     Cellular Senescence 

 Cellular senescence can result from different types of cancer treatments. As dis-
cussed above, senescence is defi ned by as an irreversible growth arrest that can be 
induced by telomere shortening. However, stress-induced premature senescence in 
the absence of reduced telomere length can occur in response to DNA damage 
(especially double strand breaks) [ 126 ], strong mitogenic stimuli (e.g. oncogenes), 
and mitochondrial dysfunction, including reactive oxygen species [ 233 ,  276 ]. The 
molecular mechanisms behind cellular senescence involve a network of cell cycle 
regulators, including cyclin-dependent kinase inhibitors (CDKis), notably p21 that 
is activated by the ATM/p53 pathway, and p16 INK4a , both of which converge on the 
tumor suppressor RB to arrest cell cycle [ 233 ]. Currently, the “senescent” state of a 
cell is assessed based on several characteristics including (i) enlarged morphology 
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(e.g. twice the size of non-senescent cells) [ 99 ]; (ii) senescence associated 
β-galactosidase activity that refl ects increased lysosomal biogenesis [ 128 ,  131 ]; (iii) 
senescence associated secretory phenotype (SASP), (iv) DNA-SCARS (DNA seg-
ments with chromatin alterations reinforcing senescence) [ 192 ], and (v) chromatin 
remodeling, including senescence-associated heterochromatin foci (SAHF) [ 4 , 
 272 ]. More recently, the concept of ‘deep’ or ‘late’ senescence is emerging where 
senescent cells continue to evolve with time [ 233 ], including the senescence- 
associated opening of gene-poor heterochromatic regions where major retrotrans-
poson families, L1, ALU and SVA reside, leading to increased transposition in 
senescent cells [ 54 ]. There are several ways senescence is thought to contribute to 
organismal aging and age-related diseases including cancer, infl ammation, develop-
ment and tissue/organ deterioration [ 32 ,  223 ,  233 ]. 

 Traditional genotoxic cancer treatments (i.e. chemotherapy and ionizing radia-
tion) can cause off-target cellular senescence of normal cells. Breast cancer patients 
who have received anthracycline-based chemotherapy showed elevated levels of 
p16 INK4a  in their blood cells immediately and 12 months after treatment [ 201 ]. 
Premature senescence by ionizing radiation and/or chemotherapy in hematopoietic 
stem cells has been reported in mice [ 153 ,  245 ]. Notably, the number of studies 
focusing on the role of cancer therapies on cell senescence and its consequent role 
on organismal aging and diseases is very limited, pointing to the need of additional 
studies which will also be useful to understand the role of senescence in aging and 
diseases. Studies could be designed to lead to demonstrations of the link between 
therapy, the presence of senescent cells and diseases. For example, fi broblasts or 
lymphocytes could be treated  in vitro  with chemotherapy drugs, taken through a 
suffi cient number of population doublings to induce senescence and then injected 
into middle aged mice to determine whether the chemotherapy-treated, but also the 
untreated, senescent cells have effects on aging and age-related diseases.  

4.5     Stem Cell Aging 

 The negative side effects of cancer therapy are often associated with toxicity to stem 
cells and, in some cases, their exhaustion. Aging is partially attributed to the loss of 
regenerative capacity with time, resulting in suboptimal tissue maintenance and 
repair. There are several proposed mechanisms that lead to stem cell aging and defi -
ciency or dysfunction. Age-dependent accumulation of DNA damage and telomere 
shortening are thought to play a major role in stem cell damage, manifesting in 
replicative senescence [ 212 ]. Epigenetic changes representing proliferation history, 
independent of telomere length, have also been shown to cause hematopoietic stem 
cell aging [ 14 ]. Stem cells favor a specifi c microenvironment supported by certain 
types of cells, called niches, that provide factors such as TGF-β [ 246 ], bone mor-
phogenetic protein (BMP) [ 55 ], Wnt [ 44 ], Notch [ 2 ], and cyclic ADP ribose [ 267 ]. 
The age-dependent decline of these cells is also thought to contribute to stem cell 
exhaustion with time and loss of activity in those remaining [ 171 ]. More recently, 
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metabolism has emerged as an important factor in maintaining stem cell pluripo-
tency. Proliferating cells, e.g. active stem cells and cancer cells but particularly can-
cer stem cells, require biosynthetic building blocks to synthesize DNA, protein, and 
lipid membranes to replicate. Rather than relying on increased consumption of 
extracellular nutrients, highly proliferating cells rely partially on de novo synthesis 
from glucose and glutamine. This high anabolic demand makes these dividing cells 
rely on aerobic glycolysis [ 74 ,  111 ]. Mitochondria, being the single most important 
metabolic organelle, have also risen as a key regulator of cell stemness [ 74 ,  111 ]. 

 Traditional cytotoxic chemotherapy and ionizing radiation target rapidly prolif-
erating cells with little distinction between normal and malignant cells. Therefore, 
quickly dividing normal stem cells are also targeted by these interventions, leading 
to undesired side effects that limit the effi cacy of chemotherapy. For example, both 
cyclophosphamide and 5-FU, but also many other chemotherapy drugs targeting 
DNA, can cause severe damage to bone marrow stem cells leading to immunosup-
pression which is often severe enough to require bone marrow transplants. 
Furthermore, stem cells may be subject to therapy-induced DNA damage leading to 
senescence, and alterations in mitochondrial health that can also reduce their stem-
ness. While the damage to the rapidly dividing hematopoietic stem cells is well 
documented, even non-dividing cells including muscle cells and neurons can also be 
severely damaged by several chemotherapy drugs. Therefore it will be important to 
understand how these drugs affect quiescent stem cells or those that are dividing 
very slowly such as the resident satellite cells in muscles.   

5     Geroscience and Cancer Treatment: Filling in the Gaps 

 Geroscience is an emerging fi eld that embraces and encompasses a wide range of 
disciplines, refl ecting the complexity of aging. This also provides an entirely new 
opportunity to approach diseases with a wider net. For example, the toxic side- 
effects of cancer treatment arise because of the inability of treatments to fully dis-
tinguish normal and malignant cells. Therefore, the ability to separate the two cell 
types, to a degree similar to that attained by antibiotics, which can readily distin-
guish bacterial cells from ours, would undoubtedly improve our aim at cancer cells 
and dramatically increase the therapeutic window. Because geroscience is focused 
on the protection of normal cells from any type of damage, the fi eld is well posi-
tioned to identify ways to protect normal and not cancer cells from toxins, not by 
simply screening for drugs with those properties but by understanding the funda-
mental mechanisms of protection in healthy and malignant cells. Ideally, normal 
cells (and the patient) could be protected while malignant cells could be sensitized 
to treatment. Chemoprotectants such as amifostine, glutathione, mesna, and dexra-
zoxane have been investigated and shown to provide drug-dependent protection to 
specifi c tissues, but the use of these compounds has not been shown to increase 
disease-free or overall survival [ 140 ]. One of the hallmarks of longevity interven-
tions is increased stress resistance of the whole organism (and normal cells). 
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However, because of acquired mutations that render cells self-suffi cient in growth 
and insensitive to anti-growth signals, cancer cells act autonomously and indepen-
dently, providing an opportunity for geroscience to exploit the difference by selec-
tively protecting the normal tissue without interfering, or even enhancing, treatment 
effi cacy [ 93 ] (Fig.  1 ). Another opportunity that geroscience may provide is the iden-
tifi cation of novel drug targets for cancer and/or the scientifi c basis for an oncocen-
tric use of already FDA-approved pharmaceuticals.

   The following are some geroscience-based interventions that deserve further 
investigation with the potential to provide a different approach to cancer treatment, 
whereby the focus not only continues to be on improving the killing of cancer cells, 
but also on the preservation of the patient’s healthspan post-treatment. 

5.1     Metabolic Interventions 

5.1.1     Dietary Interventions 

 Dietary interventions have contributed greatly to our understanding of lifespan and 
stress resistance regulation. Dietary restriction (DR) is the most effective and repro-
ducible intervention to decelerate the rate of aging and increase healthspan in vari-
ous model organisms ranging from the simple yeast to worms, fl ies, rodents, and 
possibly non-human primates [ 48 ,  90 ,  118 ,  142 ]. In 1934, Crowell and McCay 

Protection
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Protection GrowthGrowth

Cancer cell

Traditional cancer therapy

Geroscience-based therapy

• Treatment-related adverse effects
• Accelerated aging phenotype

Enhanced treatment efficacy
Reduced side-effects
Reduced cellular damage/aging

  Fig. 1    Geroscience-based approaches have resulted in interventions aimed at protecting normal 
cells while instead sensitizing cancer cells to therapy. The Differential Stress Resistance and 
Sensitization strategies to treat cancer have resulted from basic and translation geroscience 
research that fi rst described how starvation can protect normal cells from a wide variety of toxins 
and then identifi ed proto-oncogenes as the negative regulators of the resistance. Basic geroscience 
research also described how cells expressing oncogene analogs have an adaptive disadvantage 
when expose to extreme and complex environments such as starvation in addition to toxins. These 
fi ndings were exploited to protect mice and possibly humans from chemotherapy while rendering 
cancer cells more sensitive to the treatment       
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reported that rats fed a calorie restricted diet with suffi cient nutrients starting after 
weaning extended lifespan nearly twice [ 150 ]. Following this seminal discovery, 
Walford and Weindruch reported that in mice, adult-initiated DR (undernutrition 
without malnutrition) which began at 12-months of age [ 248 ,  249 ], and DR initiated 
at weaning both increased lifespan and reduced tumor incidence [ 250 ], confi rming 
the DR studies in rats. A >30-year longitudinal adult-onset DR study in rhesus mon-
keys performed at the Wisconsin National Primate Research Center (WNPRC) 
shows that DR (30 %) delayed disease onset and mortality, with a 50 % decrease in 
cancer incidence [ 48 ,  49 ]. However, a comparable >20-year study performed at the 
National Institute on Aging (NIA) shows a slightly different result where DR did 
not extend lifespan, but successfully improved health span, including reduced inci-
dents of cancer and diabetes [ 149 ]. The disparities between the WNPRC and NIA 
studies were largely attributed to differences in diet composition and the genetic 
origin of the monkeys, suggesting that DR may need to be carefully considered if it 
is to be practiced in humans. 

 The mechanisms underlying DR are still unclear, but energy allocation appears 
to be fundamental. Because a cell can only retain a limited amount of energy at any 
given time, the cellular energetic network must economically balance the fi nite 
energy reserve between reproduction/growth and repair/maintenance [ 119 ]. 
However, under starvation or DR, the favored survival strategy is to discourage 
reproduction/growth and invest the remaining energy in repair/maintenance [ 119 ]. 
In a way, this switch of energy encourages the entrance into a maintenance mode, 
which could explain why DR or fasting reduces size and fertility, and increases 
lifespan and stress resistance [ 211 ]. 

 Notably, short-term fasting selectively protects normal cells and mice while sen-
sitizing malignant cells to chemotherapeutics and ionizing radiation, providing a 
means to induce differential stress resistance (DSR) [ 133 ,  183 ,  196 ]. Furthermore, 
short-term fasting may reduce chemotherapy-induced side effects such as nausea 
and vomiting in cancer patients [ 197 ]. Multiple fasting cycles protect hematopoietic 
cells from chemotoxicity and also promote their self-renewal in mice [ 42 ], and has 
the potential to prevent long-term treatment-related stem cell exhaustion. Short- 
term DR also enhances skeletal muscle stem cell function [ 38 ]. 

 In addition to DR, simply restricting a single essential amino acid increases lifes-
pan and stress resistance [ 57 ,  174 ,  188 ,  206 ,  277 ]. In fl ies, restoring essential amino 
acids to DR was suffi cient to reverse lifespan extension [ 88 ]. Rodents fed a 
 methionine or tryptophan restricted diet (MR and TR, respectively) lived longer and 
showed signifi cantly less age-dependent diseases and enhanced resistance to oxida-
tive stress [ 188 ], including tumor growth retardation in animals fed a MR diet [ 27 , 
 222 ], and shows much potential in humans [ 67 ]. MR has been shown to have marked 
negative effects on cancer cells [ 36 ], whereas normal cells are relatively resistant to 
methionine restriction [ 37 ]. However, the use of specifi c amino acid restrictions for 
cancer treatment in vivo has limited applications since cancer cells can obtain 
methionine from other cells and tissues, therefore causing potentially more harm to 
normal cells than cancer cells. As has been shown for fasting, MR can also sensitize 
cancer cells to chemotherapeutics [ 86 ,  105 ,  221 ,  122 ,  268 ], suggesting its potential 
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to induce differential stress sensitization (DSS). On the other hand, TR also pro-
vides longevity and reduced age-dependent deterioration [ 57 ,  174 ,  207 ], but has 
mainly been explored for neurological benefi ts due to its role in serotonin synthesis. 
Interventions that can induce DSR may increase the therapeutic window of avail-
able cancer treatments, while at the same time protecting normal cells from treat-
ment and preventing long-term secondary adverse health issues in cancer survivors. 
Fasting and DR are candidate interventions with similar and different characteris-
tics, but short-term fasting may be more clinically feasible because of its brevity, 
wide range, and effi cacy [ 132 ]. Nonetheless, fasting is not a trivial intervention, 
especially for cancer cachectic patients, and fasting-mimicking diets providing high 
nourishment and a relatively high calorie content are likely to prove more 
benefi cial.  

5.1.2     Mitochondria Interventions 

 The recent identifi cation of short open reading frames (sORFs) in the mtDNA that 
yields bioactive peptides such as humanin and MOTS-c, represent an entirely novel 
layer of signals that are inherently mitochondrial [ 87 ,  134 ]. The levels of these 
mitochondrial hormones decline with age both in the circulation and in relevant tis-
sues in laboratory rodents [ 87 ,  136 ]. Humanin expression is regulated by the GH/
IGF-I axis and its levels are positively correlated with longevity in long-lived mouse 
models [ 61 ]. Humanin is a protective factor against various types of stress, chiefl y 
those that are related to oxidative stress. Many labs have reported on the protective 
effects of humanin in various disease models including Alzheimer’s disease [ 98 , 
 156 ,  167 ,  273 ], atherosclerosis [ 172 ,  269 ], and ischemic injury [ 164 ,  264 ,  265 ]. A 
recent report on bortezomib, a drug in clinical trial for childhood cancers, shows 
that humanin treatment successfully prevented bortezomib-induced toxicity to 
growth plate chondrocytes that lead to growth arrest without interfering with its 
anti-cancer effects [ 46 ,  68 ].  

5.1.3     Glycolysis Blockade 

 Glucose is a major source of energy and carbon for mammalian cells. Inhibitors of 
glucose catabolism or generation, also considered calorie restriction mimetics, have 
been shown to increase lifespan in mice. Acarbose reduces the breakdown of 
starches and disaccharides to glucose by inhibiting α-glucosidases in the intestine, 
and thus limits glucose supply to cells. Acarbose treatment increased the median 
lifespan of male and female mice by 22 % and 5 %, respectively [ 96 ]. Acarbose is 
currently used to treat type 2 diabetes, but in addition it has been shown to also 
exhibit cardio-protective benefi ts [ 43 ]. In fl ies, feeding acarbose reduced tumor 
growth and improved survival [ 101 ]. 

 2-deoxyglucose (2-DG) is a glucose analog that is phosphorylated by hexokinase 
to 2-DG-phosphate, which cannot be further metabolized and therefore blocks gly-
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colysis. Rats fed 2-DG showed similarity to those under CR with improved glucose 
and insulin regulation [ 263 ], and increased recovery from stress [ 170 ]. 2-DG is 
actively being investigated for cancer treatment and although its use as a single 
modality drug in still debated [ 230 ], combination treatments with chemotherapy 
and radiotherapy are very promising [ 148 ,  186 ].  

5.1.4     Intervening in the GH/IGF-I Axis 

 Dietary interventions alter a wide range of processes. However, there are certain key 
pathways that have been elucidated to mediate and/or mimic their effects. DR and 
fasting both reduce circulating levels of growth hormone (GH) and its downstream 
effector insulin-like growth factor 1 (IGF-1) [ 132 ]. In fact, it is suggested that the 
GH/IGF-I axis is a major mediator of the benefi cial effects of DR [ 22 ], and a major 
regulator of lifespan and stress resistance [ 90 ,  118 ,  142 ]. GH defi cient mice are 
resistant to stress, are smaller in size (dwarf), have reduced fertility and reduced 
levels of circulating GH/IGF-I, insulin, and glucose [ 113 ,  142 ,  160 ]. Conversely, 
mice overexpressing GH have a shortened lifespan [ 12 ]. Ecuadorian individuals 
with GH receptor (GHR) mutations coupled with severe GHR and IGF-1 defi cien-
cies (Laron syndrome) are immune to diabetes and dramatically reduced cancer 
incidence [ 91 ]. Serum from Laron subjects protected human mammary epithelial 
cells from oxidative stress, concurrently reducing the expression of downstream 
signaling elements including RAS, protein kinase A (PKA), and mTOR. In addi-
tion, cells of long-lived mice with GH/IGF-I axis defi ciencies are more resistant to 
oxidative stress (H 2 O 2 , paraquat), UV, genotoxins (methylmethanesulfonate, MMS), 
heat, and cadmium [ 160 ,  199 ], suggesting that enhanced stress resistance is at least 
partially responsible for longevity, and the possibility to enhance protection by 
interventions such as DR or down-regulation of the GH/IGF-I axis. 

 All things considered, the GH, IGF-I and insulin pathways appear to be major 
mediators/regulators of aging and stress resistance [ 22 ]. Therefore, interventions 
targeting the GH/IGF-1 axis may provide normal cells with increased stress resis-
tance against cancer treatment and thus prevent secondary adverse health problems 
in cancer survivors. For instance, octreotide, a somatostatin analog that antagonizes 
GH production, has been shown to ameliorate chemoradiotherapy-induced diarrhea 
[ 216 ,  275 ]. Pegvisomant is a dominant negative GH mimetic that is FDA-approved 
for the treatment of acromegaly. It would be of interest to investigate how octreotide 
and Pegvisomant affect both the short-term and long-term effects of chemotherapy 
and other cancer treatments.  

5.1.5     Intervening in the Nutrient Sensing Pathways 

 Nutrient sensing pathways are involved in longevity regulation and thought to par-
tially mediate DR [ 75 ]. Many of these pathways are downstream of the GH/IGF-1 
axis, including mTOR/S6K, PI3K/AKT, RAS, and AC/PKA and are highly 
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conserved from single-celled yeast to humans [ 75 ]. In yeast, deleting human homo-
logs of RAS ( RAS2 ) and/or AKT ( SCH9/S6K ) increased lifespan to more than two-
fold while providing increased stress resistance against oxidants, genotoxins, and 
heat- shock [ 142 ]. Similarly, in  C. elegans , mutations in the human homologs of 
insulin/IGF-1 receptor ( daf-2 ) and PI3K ( age-1 ) extended lifespan by twofold 
and increased resistance to thermal and oxidative stress [ 120 ]. In  D. melanogaster , 
mutations in the insulin receptor substrate ( chico ) led to a 50 % lifespan 
extension [ 83 ]. 

 Pharmacological manipulations can also increase lifespan, as shown in mice fed 
rapamycin [ 23 ], metformin [ 146 ], or SRT1720 [ 157 ,  158 ]. Rapamycin inhibits the 
mammalian target of rapamycin (mTOR), which can function downstream of IGF-I 
but can also be activated independently of IGF-1, and acts as a major regulator of 
cellular proliferation, metabolism, and stress [ 184 ,  262 ]. Rapamycin, the most 
experimentally successful longevity agent tested in model organisms, has recently 
been shown to extend both mean and maximum life span of both male and female 
mice, and in several genetic backgrounds [ 23 ]. Although rapamycin was initially 
used in the clinic as an immunosuppressant for organ transplants, its potential for 
cancer treatment was recognized more recently [ 34 ]. Analogs of rapamycin (rapa-
logs) with improved pharmacokinetics and solubility, including temsirolimus and 
everolimus, are being developed. Temsirolimus has been approved by the FDA for 
treating renal cell carcinoma, and clinical trials to test its effi cacy in other cancers 
are underway [ 45 ,  209 ]. Everolimus is an oral rapalog that is also FDA-approved for 
various cancer treatments, including advanced renal carcinoma [ 155 ]. In addition to 
its anticancer effects, rapamycin has been shown to prevent stem cell senescence, 
protect mice from ionizing radiation-induced loss of proliferative basal epithelial 
stem cells [ 108 ], and enhance stem cell niche support [ 267 ]. 

 Metformin is a front-line drug of choice for the treatment of type 2 diabetes, with 
several proposed mechanisms of action [ 76 ], that has recently gained much atten-
tion in cancer therapy [ 177 ]. An early report suggested that diabetes patients that 
received metformin as part of their treatment had a 23 % reduction in the risk for 
cancer [ 71 ]. A meta-analysis on 25 studies recruiting 579,621 patients reported that 
metformin use was associated with an overall 27 % reduction in the risk of develop-
ing any malignancy [ 77 ]. In particular, breast cancer has received much attention 
with promising results supporting the effi cacy of metformin use in cancer [ 179 ]. 
Much of these studies involve diabetes patients who are at a higher risk for cancer 
[ 84 ], thus further randomized controlled clinical trials are needed to evaluate the 
effi cacy of metformin in non-diabetic cancer patients. Furthermore, the use of met-
formin as a preventive measure of cancer should be considered [ 159 ]. In worms, 
metformin has been shown to extend lifespan through mitohormesis via the perox-
iredoxin PRDX-2 [ 56 ], and by targeting the folate cycle in their bacterial feed, caus-
ing a methionine-restricted diet [ 31 ]. In mice, metformin (0.1 % w/w in diet) starting 
at middle age extended healthspan and lifespan in male mice, while a higher dose 
(1 % w/w) was toxic [ 127 ]. Notably, the combination or rapamycin and metformin 
may successfully antagonize cancer cells while protecting normal fi broblasts or epi-
thelial cells, and thus prevent secondary health problems in cancer survivors [ 6 ]. 
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 Resveratrol activates Sirt1, an NAD + -dependent deacetylase that has been shown 
to increase lifespan in lower organisms [ 251 ,  259 ]. In mammals, resveratrol treat-
ment improved lifespan and healthspan in mice on a high-fat diet [ 65 ], and trans-
genic mice with moderate over-expression of Sirt1 showed an improved metabolic 
profi le in multiple models of insulin resistance and diabetes [ 10 ,  178 ]. In addition to 
Sirt1, resveratrol is thought to act through multiple additional targets. In contrast, 
SRT1720 is a specifi c activator of SIRT1 that improves lifespan and healthspan in 
mice on both standard and high-fat diets [ 121 ,  157 ]. The effect of SRT1720 on can-
cer is mixed, with one study showing promotion of breast cancer cell migration and 
metastasis [ 217 ], and another showing increased apoptosis of breast cancer [ 135 ] 
and multiple myeloma cells [ 47 ].    

6     Future Prospects for Geroscience and Cancer Treatments 

 Interventions aimed at affecting the vastly complex nature of the aging process 
require the understanding of its effect on a wide range of biological processes. 
However, the rate of aging is also affected by environmental factors such as chemo-
therapy which can profoundly alter its course. The topics discussed above have been 
categorized to help us understand this vast biology, but in fact they cover overlap-
ping components of a biological network, each one infl uencing the other. For 
instance, telomere attrition can cause genomic instability that can lead to senes-
cence, which in turn can affect infl ammation (SASP) and stem cell exhaustion. 
Similarly, mitochondrial damage and increased ROS generation can damage DNA 
and cause genomic instability and senescence. The cytotoxic ripples infl icted by 
cancer chemotherapy and radiotherapy are wide and are among the most impactful 
interventions affecting aging and age-related diseases. Because many types of cel-
lular damage caused by cancer therapy seem to accelerate those that occur naturally 
with age, a gero-centric approach may provide a more comprehensive solution both 
at the level of prevention and treatment. Geroscience can largely contribute to can-
cer therapy in at least three ways: (1) provide novel interventions and/or targets; (2) 
provide a method or intervention to selectively protect the patient, based on the 
stress-resistant phenotype of many long-lived model organisms, and (3) both 
enhance the killing of cancer cells while protecting the patient. On this line, 
geroscience- based intervention(s) should be promoted and urgently investigated to 
grasp the broader landscape of healthspan and quality of life of cancer-survivors. 
Lastly, there is a need to educate the patients of long-term consequences of cancer 
therapy and how geroscience can contribute to their decision-making and their post- 
treatment choices aimed at optimizing healthspan and quality of life.     
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1            Introduction 

 Aging impairs the cardiovascular system and is the dominant risk factor for cardio-
vascular disease (CVD). The incidence and prevalence of most CVD increase with 
advancing age, and CVD are the leading cause of death for populations over 65 years 
of age. According to the heart disease and stroke statistics 2014 update published by 
the American Heart Association, Americans 60–79 years of age have over 70 % prev-
alence rate and Americans over 80 years of age have over 80 % prevalence rate of 
cardiovascular diseases [ 1 ]. However, most of the research efforts on prevention of 
these diseases have ignored age and have focused instead on development of interven-
tions that target “traditional” CV risk factors such as hypertension, high blood choles-
terol and triglycerides. In addition to the increased prevalence of cardiovascular 
diseases, aging is also associated with impaired responses to cardiovascular diseases. 
Aging also leads to deterioration of the structure and function of the heart and vascu-
lature in individuals without overt cardiovascular disease, as refl ected in cardiovascu-
lar measurements that are made in healthy individuals at rest and during exercise, both 
of which reveal aging-related changes. Therefore, it is important to understand the 
molecular mechanism of cardiovascular aging and how the age-related changes in the 
cardiovascular system interact with the pathophysiological mechanisms that lead to 
cardiovascular disease. In this chapter, we will describe the characteristics of cardio-
vascular aging in humans and in mammalian models, and review the roles of different 
hallmarks of aging in cardiovascular aging. Valvular degeneration in the aging heart 
is not addressed in this review, and the reader is referred to other sources [ 2 ,  3 ].  

2     Cardiovascular Aging in Humans 

2.1     Cardiac Aging 

2.1.1     Cardiac Structure/Function at Rest 

 A continuum of expression of cardiac structural and functional alterations occurs 
with age in healthy humans (Fig.  1 ). On the one hand, a unifi ed interpretation of 
identifi ed cardiac aging changes at rest in otherwise healthy persons (Fig.  1 ) sug-
gests that these changes are at least in part adaptive, occurring to some extent in 
response to changes that occur within the arterial tree that result in increased load 
on left ventricular ejection [ 4 ]. On the other hand, these age-associated cardiac 
changes also have direct relevance to the steep age-associated increases in left ven-
tricular hypertrophy (LVH), chronic heart failure, and atrial fi brillation (AF).

2.1.2        Cardiac Structure 

 Cross-sectional studies of subjects without hypertension or clinically apparent CVD 
indicate that with advancing age the walls of the left ventricle increase in thickness, 
largely because of an increase in ventricular myocyte size and an increase in vascular 
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impedance, and this helps moderate the increase in LV wall tension (Fig.  1 ). Modest 
increases in collagen levels and non-enzymatic cross linking, rendering collagen 
stiffer, also occur with aging. In older hospitalized patients without apparent cardio-
vascular disease, however, the cardiac myocyte-to-collagen mass ratio in the older 
heart either remains constant or increases because of an increase in myocyte size.  

2.1.3     Left Ventricular Function at Rest 

 Increased central arterial stiffness is a factor that leads to an increase in the afterload 
on the left ventricle, leading to increased left ventricular wall thickness (Fig.  1 ). The 
left ventricle and the central arteries have bidirectional constant interactions. One 
useful index of this interaction is termed arterial-ventricular coupling. This tight 
heart-arterial coupling is thought to allow the cardiovascular system to optimize 
energetic effi ciency. The LV ejection fraction (EF) at rest, the most commonly used 
clinical measure of heart-arterial crosstalk, is preserved during aging (Fig.  2 ). The 
average value of resting EF is approximately 65 %, and very few healthy, sedentary, 
community-dwelling older individuals have EF <50 % (which would indicate 
impaired LV-arterial crosstalk [ 5 ].)

   Prolonged contraction of the thickened LV wall maintains a normal ejection time 
in older persons in the presence of the increased resistance to pulsatile blood fl ow 
from the heart. This preserves the systolic cardiac pumping function at rest. One 
disadvantage of prolonged contraction is that at the time of the mitral valve opening, 
myocardial relaxation is relatively more incomplete in older than in younger indi-
viduals. The LV early diastolic fi lling rate progressively slows after the age of 20 
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  Fig. 1    Arterial and cardiac changes that occur with aging in healthy humans (Adapted from 
Lakatta [ 252 ])       
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years [ 6 – 8 ], so that by 80 years the rate is reduced, on average, up to 50 %. Structural 
(fi brous) changes within the LV myocardium or residual myofi lament Ca 2+  activa-
tion from the preceding systole are putative mechanisms for a reduced early dia-
stolic LV fi lling rate. Structural changes and functional heterogeneity occurring 
within the left ventricle with aging may also contribute to this reduction in peak LV 
fi lling rate. However, concomitant adaptations – left atrial enlargement and an 
enhanced atrial contribution to ventricular fi lling (Fig.  1 ) – compensate for the 
reduced early fi lling and prevent a reduction of the end diastolic volume. Thus, 
despite the age-associated changes in the diastolic fi lling pattern in older, healthy 
persons, their left ventricular end-diastolic volume in the supine position is not com-
promised and does not substantially differ from that of their younger counterparts 
[ 9 ,  10 ]. Thus, neither EF nor cardiac output at rest declines with advancing age.  

2.1.4     Cardiovascular Reserve 

 During exercise, impaired heart rate acceleration and impaired augmentation of 
blood ejection from the left ventricle, accompanied by a modest increase in LV end- 
diastolic volume are the most dramatic changes in cardiac reserve capacity that 
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  Fig. 2    The age-related changes in different phases of the cardiac cycle. With age, ventricular 
systole remains relative preserved while isovolumic relaxation and contraction are prolonged. 
Ventricular relaxation is impaired and the relative contribution of early ventricular fi lling is 
reduced, with an increased contribution of atrial contraction (late fi lling)       
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occur with aging in healthy, community-dwelling persons [ 11 ]. Mechanisms that 
underlie the age-associated reduction in maximum ejection fraction are multifacto-
rial and include a reduction in intrinsic myocardial contractility, an increase in vas-
cular afterload, and arterial-ventricular load mismatching. Although these 
age-associated changes in cardiovascular reserve, per se, are usually insuffi cient to 
cause clinical heart failure, they do affect its clinical presentation, the threshold for 
symptoms and signs, and the severity and prognosis of heart failure secondary to 
any level of disease burden. Notably, this loss of reserve limits exercise capacity and 
contributes to frailty in the elderly. 

 Sympathetic neural impulses to the heart via beta-adrenergic receptor stimu-
lation of heart and vascular cells elicit the recruitment of cardiovascular reserve 
capacity during stress. The essence of sympathetic modulation of the cardiovas-
cular system is to ensure that the heart beats faster, to ensure that it retains a 
small size by reducing the diastolic fi lling period, reducing LV afterload, to aug-
ment myocardial contractility and relaxation, and to redistribute blood to work-
ing muscles and to skin to dissipate heat. A sizeable component of the 
age-associated defi cit in cardiovascular reserve is composed of diminished effec-
tiveness of the autonomic modulation of heart rate, LV contractility, and arterial 
afterload. 

 Multiple lines of evidence support the idea that the effi ciency of postsynaptic 
beta-adrenergic signaling declines with aging in numerous species [ 4 ]. One line of 
evidence stems from the observation that cardiovascular responses to beta- 
adrenergic agonist infusions at rest decrease with age in humans and mammalian 
models. A second type of evidence is that acute beta-adrenergic receptor blockade 
changes the exercise hemodynamic profi le of younger persons to make it resemble 
that of older individuals. Signifi cant beta blockade–induced LV dilation occurs only 
in younger subjects. The heart rate reduction during exercise in the presence of 
acute beta- adrenergic blockade is greater in younger versus older human subjects, 
as are the age-associated defi cits in LV early diastolic fi lling rate, both at rest and 
during exercise. In older dogs it has also been observed that an age-associated 
increase in aortic impedance during exercise is abolished by acute beta-adrenergic 
blockade [ 12 ]. 

 Apparent defi cits in sympathetic modulation of cardiac and arterial functions 
with aging occur in the presence of exaggerated neurotransmitter levels. Plasma 
levels of norepinephrine and epinephrine, during any perturbation from the supine 
basal state, increase to a greater extent in older compared with younger healthy 
humans. The age-associated increase in plasma levels of norepinephrine results 
from an increased spillover into the circulation and, to a lesser extent, reduced 
plasma clearance. Defi cient norepinephrine reuptake at nerve endings is a primary 
mechanism for increased spillover into the circulation of older persons during acute, 
graded exercise (exercise intensity is progressively increased until the subject 
reaches a self-imposed fatigue level). During prolonged exercise, however, 
 diminished neurotransmitter reuptake might also be associated with depletion and 
reduced release and spillover in older persons.  

Cardiovascular Disease and Aging



126

2.1.5     Heart Rhythm 

 Beat-to-beat fl uctuation of heart rate (HR) at rest is known as HR variability. It is a 
physiological phenomenon that refl ects different inputs to the cardiac conduction 
system and variation results from normal fl uctuation in these inputs (not to be con-
fused with arrhythmia, described below). However, HR variability declines steadily 
with age and this reduction is an indicator of cardiac autonomic dysregulation com-
monly found in older people; it has been linked to increased risk for morbid and 
fatal outcomes [ 13 ]. 

 An increase in the prevalence and complexity of both supraventricular and ven-
tricular premature beats and arrhythmias, whether detected by resting ECG, ambu-
latory monitoring, or exercise testing, occurs in otherwise healthy older patients and 
are generally not associated with heart disease, even in older persons. Over a 10-year 
mean follow-up period, isolated atrial premature beats, even if frequent, were not 
predictive of increased cardiac risk in these individuals [ 14 ]. 

 Short bursts of paroxysmal supraventricular tachycardia (PSVT) are observed in 
1–2 % of apparently healthy individuals older than 65 years who were rigorously 
screened to exclude disease. PSVT at rest or induced by exercise is an early clue that 
some healthy individuals are at an increased risk for future atrial fi brillation (AF). 
Another risk factor for AF may be the increase in left atrial size (Fig.  1 ) that accom-
panies advancing age in otherwise healthy persons [ 4 ]. 

 Limited data available in older persons without apparent heart disease support a 
marked age-associated increase in the prevalence and complexity of ventricular 
ectopy (VE); i.e., premature heart beats originating from the ventricular myocar-
dium, both at rest and during exercise, at least in men. A steep increase in the preva-
lence of VE with advancing age occurs in both clinically free of heart disease 
individuals and in unselected populations [ 15 ]. Neither the prevalence nor the com-
plexity of VE at rest was a determinant of future coronary events over a 10-year 
mean follow-up period [ 14 ].   

2.2     Arterial Aging 

 Intima-media thickening increases with advancing age in animal models that are 
devoid of atherosclerosis [ 16 ], thus indicating that these age-associated alterations 
are due to the aging process and not to superimposed atherosclerosis. Aging is also 
associated with thickening of the walls of the central arteries. Intima-media thick-
ness (IMT) rises nearly threefold between the third and ninth decades of life, which 
is mainly attributable to an increase in intimal thickness in the context of infl amma-
tion [ 17 ]. A growing body of literature has shown that traditional cardiovascular 
risk factors and prevalent CVD are associated with increased IMT, and that IMT is 
itself a potent and independent predictor of adverse CV events. Diffuse intima- 
media thickening, however, should not be construed as synonymous with 
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“subclinical atherosclerosis,” particularly in the absence of plaques. This thickening 
is due to myriad age-associated biochemical, cellular, and morphologic changes in 
the arterial wall, which are modulated by the same factors that have been implicated 
in the genesis of various CVD [ 18 ]. Thus, IMT remains a useful marker of an arte-
rial risk factor associated with aging [ 19 ]. In contrast to  central  arteries, IMT is only 
modestly correlated with  coronary  artery disease [ 20 ]. 

 One of the hallmarks of central arterial aging is an age-associated increase in 
arterial wall stiffness. The age-associated increase in stiffness has frequently been 
attributed to the fraying and breakdown of elastin due to the lifelong repeated cycles 
of distention and recoil of the central aorta as well as the increased deposition and 
covalent cross-linking of collagen molecules. It is now recognized that arterial stiff-
ening can be modulated by several factors besides aging, including lifestyle (e.g., 
salt intake, exercise, or weight loss) [ 21 ], signaling molecules (e.g., nitric oxide) 
[ 22 ], infl ammation, and genetics [ 23 ]. Manifestations of arterial aging vary among 
the different vascular beds, refl ecting differences in the structural compositions of 
the arteries and perhaps differences in the age-associated signaling cascades that 
modulate the arterial properties, or differences in the response to these signals 
across the arterial tree. For example, in contrast to the central elastic arteries the 
stiffness of the muscular arteries does not increase with age (e.g., brachial and fem-
oral arteries). 

 Aortic pulse wave velocity has been anointed the “gold standard” for the nonin-
vasive assessment of central arterial stiffness [ 24 ]. Pulse wave velocity has been 
shown to be an independent predictor of morbidity and mortality in healthy sub-
jects and in individuals with various levels of cardiovascular risk. It is likely that 
arterial stiffness is not only a risk marker but also a risk factor for cardiovascular 
diseases. 

 Increased central arterial stiffening is a likely explanation of the age-associated 
changes in blood pressures, whereby systolic blood pressure continues to increase 
with advancing age, and diastolic blood pressure increases until the fi fth decade, 
then levels off and starts to decrease after the age of 60 years [ 25 ]. The decrease in 
diastolic blood pressure may compromise coronary blood fl ow, which occurs pre-
dominantly in diastole, and a further increase in pulse pressure, which can be twice 
as high in older vs. younger persons. Numerous clinical and epidemiologic studies 
in several different populations with varying prevalence of cardiovascular diseases 
have demonstrated that central pulse pressure is an important predictor of adverse 
outcomes, often more potent than systolic or diastolic blood pressures. Increased 
central arterial pulse pressure is transmitted to small arteries of the kidney and heart, 
damaging these vessels and organs, often resulting in stroke, myocardial infarction 
and chronic renal disease which increase exponentially with advancing age. Both 
animal and clinical studies have recently demonstrated that arterial stiffness pre-
cedes the development of hypertension [ 26 – 28 ]. Interventions to prevent or to delay 
arterial stiffening have predominantly focused on pharmacologic antihypertensive 
therapies. However, these strategies are aimed at lowering blood pressure, whereby 
the reduction in stiffness is a secondary effect due to reverse remodeling of the arte-
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rial wall in response to the lower pressures. Because central arterial stiffness is a 
potent predictor of mortality and morbidity independent of blood pressure, a more 
direct approach that would target the stiffening process is desirable.  

2.3     Clinical Implications of Cardiovascular Aging 

 In summary, the most dramatic changes in cardiac function that occur with aging 
in healthy, adult, community-dwelling subjects, ranging in age from 20 to 85 years, 
are increased LV wall thickness, alterations in the diastolic fi lling pattern, impaired 
LV ejection and HR reserve capacity, and altered heart rhythm. Although these 
age- associated changes do not usually result in clinical heart disease per se, they do 
compromise the cardiac reserve capacity and affect the threshold for symptoms and 
signs, as well as the severity and prognosis of heart failure secondary to any given 
disease-related challenge. This is true for both systolic and diastolic heart failure. 
Thus, age-associated changes in the heart structure and function that occur in the 
absence of a clinical diagnosis of heart disease explain the increased risk for left 
ventricular hypertrophy, atrial fi brillation, congestive heart failure and diastolic 
heart failure, all of which occur at markedly higher rates in older persons than in 
younger persons. These three cardiac diagnoses become interrelated in older per-
sons, in part because of this link with age-associated cardiac changes. An age- 
dependent increase in left ventricular mass increases the stiffness of the left 
ventricle and promotes an increase in end diastolic fi lling pressure, which is an 
important contributor to diastolic heart failure in older persons. In addition, 
increased diastolic fi lling pressure results in left atrial dilation, predisposes the 
heart to AF. When associated with tachycardia and loss of atrioventricular cou-
pling, AF reduces diastolic fi lling time and eliminates atrial systolic contribution to 
left ventricular fi lling, thereby compounding the predisposition to diastolic heart 
failure. 

 Age-associated changes are increasingly recognized as risk factors for 
CVD. Because many of the age-associated alterations in CV structure and func-
tion, at both the cellular and molecular levels, are specifi c risk factors for cardio-
vascular diseases, there is an urgency to incorporate cardiovascular aging into 
clinical medicine to preserve the healthspan of older persons. In spite of the fact 
that CV aging is a major risk factor for CV disease, it has remained for the most 
part outside of mainstream clinical medicine because the pathophysiologic impli-
cations of these changes are largely underappreciated and are not well dissemi-
nated in the medical community. However, an understanding of the age-associated 
alterations in cardiac and arterial structure and function at both the cellular and 
molecular levels [ 29 ,  30 ] provides valuable clues that may assist in the develop-
ment of effective therapies to prevent, to delay, or to attenuate the CV changes that 
accompany aging.   
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3     Cardiovascular Aging in Mammalian Models 

3.1     The Cardiac Aging Phenotype in Mammalian Models 

 Most of what we know about the molecular basis of cardiovascular aging comes 
from animal models of human aging and heart function. Cardiac aging responses 
have been characterized in multiple animal models, including nonhuman primates, 
dogs, rats and mice. However, due to the different species, strains and defi nitions of 
age groups used by different studies, the results should be interpreted cautiously. 

 Rodents, particularly mice, are widely used in cardiac aging studies. While the 
rodent heart is different from those of primates and other larger mammals (particu-
larly the electrical conduction system), in general, cardiac aging in rodents closely 
recapitulates the cardiac aging phenotypes seen in humans without overt cardiovas-
cular diseases [ 31 ]. Dai and colleagues showed in a mouse longevity cohort that 
there were signifi cant age-dependent linear trends for several cardiac parameters 
[ 32 ]. They showed by echocardiography that left ventricular mass index and left 
atrial dimension signifi cantly increased with age. Diastolic function measured by 
tissue Doppler echocardiography revealed an age-dependent decline in the ratio of 
early to late diastolic mitral annular velocity (Ea/Aa) and the frequency of diastolic 
dysfunction [ 33 ], defi ned as Ea/Aa <1, was increased in C57B6 mice over 24 months 
of age. The proportion of mice with atrial dilation also signifi cantly increased with 
age [ 32 ]. Systolic function, measured by ejection fraction (EF) and fractional short-
ening (FS) remain relatively unchanged in middle-age and old mice but decreased in 
32 month-old senescent mice [ 34 ,  35 ]. The myocardial performance index was sig-
nifi cantly worsened with age [ 36 ], indicating that a greater fraction of systole is 
spent to overcome the pressure changes during isovolumic phases; this has been 
shown to refl ect both LV systolic and/or diastolic dysfunction [ 37 ]. The aging-asso-
ciated changes in different phases of the cardiac cycle are summarized in Fig.  2 .

   At the cellular level, reduced myocyte number and hypertrophy of remaining 
myocytes have been demonstrated in aging rats and mice [ 34 ,  38 ]. Structurally, LV 
wall thickness increases in middle-age and old mice, but decreases in senescent 
mice [ 34 ,  35 ,  39 ]. This suggests that the hypertrophic growth of the myocytes in 
middle-age and old mice becomes decompensated in senescent mice, consistent 
with myocyte loss [ 34 ]. At a histopathological level, the aged hearts display inter-
stitial fi brosis, cytoplasmic vacuolization and hyalinization, increased variation in 
myocyte fi ber size, collapse of sarcomeres, mineralization, arteriosclerosis and arte-
rio lo sclerosis [ 40 ]. 

 The relatively short lifespan and the availability of genetically modifi ed mice 
also make mouse models useful tools for study of the molecular mechanisms of 
cardiac aging. In addition, the general absence of common cardiovascular risk fac-
tors such as diabetes and hypertension [ 32 ,  41 ], allows intrinsic cardiac aging 
changes to be distinguished from disease-induced changes.  
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3.2     The Vascular Aging Phenotype in Mammalian Models 

 Aged laboratory rodents exhibit a range of vascular changes also observed in 
humans. These include endothelial dysfunction [ 42 ], structural remodeling, arterial 
stiffening, vascular oxidative stress and infl ammation [ 43 ], vascular calcifi cation, 
microvascular rarefaction [ 44 ], autoregulatory dysfunction and impaired functional 
adaptation to hypertension [ 45 ,  46 ], blood brain barrier disruption [ 45 ], neurovascu-
lar uncoupling [ 47 ], impaired cellular stress resistance [ 48 ], increased susceptibility 
for vascular injury, and mitochondrial dysregulation [ 49 ,  50 ]. Thus, laboratory 
rodents are well-suited models for studying these aspects of aging-induced vascular 
pathologies. In contrast, laboratory rodents are not ideal models for age-related 
increases in blood pressure [ 51 ]. Aged wild type mice and rats also do not develop 
atherosclerotic plaques spontaneously (in the absence of genetic depletion of  Ldlr  
or  Apoe ) similar to those observed in aged primates. 

 The age-related damage of the arterial tree in non-human primates is of particu-
lar interest, as these species are physiologically and phylogenetically closer to 
humans than the more commonly studied rodent models. With age, non-human pri-
mates exhibit increased arterial stiffness [ 52 ], increased central arterial pulse pres-
sure, increased carotid intima-media thickness, hypertension [ 53 ], activation of 
processes involved in atherogenesis [ 54 ], development of aneurysms [ 55 ], vascular 
oxidative stress and infl ammation [ 56 ,  57 ], endothelial dysfunction and apoptosis 
[ 16 ], alterations of the blood brain barrier [ 58 ] and cellular mitochondrial content 
[ 59 ] and impaired cellular stress resistance [ 57 ], mimicking the human vascular 
aging phenotype.   

4      Molecular Mechanisms of Cardiovascular Aging 

4.1     Mechanisms of Cardiac Aging 

 While the phenotypes of cardiac aging have been well-characterized for decades, 
the molecular mechanisms of cardiac aging are just beginning to be revealed. Using 
genetic models and interventions targeting different pillars of geroscience, research-
ers have revealed several critical molecular mechanisms of cardiac aging in the past 
decade that have the potential to translate into cardiovascular healthspan interven-
tions (summarized in Fig.  3 ). 

4.1.1     Macromolecular Damage and Mitochondrial ROS 

 There are multiple sources of reactive oxygen species (ROS) in the cells but mito-
chondria, which generate ROS during oxidative phosphorylation, are the origin of 
most ROS. The heart has a high metabolic demand and is rich in mitochondria and 
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therefore may be especially prone to oxidative damage. Increasing evidence sug-
gests the role of abnormal mitochondrial ROS (mtROS) production and detoxifi ca-
tion in mitochondrial dysfunction and cardiomyopathy in old age (reviewed in 
[ 60 – 62 ]). It has been shown that mitochondrial production of ROS signifi cantly 
increases in the aging heart [ 63 ]. With advanced age, oxidative phosphorylation and 
mitochondrial state 3 respiration are signifi cantly reduced due to diminished com-
plex I and complex IV activities (see review [ 64 ]). The impairment in electron trans-
port chain function may lead to elevated electron leakage and increased mitochondrial 
ROS production. 

 Direct evidence of the role of mitochondrial ROS in aging was provided by mice 
overexpressing catalase targeted to the mitochondria (mCAT). The mCAT mice, but 
not mice overexpressing wild-type human catalase (naturally delivered to peroxi-
somes, pCAT), showed an 18 % extension of mean and maximal lifespan [ 65 ]. 
Although cardiac failure was not the major cause of death in these mice, they exhib-
ited great attenuation of many cardiac aging phenotypes, including left ventricular 
hypertrophy, diastolic dysfunction and impaired myocardial performance, as well as 
signifi cant amelioration of age-dependent cardiomyocyte hypertrophy, interstitial 
fi brosis and mitochondrial ultrastructural changes [ 32 ,  65 ]. These cardiac aging 
benefi ts in mCAT mice were accompanied by signifi cantly reduced mitochondrial 
protein oxidative damage and mitochondrial DNA mutation and deletion frequen-
cies [ 32 ,  65 ]. 
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  Fig. 3    A diagram summarizing the molecular mechanisms that mediate cardiovascular aging. 
Multiple pathways and molecules have been demonstrated to play critical roles in cardiac and 
vascular aging. The details are discussed in Sect.  4        
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 In contrast, mice with homozygous mutation of mitochondrial polymerase 
gamma (Polg  m / m  ) have substantial increases in mtDNA mutations and deletions with 
age [ 66 ,  67 ], shortened lifespan and exhibit accelerated cardiac aging and developed 
cardiomyopathy in middle age (13–14 months) [ 66 ,  68 ]. Middle age Polg  m / m   mice 
display cardiac hypertrophy, impaired systolic and diastolic function to an extent 
that is even more severe than wild type mice 24–30 months old. Interestingly, mCAT 
partially rescues the mitochondrial damage and cardiomyopathy in Polg  m / m   mice, 
supporting the role of mitochondrial ROS and mtDNA damage in cardiac aging 
[ 68 ]. 

 In addition to the decline in cardiac function with age, increased susceptibility of 
the aged heart to stress is also likely related to mitochondrial dysfunction. The aged 
myocardium has reduced tolerance to ischemia and hemodynamic stress [ 69 ], and 
aged cardiomyocytes have a lower threshold for ROS-induced ROS release and 
increased susceptibility to mitochondrial permeability transition pore (mPTP) open-
ing [ 70 ]. Ischemic preconditioning is also impaired in the aged myocardium (see 
review [ 70 ]), which might be due to a decrease in mitochondrial heat shock protein-
 70 [ 71 ], reduced nitric oxide bioavailability [ 72 ], damaged mitochondria that are 
vulnerable to stress, and diminished PKC translocation into mitochondria [ 73 ,  74 ].  

4.1.2     Metabolism and mTOR Signaling 

 Mechanistic target of rapamycin (mTOR) integrates nutrient and hormonal cues to 
regulate growth and longevity and is an important modulator of aging and age- 
related disease [ 75 ]. The nutrient sensitive TORC1 branch of the mTOR pathway is 
a complex that includes mTOR and Raptor (regulatory associated protein of mTOR) 
and activity of this complex is inhibited by rapamycin. Active TORC1 phosphory-
lates p70S6K, which accelerates ribosome biogenesis. TORC1 also phosphorylates 
4E binding protein 1 (4EBP1) which results in its release from the inactive 4EBP1/
eukaryotic initiation factor 4E (eIF4E) complex to allow cap-dependent translation 
initiation (see review [ 76 ]). Studies have shown that increased mTOR signaling 
impairs – and reduced mTOR signaling improves – resistance to cardiac aging. 

 In a  Drosophila  model of aging related attenuation of cardiac function, Bodmer’s 
laboratory initially showed that inhibition of the mTOR pathway could attenuate the 
aging-related decline [ 77 ]. Subsequently, they determined that overexpression of 
4EBP prevented the aging cardiac decline to the same extent as overexpression of 
the TOR antagonist TSC, and that, conversely, overexpression of eIF4E leads to a 
more rapid decline of myocardial function with age [ 78 ]. These fi ndings suggest 
that mTOR signaling through eIF4E plays a primary role in cardiac aging in 
Drosophila. 

 In the mouse model, cardiac-specifi c gene ablation of TSC1, which is an engi-
neered model for increased mTOR signaling, develop cardiomyopathy with the 
occurrence of scattered foci of enlarged ventricular myocytes and have a median 
survival of only 6 months [ 79 ]. Direct genetic evidence is not yet available in mice 
to document that decreased mTOR activity is associated with improved cardiac 
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aging; however data from caloric restriction (CR) and rapamycin support this 
conclusion. 

 CR has been shown to extend longevity in numerous animal models and a large 
body of evidence supports a major role of inhibition of mTOR signaling in mediat-
ing the CR benefi t [ 80 ]. Literature from both rhesus monkey studies and short- 
duration CR in humans provides strong evidence that CR reduces aging- and/or 
diet-dependent risk factors associated with heart disease: resting heart rate and 
blood pressure are decreased, insulin sensitivity is enhanced, lipid profi les are 
improved, and infl ammatory processes that likely contribute to atherosclerosis are 
reduced [ 81 ]. Taffett et al. found that CR of mice had a large positive effect on age- 
related impaired diastolic function [ 82 ]. A later study suggested that in humans that 
had undertaken CR for a mean of 6.5 years, there was lower blood pressure, lower 
systemic oxidative stress, and improved diastolic function [ 83 ]. In the Dahl salt- 
sensitive rat (with high-salt induced hypertension), moderate calorie restriction 
markedly attenuated changes in heart weight, left ventricular mass; wall thickness 
and echocardiography demonstrated that CR reduced cardiac diastolic dysfunction 
in this model [ 84 ]. 

 The role of mTOR is further supported by the benefi cial effects of rapamycin on 
cardiac aging. Rapamycin has been demonstrated to extend lifespan in model organ-
isms including yeast, fl y, and mouse [ 85 – 87 ]. Long-term rapamycin treatment for 1 
year initiated at mid-life reduced hypertrophy but failed to restore systolic function 
in aged male mice [ 88 ]. Flynn et al. showed that short-term treatment for 12 weeks 
initiated at late life can attenuate age-related cardiac hypertrophy and marginally 
improve systolic function in female mice, and was accompanied by a reduction in 
age-related infl ammation [ 89 ]. Our recent study demonstrated that short-term 
rapamycin (10 weeks) recapitulated the effect of CR to improve diastolic function 
and LV hypertrophy in old female mice [ 90 ]. This was accompanied by restoration 
of proteomic and metabolic profi les to more youthful phenotypes.  

4.1.3    Proteostasis 

 Protein homeostasis (proteostasis) is a steady state between protein synthesis and 
degradation. It functions to maintain protein abundance and quality and supports 
normal physiological function. Failure to maintain protein homeostasis, leading to 
accumulation of defective proteins, has been observed in several age-related dis-
eases [ 91 ], including neurodegenerative diseases [ 92 ], cardiac dysfunction [ 93 ,  94 ], 
cataracts [ 95 ], and sarcopenia [ 96 ,  97 ]. Several protein degradation pathways have 
been implicated in these failures, including autophagy and the ubiquitin- proteosome 
system. 

 Perturbation of proteostasis has also been observed in normal aging [ 98 ]. One 
of the hallmarks of aging hearts is the accumulation of myocardial lipofuscin. 
This “wear and tear” pigment is membrane-bound cellular waste that can neither 
be degraded nor ejected from the cell and is composed of incomplete lysosomal 
degradation products, predominantly from damaged mitochondria [ 99 ]. This 
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 accumulation is attributable to increased protein oxidation and damage and age-
dependent declines in autophagy and ubiquitin-mediated degradation [ 76 ,  100 ]. 
In normal physiology, removal of damaged mitochondria occurs primarily 
through fusion and fi ssion, autophagy and lysosomal degradation. When mito-
chondrial turnover is perturbed by changes in the rates of mitochondrial fi ssion or 
fusion or alterations in autophagy, the result is an accumulation of damaged and 
dysfunctional mitochondria. Dysfunctional mitochondria produce high levels of 
ROS, have impaired ATP production capacity, and likely participate in aberrant 
signaling [ 101 ,  102 ]. Tissues with accumulated damaged mitochondria may 
become senescent and cells may undergo apoptosis when a critical threshold of 
dysfunctional mitochondria have accumulated or when the affected tissue is chal-
lenged with an external stress exceeding the cellular functional reserve. 
Accumulation of damaged, high ROS- producing mitochondria have been demon-
strated in aged hearts [ 101 ,  102 ] and are shown to play a role in cardiac hypertro-
phy [ 103 ]. 

 Age dependent cardiac hypertrophy and diastolic dysfunction are also accompa-
nied by cardiac proteomic changes [ 90 ]. Briefl y, the levels of several mitochondrial 
proteins, including those involved in tricyclic acid cycle and electron transport 
chains as well as major metabolic pathways, such as fatty acid beta oxidation, amino 
acid metabolism, and ketogenesis are signifi cantly reduced in the aged heart, with 
concurrent increase of proteins involved in glycolysis and gluconeogenesis [ 90 ]. 
Normal adult hearts preferentially utilize fatty acids as the main energy source, 
while diseased and failing heart use glucose as the main energy source. In addition, 
consistent with age-dependent cardiac hypertrophy, there are increased levels of 
extracellular structural proteins (and their associated signaling pathways) with age 
[ 90 ]. These changes may be the result of an underlying decline in protein quality 
control systems, which in turn lead to the accumulation of damaged proteins that are 
unable to effi ciently perform their biological roles. 

 As the effi ciency of protein degradation decreases in old age, it is generally 
expected that the overall protein turnover rate should be slower in tissues from older 
individuals. This was supported by early studies performed using the classical 
method of measuring the bulk rate of incorporation or wash-out of radioactive label 
in total protein [ 104 ,  105 ]. However, using a novel non-radioisotope deuterated leu-
cine labeling method followed by proteomics analysis, recent studies demonstrate 
that the average proteome turnover rate is not signifi cantly different in the aged 
mouse heart [ 90 ]. Similar observations have been made in other tissues, including 
liver [ 106 ] and aged skeletal muscle (Kruse and Marcinek, ms. submitted). These 
studies examine the individual protein turnover rates simultaneously for hundreds 
of leucine containing proteins and are independent of differences in amino acid 
precursor pool sizes [ 107 ]. The discrepancy between these recent data and earlier 
fi ndings might be explained by the greater infl uence of abundant proteins in the old 
“bulk” protein measurements, or may be due to precursor pool differences. Other 
recent studies utilizing a similar metabolic labeling-based mass spectrometry 
approach to assess in vivo protein turnover have observed turnover rates consistent 
with our observations in aging mice [ 108 ,  109 ]. Thus, while the overall turnover 
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rates of proteins are not signifi cantly different or only slightly slower in the aged 
heart, the increased prevalence of damaged proteins and decreased effi ciency of 
proteostatic maintenance in old age may have a balanced effect on turnover that 
mediates cardiac aging.  

4.1.4    Stem Cells 

 Despite extensive investigation since the initial reports in 2003, the existence, iden-
tities and possible roles of adult cardiac stem cells in cardiac physiology and dis-
ease remains under debate. Earlier studies suggest the existence of multipotent 
populations of cells in the heart, such as c-kit + and sca1+/c-kit- cells, that are capa-
ble of differentiating into cardiomyocytes following isolation and culture [ 110 , 
 111 ]. In contrast, a recent study demonstrates that c-kit + cells only minimally con-
tribute to cardiomyocytes regeneration during development, aging or in response to 
injury [ 112 ]. Regardless of their role during normal physiology, these cells are 
apparently insuffi cient to prevent the progression of cardiovascular aging or to 
spontaneously regenerate the heart following acute ischemic events. Possible expla-
nations include limited capacity of these cells to regenerate myocardium in the 
presence of continuous stress (such as pressure overload and ischemia), and the 
intrinsic aging of cardiac stem cells. Evidence of the latter was provided by experi-
ments in rodents, which revealed that cardiac c-kit + stem cells in older animals had 
a higher rate of apoptosis and shorter telomeres [ 113 ]. In rodent model of diabetic 
cardiomyopathy, c-kit + cells demonstrate telomere shortening, increased expres-
sion of senescence markers p53 and p16INK4a, and an increase in apoptosis. 
Interestingly, in diabetic cardiomyopathy all of the above changes were attenuated 
by the ablation of the p66Shc gene [ 114 ]. p66Shc is activated by oxidative stress 
and translocated to the mitochondrial intermembrane space where it binds and oxi-
dizes cytochrome c, producing H 2 O 2  [ 115 ,  116 ], suggesting a central role of mito-
chondrial ROS in aging of cardiac stem (c-kit+) cells. Studies using 
cardiosphere-derived cells, another type of cardiac stem cell, also demonstrate a 
signifi cant age-dependent decline in the number and function of stem cells derived 
from mouse atrial explant [ 117 ]. Bergmann et al. used data from environmental  14 C 
in human tissues, and mathematical modeling, to estimate that cardiomyocyte turn-
over decreased from 1 % per year at the age of 25 to 0.45 % per year by the age of 
75 in adult human hearts [ 118 ]. Using multi- isotope imaging mass spectrometry to 
detect  15 N thymidine, Senyo et al. reported that the estimated annual rate of cardio-
myocytes DNA synthesis is 5.5 % in the young adult and 2.6 % in the old mice 
[ 119 ]. Taking into account the multinucleation and polyploidization of adult cardio-
myocytes, the estimated turnover rate of cardiomyocytes is 0.76 % per year in the 
young adult mice, and the rate further declines with age [ 119 ]. At this time, the 
prevailing view is that cardiac stem cells are present and function during heart 
development, that few new cardiomyocytes are formed in the adult heart, but these 
arise from existing cardiomyocytes, whether during normal aging or in response to 
injury [ 120 ].  
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4.1.5    Extracellular Matrix Remodeling 

 The extracellular matrix (ECM) provides structural support to the heart, and its 
composition is a major determinant of the stiffness of the myocardium, which is a 
major regulator of diastolic function [ 121 ]. ECM remodeling is a dynamic process 
and ECM composition is tightly regulated by the balance of the synthesis and deg-
radation of ECM by matrix metalloproteinases (MMPs) and other proteases. 
Myocardial fi brosis is a hallmark of cardiac aging and deregulations of ECM syn-
thesis and degradation have both been implicated in cardiac aging and pathology. 
Cardiac fi broblasts are the primary sources of cardiac ECM proteins, and it has been 
shown that properties of cardiac fi broblasts and their progenitors are altered with 
aging [ 122 ]. Studies have shown that fi broblasts isolated from old hearts have a 
lower proliferative capacity and have impaired differentiation into myofi broblasts in 
response to injury [ 35 ,  123 ]. Cardiac fi broblasts can be derived from several lin-
eages including mesenchymal and myeloid origins, and the Entman group has dem-
onstrated increased differentiation of these progenitors into mesenchymal fi broblasts 
and myeloid fi broblasts which contributes in increased cardiac fi brosis in aged 
hearts [ 122 ,  124 ,  125 ]. 

 Transforming growth factor-β (TGF-β), a family of profi brotic cytokines, induce 
the expression of ECM proteins and suppress matrix degradation by MMPs [ 126 ]. 
TGF-β1 heterozygous mice showed reduced myocardial fi brosis and stiffness and 
increased LV compliance at 24 months of age [ 127 ]. Connective tissue growth fac-
tor (CTGF) is a downstream mediator of TGF-β and its expression increases with 
aging [ 128 ]. Cardiomyocyte-specifi c CTGF overexpressing mice display acceler-
ated cardiac aging and develop age-related cardiac dysfunction as early as 7 months 
of age [ 129 ]. Consistent with this, Reed and colleagues demonstrated diastolic dys-
function in senescence-accelerated mice at 6 months of age, accompanied by 
increased LV fi brosis and increased TGF-β and CTGF expression [ 130 ]. In another 
study, Bradshaw and colleagues showed that deletion of secreted protein acidic and 
rich in cysteine (SPARC) resulted in reduced fi brillar collagen content in the LV and 
decreased LV diastolic stiffness [ 131 ]. This evidence suggests that increased ECM 
synthesis is an important mediator in diastolic dysfunction with age and reduced 
ECM synthesis can improve cardiac aging. 

 MMPs are a family of 25 zinc-dependent enzymes that regulate the degradation 
of ECM proteins. MMP proteolytic activity is inhibited specifi cally in the tissue by 
the tissue inhibitors of matrix metalloproteinase (TIMPs), a family composed 
TIMP-1, -2, -3, and -4 [ 132 ]. The expression levels of MMPs and TIMPs change 
differentially with age but their roles in cardiac aging have not been well estab-
lished. In human plasma, the levels of MMP-2, MMP-7, TIMP-1, TIMP-2 and 
TIMP-4 increase but levels of MMP-9 decrease with age [ 133 ]. In CB6F1 mice, the 
levels of MMPs -3, -9, -14 and TIMP-4 increase from middle-age to old-age [ 35 ]. 
Spinale et al. showed that cardiac-specifi c MT1-MMP overexpressing mice display 
increased myocardial collagen deposition and LV dysfunction in middle-age, sug-
gesting accelerated cardiac aging [ 134 ]. In a recent study, Chiao et al. showed that 
MMP-9 levels increase in the LV and plasma of aged C57Bl6 mice [ 135 ]. They later 
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demonstrated that aged MMP-9 null mice exhibit reduced collagen deposition and 
preserved diastolic function and these attenuated cardiac aging phenotypes are 
accompanied by reduced expression of pro-fi brotic proteins, periostin and CTGF, 
and a compensatory increase in MMP-8 levels in the left ventricle [ 136 ]. These fi nd-
ings suggest a role of ECM remodeling, under complex regulation by MMPs, in 
cardiac aging.  

4.1.6    Angiotensin Signaling 

 The renin-angiotensin aldosterone system (RAAS) is a major regulatory system of 
cardiovascular function. RAAS blockade demonstrates tremendous positive effects 
on the cardiovascular system, including antihypertensive, anti-infl ammatory, reduc-
tion of oxidative stress and antiproliferative effects on vascular smooth muscle cells. 
These benefi cial effects clinically translate into protection from hypertensive target 
organ damage, improvement of chronic heart failure, reduction of atherosclerosis as 
well as decreased frequency of atrial fi brillation and stroke. The reduction of these 
aging-related cardiovascular diseases is greater than expected by the effect of blood 
pressure lowering alone, and hence suggests that RAAS blockade may have a direct 
role in cardiovascular aging. In the heart, this is supported by the fi ndings that intra-
cardiac Angiotensin II concentrations are signifi cantly increased with age, and 
many structural, functional and molecular changes found in aged hearts are consis-
tent with the effects of Angiotensin II [ 32 ,  137 ]. 

 Direct evidence for the role of angiotensin II in cardiac aging was provided by 
the studies showing that inhibition of RAAS by either angiotensin converting 
enzyme inhibitor enalapril, angiotensin receptor blocker losartan or genetic disrup-
tion of Angiotensin receptor type I extended the lifespan of normal rodents and 
slowed the onset of age related cardiovascular pathologies [ 138 ,  139 ], including 
reduction of age-related myocardial fi brosis and fi brosis-related arrhythmias [ 140 ]. 
Protection by RAAS blockade is not specifi c to cardiovascular system, but is also 
evident in other angiotensin responsive tissues, such as the aging kidney [ 141 ]. 

 The mechanism of RAAS protection involves a reduction of ROS. Angiotensin 
II binds to ATR1, a Gαq protein coupled-receptor (GPCR), which activates NADPH 
oxidase (NOX2) on the cell membrane and/or NOX4 on the mitochondrial mem-
brane [ 142 ]. ROS from NOX2 and/or NOX4 lead to increase mitochondrial ROS 
production [ 143 ,  144 ]. The fact that mCAT (mitochondrial) but not pCAT (peroxi-
somal) catalase attenuates Angiotensin II- and Gαq-induced cardiac hypertrophy 
and failure emphasize the central role of ROS amplifi cation within mitochondria 
[ 145 ]. Mechanisms of ROS amplifi cation may include ROS-induced ROS release: 
ROS within mitochondria could lead to electron leakage from the electron transport 
chain, which might further stimulate ROS production. In addition, a ROS-mtDNA 
damage “vicious cycle” has been postulated in which ROS cause mtDNA mutation, 
which produce defective respiratory proteins resulting in more ROS production. 
The involvement of mitochondrial DNA mutations/deletions in this vicious cycle is 
supported by the observation that primary damage to mtDNA in Polg  m / m   mice is 
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 suffi cient to increase mitochondrial ROS, induce cardiac hypertrophy and systolic 
dysfunction [ 68 ,  145 ]. Breaking the ROS vicious cycle within mitochondria by 
transgenic expression of mCAT or mitochondrial targeted antioxidants effectively 
attenuates both cardiac hypertrophy and failure [ 146 ,  147 ].  

4.1.7    Other Factors: Sirtuins, GDF-11 and miRNA 

 Sirtuin 1 (SIRT1) is a NAD + −dependent protein deacetylase that affects aging and 
lifespan in model organisms. The Sadoshima lab showed that expression of SIRT1 
increases in aged heart, and that low to moderate overexpression (2.5–7.5 fold) of 
SIRT1 can attenuate cardiac aging responses, while high level overexpression (12.5 
fold) resulted in cardiac hypertrophy and myocardial fi brosis at young age and death 
within a year [ 148 ]. In a recent study, mice defi cient in the mitochondrial deacety-
lase SIRT3 displayed accelerated cardiac aging changes, including early age onset 
of hypertrophy associated with fi brosis, age-dependent increased mitochondrial 
swelling due to increased mPTP opening, and increased mortality after transverse 
aortic constriction [ 149 ]. 

 Using heterochronic parabiosis, Loffredo et al. recently demonstrated that fac-
tors present in the circulation of young mice can reverse cardiac hypertrophy in 
aged mouse hearts [ 150 ]. Using an aptomer-based proteomic approach they identi-
fi ed growth differentiation factor 11(GDF-11) as a circulating factor that declines 
with age and can reverse age-related cardiac hypertrophy. Recapitulating the effect 
of parabiosis, treatment with GDF-11 also reduced expression of hypertrophic 
markers (ANP and BNP) and increased SERCA-2 expression in old hearts [ 150 ]. 
However, a later study has shown that the reagents for GDF-11 detection used in 
Loffredo’s study cross-react with myostatin, and suggested that GDF-11 levels 
actually tend to increase with age in rat and human sera [ 151 ]. Further study will be 
required to determine the precise role of GDF-11 in cardiac aging. 

 Increasing evidence suggest that microRNAs (miRNAs) are important regulators 
of cardiovascular aging and diseases [ 152 ,  153 ]. In heart failure-prone 
C57Bl6 × 129Sv mice, van Almen et al. demonstrated that the expression of the 
miR-17-92 cluster (consisting of miR-18a, miR19a and miR-19b) decreases while 
the expression of their targets, CTGF and ECM protein thrombospondin-1 (TSP-1) 
increases. They showed that miR-18a and miR-19b regulated expression of CTGF, 
TSP-1 and collagen in  in vitro  aged cardiomyocyte cultures, and suggested that 
these miRNAs mediate age-related ECM remodeling in the heart [ 154 ]. In C57Bl6 
mice, Jazbutyte et al. demonstrated an age-related increase in miR-22 in hearts and 
that miR-22 regulates cardiac fi broblast senescence [ 155 ]. In a recent study, Boon 
et al. demonstrated that expression of miR-34a increased in aged mouse hearts and 
 in vivo  silencing of miR-34a for 1 week can rescue the increase in cardiomyocyte 
cell death in aged mice [ 156 ]. They also showed that aged miR-34a knockout mice 
have improved contractile function and reduced cardiac hypertrophy compared to 
wild-type littermates. In the same study, they demonstrated that inhibition of miR- 
34a can also improve contractile function in Ku80 knockout mice (a mouse model 
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of accelerated aging). These observations suggest increased miR-34a expression in 
the aged heart contributes to cardiac aging. However, whether the impact of miR- 
34a on cardiac aging is mediated by the newly identifi ed target phosphatase 1 
nuclear targeting subunit (PNUTS) and/ or other miR-34a targets (e.g. SIRT1) 
remains to be elucidated.   

4.2     Mechanisms of Vascular Aging 

 The vasculature is a pervasive system whose age-related alterations fundamentally 
impact the function of every organ. As atherosclerotic diseases are a leading cause 
for mortality and morbidity, the mechanisms of vascular aging that have direct rel-
evance for atherogenesis are considered, focusing on the role of oxidative stress and 
chronic low-grade infl ammation. Importantly, the microcirculation, with a total 
length of ~100,000 km, interacts with virtually every cell in the human body. In the 
past decade a growing number of publications have revised our understanding of the 
important role of age-related functional and phenotypic alterations of microvascular 
endothelial cells, both in the aging process and the development of multiple diseases 
of aging. Thus, we also review recent insights into the mechanisms of microvascular 
dysfunction in aging and how these might contribute to age-related functional 
decline of multiple organ systems. 

4.2.1    Oxidative-Nitrative Stress and Endothelial Dysfunction in Vascular 
Aging 

 It is well-established that nitric oxide (NO) is a crucial factor for the health and 
function of endothelial cells, regulating vascular tone, structural remodeling, cell 
proliferation, angiogenic processes, infl ammation, hemostasis and barrier function 
[ 43 ]. Considerable evidence has been published that endothelial function is impaired 
in aging due to an increased production of ROS [ 42 ,  50 ,  157 – 163 ], which contrib-
utes to the development of a wide range of age-related pathologies, including coro-
nary artery disease and stroke (recently reviewed [ 43 ]). Impaired bioavailability of 
NO due to the functional inactivation of NO by increased O 2  –  was shown to result in 
a severe impairment of fl ow/shear stress-induced vasodilation in the coronary circu-
lation [ 42 ] and other vascular beds [ 157 ], compromising adjustment of blood fl ow 
to tissue oxygen demand. Impaired fl ow-induced vasodilation likely contributes to 
decreased exercise capacity and myocardial ischemia in the elderly. Impaired endo-
thelial release of NO is also responsible for erectile dysfunction in older men. In 
addition, endothelial cell-derived NO confers signifi cant vasoprotective and cardio-
protective effects, including inhibition of infl ammatory cell adhesion to endothelial 
cells and thrombocyte aggregation, disruption of infl ammatory processes, inhibition 
of apoptosis and preservation of endothelial progenitor cell function [ 43 ]. 
Endothelium-derived NO was also shown to regulate mitochondrial biogenesis and 
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tissue energy metabolism [ 164 ,  165 ]. Thus, the signifi cant age-related impairment 
of NO bioavailability [ 166 ], exacerbated by an age-related decline in eNOS expres-
sion [ 42 ,  167 – 170 ] and availability of tetrahydrobiopterin [ 171 ], is likely to pro-
mote both vascular infl ammation and atherogenesis and lead to cellular energetic 
imbalance. The key role of endothelium-derived NO in protecting the cardiovascu-
lar system during aging is underscored by the fi nding that eNOS knockout mice 
exhibit a premature cardiac aging phenotype associated with early mortality [ 172 ]. 
Decreased endothelial NO production has been linked to increased apoptosis of 
endothelial cells in aging [ 170 ,  173 ], which likely represents an important mecha-
nism involved in age-related microvascular rarefaction (see below). In addition to 
inactivating NO and eliciting oxidative macromolecular damage, increased produc-
tion of ROS in the aged vasculature has important signaling roles both in vascular 
endothelial and smooth muscle cells. Importantly, increased levels of ROS were 
shown to activate redox-sensitive cellular signaling pathways implicated in infl am-
matory processes in the aged vasculature [ 174 ]. Increased oxidative stress also acti-
vates MMPs and promotes pathological vascular remodeling and vascular injury 
(reviewed in [ 31 ,  174 ,  175 ]). Caloric restriction was shown to up-regulate eNOS 
and increase NO bioavailability [ 165 ,  176 ], which contribute both to its vasoprotec-
tive and metabolic effects. 

 One of the major molecular mechanisms underlying vascular oxidative stress in 
aging is an increased expression and activity of NAD(P)H oxidases (NOX) [ 42 , 
 159 ,  163 ,  177 – 179 ]. Previous studies show that inhibition of NOX exerts vasopro-
tective effects in aging, improving microvascular function [ 179 ], restoring penile 
erection [ 180 ] and inhibiting the progression of atherosclerosis [ 181 ]. There are 
multiple pathways which are likely involved in age-related activation and up- 
regulation of NOX, including hypertension [ 178 ] and up-regulation of the local 
renin-angiotensin II system and TNFα in the vascular wall [ 182 ,  183 ]. Hypertension 
also elicits increased mitochondrial production of ROS in the vasculature [ 184 ] and 
this effect is exacerbated in aging [ 185 ]. Mitochondrial-located Nox4 is a major 
source of pressure overload-induced oxidative stress in the heart [ 186 ] and its 
expression is up-regulated in the vasculature of hypertensive aged mice [ 46 ]. 
Moreover, angiotensin II induces expression of Nox4 both in smooth muscle cells 
[ 187 ] and in cardiac myocytes [ 146 ]. Thus, the effects of oxidative and nitrative 
stresses in aging are observed primarily in the vascular endothelium, but also have 
effects in the vascular smooth muscle cells.  

4.2.2    Sirtuins in Vascular Aging 

 There is evidence that SIRT1 is also dysregulated in the aged vasculature [ 188 ] and 
previous studies demonstrated that SIRT1 is a key mediator of the anti-aging effects 
of caloric restriction [ 189 ], including its anti-oxidant and anti-infl ammatory vascu-
lar effects [ 176 ]. The fi rst pharmacological activator of SIRT1 to be widely studied 
was resveratrol [ 189 ]. Resveratrol was shown to confer multifaceted vasoprotective 
effects in aging, including attenuation of oxidative stress, increases in NO 
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bioavailability, anti-apoptotic and anti-infl ammatory effects [ 47 ,  56 ,  190 – 192 ], 
mimicking many of the effects of caloric restriction. Resveratrol was shown to 
improve endothelial function in hypertensive patients [ 193 ] and to prevent arterial 
wall infl ammation and stiffening in nonhuman primates [ 190 ]. Recent data demon-
strate that SIRT1 overexpression in vascular smooth muscle cells decreases blood 
pressure and inhibits vascular remodeling in angiotensin II-treated mice [ 194 ] 
thereby supporting antihypertensive effects. However, resveratrol is not specifi c to 
SIRT1 and it was shown to have many other targets in the vasculature, including 
Nrf2 [ 195 ]. More recently, treatment with SRT1720, a synthetic sirtuin activating 
compound with improved bioavailability and specifi city for SIRT1 activation, was 
also reported to normalize aortic superoxide production, decrease NF-κB activation 
and down-regulate TNFα in old mice [ 196 ]. Several lines of evidence support the 
concept that activation of SIRT1 confers anti-atherogenic effects. First, there are 
studies demonstrating an association of genetic variations at the SIRT1 locus with 
carotid atherosclerosis [ 197 ]. Second, Apoe −/−  mice expressing inactive truncated 
SIRT1 (Δex4) in smooth muscle cells demonstrate increased DNA damage-response 
and apoptosis, increased atherosclerosis and medial degeneration [ 198 ]. Third, 
treatment with the pharmacological SIRT1 activator SRT3025 inhibits atherogene-
sis in Apoe −/−  mice fed a high-cholesterol diet (although it seems to be ineffective in 
Ldlr −/−  mice) [ 199 ]. Recent studies suggest that the mitochondrial sirtuins (includ-
ing SIRT3), which are in part responsible for the regulation of ATP production, 
metabolism, apoptosis and cell signaling, are also dysregulated in the aged vascula-
ture [ 188 ]. However, the role of SIRT3 in atheroprotection is controversial [ 200 ].  

4.2.3    Vascular Infl ammation in Aging 

 There are substantial experimental and clinical data demonstrating that aging is 
associated with chronic low-grade infl ammation [ 201 ], which promotes the devel-
opment of age-related vascular diseases, including atherosclerosis [ 174 ]. Even in 
normal, healthy aging there is a pro-infl ammatory shift in the gene expression pro-
fi le of vascular endothelial and smooth muscle cells, including an up-regulation of 
infl ammatory cytokines, chemokines, adhesion molecules and iNOS both in labora-
tory rodents and primates [ 42 ,  50 ,  173 ,  192 ,  202 – 204 ]. Vascular infl ammation in 
aging contributes to the development of vascular dysfunction [ 182 ,  205 ] and pro-
motes endothelial apoptosis in aging [ 173 ,  182 ]. Secretion of infl ammatory media-
tors from microvascular endothelial cells is also likely to affect the function of cells 
in the parenchyma of the supplied organs. For example, neural stem cells were 
shown to lie close to blood vessels, and their function is likely directly affected by 
pro-infl ammatory changes in the specialized microenvironment of this vascular 
niche [ 206 ]. In this regard it should be noted that age-related functional and pheno-
typic alterations of the microcirculation also promote chronic infl ammation indi-
rectly in the brain and other organs. Accordingly, aging is associated with signifi cant 
blood brain barrier disruption in the hippocampus and other brain regions, which is 
exacerbated by hypertension [ 46 ]. Passing through the damaged blood brain barrier, 
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plasma constituents, including IgG and fi brinogen, can enter the brain promoting 
neuroinfl ammation (e.g. activation of microglia by IgG via the IgG Fc receptors) 
[ 207 ,  208 ]. Thus, microvascular aging (via endothelial activation and extravasation 
of leukocytes, secretion of infl ammatory mediators and disruption of barrier func-
tion) likely contributes to a wide range of age-related chronic diseases. 

 There is ample evidence that increased NF-κB activation in the aging vascular 
cells contributes to endothelial activation and pro-infl ammatory gene expression 
[ 50 ,  163 ,  209 ,  210 ]. Age-related mechanisms that contribute to NF-κB activation 
include increased production of mitochondria-derived H 2 O 2  [ 50 ], Nrf2 dysfunction 
[ 56 ], up-regulation of tissue renin-angiotensin system (RAS) [ 204 ,  211 – 213 ] and 
paracrine TNFα signaling [ 182 ]. There is strong evidence that age-related vascular 
infl ammation is reversible both by dietary interventions (caloric restriction [ 176 , 
 214 ]) and pharmacological treatments that inhibit NF-κB activation [ 192 ].  

4.2.4    Vascular Cell Senescence, Endothelial Cell Renewal and Apoptosis 
in Vascular Aging 

   Role of Cellular Senescence in Vascular Aging 

 Mitotically competent vascular cells, including endothelial cells, smooth muscle 
cells, adventitial fi broblasts and pericytes, can react to diverse endogenous and 
exogenous stressors (e.g. paracrine signals, DNA damage, dysfunctional telomeres) 
by permanently withdrawing from the cell cycle, a response termed “cellular senes-
cence” [ 215 ]. Experiments on endothelial cells  in vitro  suggest that oxidative and 
nitrative stress are an important stimuli for the induction of senescence [ 215 ]. There 
is increasing evidence that senescent cells accumulate with age in the cardiovascu-
lar system. Yet, a controversy exists regarding the exact biological role of senescent 
cells and the relationship between cellular senescence and vascular aging. Apart 
from the alterations related to permanent cell-cycle exit, senescent cells acquire 
distinct phenotypic changes, including the “senescence-associated secretory pheno-
type” (SASP) [ 216 ], which likely contribute to the development of age-related vas-
cular diseases by altering the tissue microenvironment, impairing the function of 
neighboring cells via the secretion of paracrine mediators and changing the compo-
sition of the extracellular matrix. Some of these phenotypic changes are potentially 
important in altering the regenerative and angiogenic capacity of the vascular endo-
thelium and promoting infl ammatory processes and atherogenesis during aging 
[ 215 ].  

   Increased Endothelial Apoptosis in Aging 

 Programed cell death might account for some aging phenotypes in various organs 
[ 217 ], as well as the genesis of age-related cardiovascular pathologies. While an 
attractive hypothesis, the relationship between vascular aging and apoptosis remains 
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unclear. Aging is associated with increased apoptosis of endothelial cells in the 
vasculature of non-human primates [ 16 ]. The percentage of apoptotic endothelial 
cells also increases with age in the vasculature of laboratory rodents [ 173 ,  182 , 
 192 ]. The available data suggest that multiple age-related mechanisms, including 
impaired bioavailability of NO, circulating IGF-1 defi ciency, impaired cellular oxi-
dative stress resistance, up-regulation of TNFα and/or mitochondrial oxidative 
stress are likely to contribute to this increase in apoptotic endothelial cells [ 173 , 
 182 ,  218 ]. Factors present in the circulation of patients with peripheral artery dis-
ease were shown to confer signifi cant pro-apoptotic effects in cultured endothelial 
cells derived from aged rodents [ 219 ]. Yet, in human patients no signifi cant correla-
tion was found between patient’s age and the number of apoptotic cells in the coro-
nary circulation [ 220 ]. In addition to large vessel pathologies, increased apoptotic 
cell death at the level of the capillaries is also likely to contribute to microvascular 
rarefaction (see below) and, concomitantly, to the declines in muscle mass [ 221 ] 
and organ function during aging.  

   Impaired Angiogenesis and Microvascular Rarefaction in Aging 

 The process of angiogenesis is critical for maintenance of the microvasculature and 
cardiovascular homeostasis. Previous studies demonstrate that aging is associated 
with a progressive deterioration of microvascular homeostasis due to age-related 
impairment of angiogenic processes [ 43 ,  222 – 226 ]. It is assumed that these changes 
have a key role in the age-related decline in microvascular density (microvascular 
rarefaction) [ 227 ] that has been observed in multiple organ systems with age, 
including the heart [ 228 ], kidney [ 229 ] and skin [ 230 ]. Microvascular rarefaction is 
thought to decrease tissue blood supply, contribute to the development of hyperten-
sion and impair adaptation to hypoxia [ 231 – 233 ]. There is also an age-related rar-
efaction of the cerebral microvasculature, which likely contributes to a decline in 
cerebral blood fl ow that reduces metabolic support for neural signaling, promoting 
cognitive dysfunction in the absence of or preceding neurodegeneration in the 
elderly [ 44 ,  234 ,  235 ]. However, the age-related loss of microvascular plasticity has 
signifi cance beyond metabolic support for neuronal signaling, since neurogenesis in 
the adult brain is regulated coordinately with capillary growth [ 44 ]. 

 The mechanisms by which aging impairs angiogenesis and promotes microvas-
cular rarefaction includes an age-related impairment of the growth hormone/IGF-1 
axis (reviewed recently [ 236 ]). Previous studies demonstrate that growth hormone 
supplementation substantially increases cortical vascular density in older rats [ 234 ], 
which was accompanied by a signifi cant improvement of cognitive function. Other 
factors appear to be involved: pituitary adenylate cyclase-activating polypeptide 
(PACAP) is an evolutionarily conserved neuropeptide secreted by endothelial cells 
and neurons that confers important anti-aging effects. Recent studies show that 
secretion of PACAP by cerebral microvessels also signifi cantly declines with age 
[ 237 ,  238 ]. In vitro evidence suggests that age-related decline in autocrine PACAP 
signaling contributes to impairment of endothelial angiogenic capacity with age 
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[ 238 ]. There is also evidence that Dicer1 (ribonuclease III, a key enzyme of the 
miRNA processing machinery) is essential for normal endothelial angiogenic pro-
cesses, and that age-related dysregulation of Dicer1-dependent miRNA expression 
is a potential mechanism underlying impaired angiogenesis and cerebromicrovascu-
lar rarefaction in aging [ 226 ]. Interestingly, lifelong caloric restriction restores the 
angiogenic capacity of aged endothelial cells, promoting endothelial cell prolifera-
tion and capillary morphogenesis and increasing capillary density in the brain of 
aged laboratory rodents [ 214 ,  239 ,  240 ]. SIRT1 also seems to regulate angiogenesis, 
as suggested by studies on mice with endothelium-specifi c knockout of SIRT1 
[ 241 ]. Importantly, Nrf2 has also been implicated in regulation of endothelial angio-
genic capacity [ 242 ]. In that regard it is signifi cant that cerebral capillary density 
can be increased in aged mice by resveratrol treatment [ 191 ].  

   Impaired Endothelial Progenitor Cell Function in Aging 

 The link between vascular aging and a decline in the replicative function of endo-
thelial progenitor cells (EPCs) is controversial. It is still not well established 
whether aging affects total EPC number [ 243 – 245 ], however, previous studies pro-
vided evidence that the function of circulating EPCs is impaired with age [ 244 , 
 246 ]. Aging was shown to impair neovascularization, which depends on the intact 
function of highly proliferative EPCs. A role for age-related alterations of circulat-
ing factors in EPC dysfunction is suggested by the fi ndings that the presence of 
sera from young rats in the culture medium improves the function of EPCs isolated 
from aged rats [ 247 ]. Importantly, IGF-1 was shown to exert benefi cial effects on 
the function of progenitor cells in the cardiovascular system, including antioxidant 
effects, upregulation of telomerase activity, delaying replicative senescence, and 
increasing the pool of functionally competent progenitor cells [ 248 ]. Both circu-
lating IGF-1 levels and paracrine IGF-1 decrease in aging, which likely exert del-
eterious effects in EPCs [ 249 ]. Indeed, there are studies demonstrating that in 
human patients age- dependent impairment of EPCs is corrected by GH-mediated 
increase of IGF-1 [ 250 ]. Interestingly, regular aerobic exercise was also shown to 
increase both the number and migratory activity of EPCs in previously sedentary 
older men [ 251 ].     

5     Future Prospects and Interventions 

 Age-associated alterations in arterial, microvascular and cardiac structure and func-
tion represent links that explain, at least in part, the reason why aging is by far the 
greatest risk factor for cardiovascular disease. It is critical to understand the molecu-
lar mechanisms of cardiovascular aging, their interactions with both cardiovascular 
disease pathogenesis and systemic aging processes, and identify novel pathways 
that could be targeted for interventions aiming at retardation or attenuation of these 
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age-associated alterations. The recent studies on the roles of different hallmarks of 
aging have advanced our understanding of cardiovascular aging and shed light on 
potential therapeutic strategies. Several examples of such potential therapies are 
indicated in the sections above, including mitochondrial protective agents, rapamy-
cin and GDF-11. Further understanding of the mechanisms of cardiovascular aging 
will guide the future translational studies on novel therapeutics to treat age-related 
cardiovascular disease and to improve healthy cardiovascular aging. Cardiovascular 
aging is a promising frontier that is ripe for, and in dire need of, attention to prevent 
age-associated deterioration of healthspan.     
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1            Introduction 

 The high incidence of stroke worldwide is considered a global epidemic. There are 
two broad types of stroke: hemorrhagic stroke and ischemic stroke. Hemorrhagic 
stroke is due to weakening of the vessel wall and eventual rupture and spillage of 
blood in the brain parenchyma. Hemorrhagic strokes are not as common (about 80,000 
cases per year in the US) but are more likely to be fatal as compared to ischemic 
strokes. Ischemic strokes result from blockage or constriction of a cerebral vessel 
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resulting in rapid neuronal death due to loss of oxygen and glucose. Ischemic stroke is 
more common and can run the gamut from mild symptoms to chronic disability and 
death. Stroke symptoms can vary dramatically from person to person, based in part on 
the specifi c blood vessel, the brain region, the duration of ischemia and, crucially, on 
the general health of the individual. Not surprisingly, stroke is the leading non-martial 
cause of serious long-term disability and a stroke-related death occurs every 47 s in the 
US, underscoring the enormous medical, fi nancial and societal burden of this disease. 
Few therapies are available for stroke patients outside of rehabilitative therapy.  

2     Stroke and Aging 

 In the US, ischemic stroke is considered a disease of the elderly. Thus, while stroke 
incidence is low among younger demographics, the prevalence of stroke in the sixth–
seventh decade of life (60–79) is 6.2 % for men and 6.9 % for women, which then 
doubles to 13.9 % for males and 13.8 % for females in the 80+ years age group [ 102 ]. 
The increased risk for stroke with age coupled with a growing aging population will 
lead to an additional 3.4 million people affected by stroke in the next 15 years [ 209 ]. 

 Besides elevating the risk for stroke, age also adversely affects stroke outcomes 
[ 128 ]. Stroke outcomes can be assessed by several measures including survival, 
functional recovery, and length of hospitalization. An early study of 415 patients 
with transient ischemic attack (TIAs) reported that 1 and 5 years survival was nega-
tively correlated with advanced age [ 121 ]. A prospective analysis of 515 stroke 
patients (Copenhagen Stroke Study) showed that outcome measures such as activi-
ties of daily living (measured by the Barthel Index [BI]) were signifi cantly worse in 
older patients, although neurological outcomes as measured by the Scandinavian 
Stroke Score were not affected by age [ 192 ]. Since ADL status refl ects not only 
recovery from the stroke but also compensation from the non-affected side, it sug-
gests a poorer ability to compensate among this older population. Furthermore, hos-
pitalization length was signifi cantly increased in older patients (>65 years) with 
stroke [ 225 ]. Observational studies in university hospital settings reported that age 
was a highly signifi cant predictor of poor functional outcome [ 1 ,  66 ,  139 ]. Moreover, 
a small study of centenarians also confi rmed that strokes were much more severe in 
this population than in other age groups [ 207 ]. Morphologically, aging is associated 
with decreased salvage of penumbral tissue, and leptomeningeal collateral circula-
tion is reduced in aging stroke patients, which associated with a poorer outcome [ 15 ]. 

2.1     Is Age a Non-modifi able Risk Factor? 

 Based on the evidence above, age is often referred to as a ‘non-modifi able’ risk fac-
tor for stroke. In evaluating this statement, it should be recognized that the aging 
demographic is a highly variable one. Sex/gender differences, life style factors, and 
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ethnicity all impact stroke incidence. Additionally, the incidence of hypertension, 
metabolic disease, hyper-cholesteronemia, that are co-morbid for various neuro-
logic diseases including stroke, all contribute to the variability in the elderly popula-
tion. Accordingly, while the prevalence of stroke is one-sixth of the 85+ age group, 
Alzheimer’s disease, another neurologic illness, occurs in one-third of the 80+ age 
group. Thus while age is a contributing factor for many illness, the relatively lower 
incidence of stroke in the aging population suggest that other factors may also mod-
ulate age to elevate the risk for this disease. Some of these factors are considered 
below. 

2.1.1     Sex Differences in Stroke 

 A principal variable affecting stroke incidence in aging is the sex of the patient. 
Most ischemic strokes occur in the elderly and among this elderly demographic, 
women are more likely to get a stroke [ 217 ]. In addition to a higher incidence of 
ischemic stroke at older ages, females display more non-classical stroke symptoms 
and tend to have worse outcomes from stroke. Thus while stroke is the 4th leading 
cause of death overall, it is the 3rd leading cause of death in women, and the 5th 
leading cause of death in men [ 193 ]. In fact, the rates of stroke-related death have 
declined over the last 25 years for men but not women [ 232 ]. Furthermore, since 
women live longer than men, it is projected that stroke-related disability and insti-
tutionalization is likely to affect women more than men [ 145 ]. Women account for 
60 % of stroke-related deaths [ 169 ], even after normalization for age. The 5 y stroke 
recurrence is also disproportionately higher in females (20 %) as compared to males 
(10 %) in the 45–64 years age range [ 232 ]. A Canadian stroke registry study reported 
that 10 % of women stroke patients were discharged to long term care as compared 
to 5 % of men [ 133 ], despite the observation that stroke size tends not to be different 
in males and females [ 248 ]. In the Danish National Registry analysis, women were 
reported to have more severe strokes than men although they exhibited a survival 
advantage compared to men, especially at advanced ages [ 206 ]. 

 The increased incidence of stroke among older women, especially when com-
pared to the relative low risk among younger demographics has led to the hypothe-
sis that the loss of ovarian hormones, principally estrogen, at menopause may be a 
contributory factor. However, analysis of hormone use and stroke incidence in post-
menopausal women does not support this conclusion. An early case–control study 
reported no increased risk for stroke in postmenopausal women who took hormone 
therapy, relative to those not taking hormones [ 216 ]. In a different multicenter case- 
controlled study, increased lifetime exposure to estrogen was associated with a 
lower risk of stroke, but interestingly, a lower age at menarche increased the odds of 
stroke [ 63 ]. The infl uential Women’s Health Initiative (WHI) study indicated that 
hormone use actually increased stroke risk. The WHI study was a randomized, dou-
ble blind, placebo-controlled multicenter trial, which compared the risk of myocar-
dial infarction, stroke and dementia in women who consumed daily conjugated 
equine estrogens (CEE) [ 115 ]. CEE + progestins [ 279 ] or placebo. Hormone therapy 
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groups showed an increased risk for stroke; however, subgroup analyses indicated 
that most of this risk was seen in the older age groups. In the CEE trial, increased 
risk for stroke was statistically signifi cant for the 60–69 years old group but not the 
50–59 years old group [ 115 ]. In an observational analysis of postmenopausal 
women in the Nurse’s Health Study, estrogen and estrogen + progestin use increased 
the risk of stroke irrespective of the age of the user or time since menopause [ 107 ]. 
However, the observational arm of the WHI study showed no increased risk for 
stroke in the CEE or CEE + progestin arm [ 222 ,  223 ]. A possible factor in the dis-
crepancy between the WHI trial and the WHI observational study was that the ini-
tiation of hormones was much earlier in the latter study. However other health 
characteristics among this group can also impact stroke risk in conjunction with 
hormone therapy (HT). In the observational trial (SHOW study) there were no dif-
ferences in stroke risk due to HT use; however, HT users were more likely to be 
normotensive and lean as compared to non-users in this study [ 42 ] which was not 
the case in the WHI study, where hypertension incidence was similar in CEE users 
and non-users [ 115 ]. A similar interaction between HT and hypertension was seen 
in the Danish Nurses study, where normotensive women who used hormone therapy 
were not different from controls, while the risk for stroke was elevated among 
hypertensive women who used hormone therapy [ 170 ]. 

 Another modifi er of the effectiveness of HT for stroke is the concept of timing. 
The timing hypothesis postulates that hormone treatment is likely to be cardio- and 
stroke-protective only if taken during the perimenopause or early after menopause. 
Subgroup analyses of the WHI study (described above) support this idea, as well as 
data from a prospective study of Swedish women, where stroke risk was signifi -
cantly decreased in women who initiated hormone treatment prior to menopause 
[ 157 ]. In a population-based nested case–control study of 50–69 year old women, 
HT did not signifi cantly elevate ischemic stroke risk [ 8 ], further supporting the idea 
that HT at ages closer to the menopause may be harmless for stroke. Coronary 
artery calcifi cation, a surrogate marker of cardiac disease, was reduced by estrogen 
in the youngest cohort of WHI (50–59 years) [ 177 ], also signifying that estrogen’s 
effects can be modulated by the age of the user. Finally, a study of non-users found 
that stroke-related mortality in women 65 and older was higher in women with 
higher levels of endogenous estrogen [ 176 ], implying that elevated levels of hor-
mones in late life, whether exogenous or endogenous, may exert a deleterious effect 
on stroke. 

 The accumulated evidence of sex differences in the incidence, mortality and out-
come for stroke prompted the recent American Heart Association/American Stroke 
Association guidelines for sex-specifi c recommendations for the female stroke 
patient [ 41 ]. This recommendation underscored stroke risk factors that were stron-
ger or more prevalent in females than males, such as migraine, atrial fi brillation, 
Type 2 diabetes, and hypertension, as well as risk factors specifi c to women such as 
pregnancy, gestational diabetes, preeclampsia, oral contraceptives and estrogen 
therapy. Thus the aging woman may represent a specifi cally vulnerable population 
for stroke.  
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2.1.2     Hypertension and Aging in the Context of Stroke 

 Hypertension is a signifi cant risk factor for global diseases such as cardiovascular 
disease, congestive heart failure, stroke and end-stage renal disease. It is a leading 
risk factor of stroke among the elderly. Hypertension is highly prevalent in the aging 
population, estimated at 69.6 % of all women aged 65–74, and 64.7 % of all men 
aged 65–74 [ 102 ]. One report estimates that non-hypertensive individuals aged 
55–65 are virtually all (90 %) likely to develop stage 1 hypertension and are at a 40 
% risk of developing stage 2 hypertension [ 271 ], underscoring the close link 
between aging and hypertension. Systolic blood pressure rises gradually between 
30 and 80 years of age, and systolic hypertension is very common after age 50 
[ 219 ]. Hypertension is seen in 77 % of all stroke patients [ 169 ], and the Framingham 
study reported that hypertension was the factor most strongly associated with stroke 
in elderly males and females, increasing the odds ratio of stroke 1.9 in aging men 
and 2.3 in aging women [ 132 ]. A similar fi nding has been reported for both men and 
women aged 80+ years [ 13 ]. 

 While hypertension increases with age, an increase in systolic blood pressure 
(SBP) was frequently thought to be a normal, and therefore inconsequential, part of 
the aging process, while increases in diastolic BP (DBP) were seen as the greater 
threat to cardiovascular and stroke incidence. However, in the US, more than 3/4 of 
all untreated hypertensive patients 50 years and older are of the “isolated systolic 
hypertension” (ISH) subtype [ 90 ], suggesting that hypertension among the elderly 
is of a different type [ 91 ]. Aging affects hemodynamics, with increases in systolic 
BP, diastolic BP and mean arterial pressure (MAP) starting at 50–55 years of age. 
Thereafter, with age there is a leveling off of DBP and MAP, with a steady increase 
in SBP. This pattern is thought to refl ect a transition from age-related changes in 
peripheral vascular resistance to large artery stiffness [ 89 ]. Additionally, the differ-
ence between SBP and DBP, or pulse pressure, is currently considered to be a more 
predictive risk factor for cardiovascular disease. Both aging and hypertension can 
impair endothelial, and therefore, microvessel function. With age, vascular tone is 
affected as well as arterial remodeling, resulting in increased pulse wave velocity, a 
phenomenon referred to as vascular aging [ 196 ], a determining factor for cardiovas-
cular disease. 

 A series of studies examining the effect of anti-hypertensive therapy in elderly 
patients showed that such interventions reduced all strokes 30–57 % compared to 
placebo, and reduced fatal strokes by 39–76 % (reviewed in [ 14 ]). Thus aggressive 
management of blood pressure in the elderly may dilute the impact of age on stroke. 
This may underlie the steady decline in stroke mortality and stroke-associated dis-
ability among the elderly that has been reported between 1967 and 1985, although 
the incidence of stroke remains high in this group [ 24 ]. While control of risk factors 
including hypertension, hyperlipidemia, diabetes and cigarette smoking are neces-
sary at all ages, they are most likely to be benefi cial in the elderly [ 25 ]. For every 5 
mmHg reduction in BP there is a 14 % decline in stroke mortality [ 51 ] and a 35–40 
% reduction of stroke occurrence [ 53 ]. Taken together, the evidence indicates that 
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there appears to be no age threshold where treatment for hypertension is not likely 
to be benefi cial for stroke [ 16 ].  

2.1.3     Other Comorbidities and Stroke 

 Aging-related changes in blood pressure also intersect with dyslipidemia in this 
group, possibly due to lipid action/accumulation on the arterial wall. Elevated cho-
lesterol and lower levels of high-density lipoproteins are associated with stroke in 
aging and lipid-lowering drugs reduce the incidence of myocardial infarction [ 6 , 
 237 ]. While major trials have indicated that statins are well tolerated in the elderly, 
the association between hyperlipidemia and stroke is not strong in this group. In a 
study of high-risk elderly patients (< or = 82 years of age), HMG-CoA reductase 
inhibitors (statins) appear to lower stroke risk [ 6 ]. However, this may also result 
from other protective actions of statins on the endothelium, including anti- oxidant, 
anti-infl ammatory effects and stabilization of plaques [ 179 ]. After age 65, blood 
lipid levels are less prominent risk factors for cardiovascular diseases and by age 75, 
blood lipids have little predictive value [ 29 ]. In fact, specifi c lipids may be associ-
ated with longevity in the elderly population, for example sphingomyelin in women 
[ 103 ,  238 ]. Thus among the elderly the risk imposed by hypertension is likely more 
severe than hyperlipidemia. By contrast, cigarette smoking, whether past or current, 
also impacts vascular disease [ 56 ], and is a risk factor for heart failure even in older 
adults. In current smokers this risk is elevated irrespective of the ‘pack-years’ of 
smoking exposure [ 104 ]. Remarkably, prior to 75 years of age, hypertension and 
diabetes are much less important risk factors as compared to heavy (>2 drinks/day) 
alcohol consumption at midlife [ 129 ].  

2.1.4     Diabetes 

 Cardiovascular complications are the most common non-fatal complication of dia-
betes among older adults [ 122 ]. The prevalence of type 2 diabetes is 16.5 % in men 
and 12.7 % in women in the 75–84 age range where strokes are common, and glu-
cose intolerance was found in more than 1/3 of all participants in the Framingham 
study that were 65 or older [ 281 ]. Altered glucose metabolism is not necessarily a 
component of aging, and may represent a sub population that is generally at higher 
risk for other adverse geriatric processes [ 131 ]. Diabetes is frequently associated 
with cognitive impairment, dementia, depression, and stroke [ 28 ]; however, in some 
cases, it is the co-occurrence of hypertension in diabetic populations that may 
increase the risk for stroke. Some support for this idea comes from the fact that 
vascular disease increases before the elevation of glucose levels and more than 25 
% of newly diagnosed diabetic patients already have cardiovascular disease [ 281 ]. 

 The convergence of comorbid disease and sociocultural stressors during aging as 
risk factors for stroke fi ts well with the concept of an ‘allostatic load’ [ 182 ]. 
Allostatic load refers to the cumulative lifespan exposure to adverse circumstances, 
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and integrates with the 3-hit hypothesis where disease susceptibility is thought to 
result from genetic predisposition, early life events and later-life events [ 60 ]. Saban 
and colleagues propose that early life events may predispose an infl ammatory epi-
genetic signature, which is made worse with chronic stressors such as social disad-
vantage [ 48 ] and psychological stress, culminating in increased risk for CVD and 
stroke [ 235 ].    

3     Impact of Aging on Conventional Stroke Therapy 

 Tissue plasminogen activator (tPA; Alteplase) is the only FDA-approved therapy for 
stroke, and its mode of action consists of proteolytic degradation of the clot, with 
the goal of re-establishing circulation. tPA has also been shown to increase the risk 
for hemorrhagic transformation, which occurs subsequent to ischemic stroke and 
cerebral infarction. Although hemorrhagic transformation (intracerebral hemor-
rhage) may occur spontaneously after ischemic stroke, thrombolytic therapy occa-
sionally leads to this complication, possibly due to the actions of tPA on matrix 
metalloproteinases [ 148 ,  268 ]. In animal models, tPA increases permeability of the 
blood brain barrier in aged (18–20 month old) male Wistar rats as compared to 
young (3–4 months old) males, and this is related to disassembly of tight junction 
proteins such as claudin and occludin [ 134 ]. 

 The actions of tPA are poorly studied in the elderly, despite the fact that people 
aged 85 and over are the fastest growing stroke demographic in the US. In the land-
mark tPA study at NINDS, tPA was noted to cause intracerebral hemorrhage (ICH) 
in a small proportion of patients and this was embodied in the recommendation that 
tPA after 3 h was not advised. In this study, the conversion to ICH was 2.87 times 
greater in patients older than 80 as compared to patients younger than 80 [ 264 ], 
although age was not an independent predictor of ICH. In contrast, age was an inde-
pendent predictor of hemorrhage in the European Acute Stroke Study [ 149 ]. In a 
small retrospective study of 22 stroke patients who were 90 years or older, most 
patients had poor outcomes at 30 days post stroke and many died [ 180 ]. Similarly, 
a report of patients from a German registry indicated that the rate of ICH was much 
higher in older patients (10.3 %; 75 or older) [ 116 ]. Although the explanation for 
this age response is not clear, the greater incidence of underlying vascular pathology 
including cerebral amyloid angiopathy [ 105 ] as well as defi cient clearance of tPA in 
the elderly have been implicated as factors. In fact, in carefully selected older popu-
lations, with treatment by stroke specialists and careful adherence to the NINDS 
guidelines, there does not appear to be an increased risk of ICH in elderly patients 
treated with tPA [ 260 ]. 

 Sex differences in treatment among patients that receive tPA may also factor into 
the sex differences in stroke outcomes. In a study spanning stroke patients over a 
decade (1997–2006), men were more likely than women to receive IV tPA, angio-
plasty/stents, carotid endarterectomy, or cardiac reperfusion. However towards the 
end of the study period, sex differences in the use of IV tPA were eliminated [ 267 ], 
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which suggests that greater overall tPA use and emphasis on early time-to-treatment 
may decrease sex differences in acute stroke care. More recently, a comparison of 
white and black male and female stroke patients found no differences in the out-
come of tPA administration in men, but reported that black women were less likely 
to get tPA than white women [ 36 ]. In a regional study, women were more likely to 
be excluded from tPA for hypertension as compared to men, suggesting that under- 
treatment of stroke risk factors in women may further impact stroke therapies as 
well [ 175 ]. Increased assignment of tPA therapy to women should be encouraged as 
treatment outcomes do not differ between tPA treated men and women, while in 
non-tPA administered groups, males were more likely to have a better neurologic 
score as compared to women [ 247 ]. 

3.1     Failed Stroke Trials 

 Although several drugs have been identifi ed in preclinical studies, only a few of 
these have made it to clinical trials and none have succeeded [ 44 ]. These include the 
SAINT trials that tested the free radical scavenger NXY-059; the RANTTAS trials 
for Tirilazad mesylate, a lipid peroxidation inhibitor; the INWEST trials using 
nimodipine, a calcium channel blocker and the Selfotel investigations using an 
NMDA blocker. While several reasons may explain why the preclinical promise of 
these drugs was not borne out in clinical trials, an important consideration is the 
lack of aging animals used in the preclinical studies [ 166 ]. Most preclinical studies 
used healthy young animals as test subjects, which clearly does not approximate the 
human population [ 185 ]. In fact, irrespective of the treatment, stroke outcome was 
signifi cantly affected by the age of the patient in the combined SAINT trial analyses 
[ 70 ]. Preclinical studies with these drugs routinely failed to use clinically relevant 
animal models, such as the aged and those with comorbid diseases. A comprehen-
sive review of preclinical studies that lay the groundwork for these failed drugs 
found that virtually all studies (43/45) used only younger animals [ 270 ]. These and 
other studies provided the impetus for the STAIR recommendations, which specifi -
cally included recommendations for clinically relevant animal models [ 87 ].  

3.2     Preclinical Therapies 

 Emerging therapies are focusing on interventions that lead to long-term brain repair 
and plasticity, using cell based therapies and pharmacological therapies. 

 The use of cell therapies and grafts in stroke has focused on adult stem cells or 
induced pluripotent stem cells [ 23 ,  110 ]. Both human and animal stroke brains show 
signs of proliferation, including the aging human [ 174 ]. Intra-parenchymal [ 158 ] 
and intra-arterial [ 159 ] delivery of bone marrow derived mesenchymal cells is 
reported to improve neurological outcomes and functional performance when 
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 delivered post stroke. Interestingly, grafts of human umbilical tissue-derived cells 
have also been shown effective for neural recovery in aged animals [ 294 ]. 
Environmental enrichment appears to improve neurologic function in both young 
and old animals [ 38 ], and further enhances functional recovery when combined 
with stem cell therapy [ 117 ]. Although the mechanism of action is not well under-
stood, several end points are improved including release of trophic factors, anti-
infl ammatory effects, angiogenesis and cell survival (reviewed in [ 47 ]). 

 Angiogenesis is considered critical to long term stroke recovery [ 11 ], and the 
low rate of vessel formation in the elderly is thought to be associated with low rates 
of functional recovery. Formation of new blood vessels is a desired therapeutic out-
come, and ischemic events provide important signals for new vessel formation, such 
as secretion of angiogenic and matrix remodeling factors. Angiogenesis is also criti-
cal for providing a niche for neurogenesis [ 210 ]. Studies have shown that VEGF is 
angiogenic in the post stroke brain but may also cause blood brain barrier ‘leaki-
ness’ and hemorrhagic transformation in the early acute phase of stroke [ 296 ]. 
Similarly, stem cell transplant-derived VEGF is also neuroprotective [ 118 ]. 
However, rAAV-mediated VEGF therapy showed that the angiogenic response to 
this growth factor is attenuated in aged animals [ 94 ], while sildenafi l treatment post 
stroke enhanced recovery and angiogenesis in both young and aged animals [ 293 ], 
and adenoviral transfer of adiponectin was more effective in old than young stroke 
animals [ 184 ]. These studies, while promising, underscore the need for preclinical 
studies to mimic clinically valid aspects of the patient population, including old age 
and comorbidities.   

4     Animal Models to Gauge the Impact of Aging on Stroke 

 While preclinical models do not measure risk, they can be useful in assessing stroke 
severity (outcomes) in terms of infarct volume, neurological scores, the impact of 
comorbid disease and response to therapies. Age differences in stroke outcomes in 
preclinical models tend to mirror the fi ndings of the clinical studies. With increasing 
age, there is a greater conversion of ischemic tissue to infarcted tissue in stroke 
patients as detected by MRI [ 17 ]. Similarly, aged animals show more infarcted dam-
age than young animals, and young animals are likely to show spontaneous recov-
ery soon after the ischemic event, while in aged animals, such recovery is usually 
longer and never reaches the same recovery levels as young animals [ 38 ]. 

 Young and aged male and female mice subject to a middle cerebral artery occlu-
sion (MCAo) show that young females sustain a smaller infarct as compared to 
young males or aged female mice [ 164 ] although by 2 weeks post stroke, both 
young and aged groups were comparable [ 178 ]. In a study of neonates (10 day), and 
adult animals at 2 and 6 months, functional recovery was best in the neonate and 
was impaired in the older age groups, suggesting that the plastic environment of the 
immature brain is better suited for stroke recovery [ 284 ]. Similarly, post stroke epi-
lepsy, a common complication in this disease, was more common in older animals 
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as compared to younger ones [ 135 ]. In studies comparing young and middle aged 
animals, the latter group showed worse infarct volume in the spontaneously hyper-
tensive rat strain (SHR) as compared to the normotensive Kyoto Wistar strain [ 152 ]. 
In fact, middle-aged SHR rats show spontaneous white matter disease, cognitive 
decline and heightened infl ammation as compared to normotensive controls [ 130 ], 
accentuating their value as preclinical models for stroke. 

 Sex differences also modulate stroke outcome in the context of aging in animal 
models. Adult females have a smaller infarct and better cerebral blood fl ow than 
age-matched males both in normoglycemic [ 4 ] and diabetic [ 266 ] animals. However, 
although female mice sustain a much smaller infarct [ 178 ], they showed signifi -
cantly more mortality and poorer stroke outcomes as compared to older males. 
These sex differences prompted several studies addressing the contribution of hor-
mones to stroke outcomes, specifi cally estrogen. Using natural variations in circu-
lating estrogen levels, Liao and colleagues [ 160 ] showed that the extent of ischemic 
damage was inversely related to circulating levels of estrogen [ 160 ]. In fact, replace-
ment with 17β estradiol [ 77 ,  234 ,  243 ] and its inactive stereoisomer 17α estradiol 
[ 249 ] as well as the conjugate equine estrogen preparation [ 181 ] all reduce infarct 
volume in female animals. Exogenous estrogen replacement is neuroprotective 
when given prior [ 77 ] or subsequent to the injury [ 167 ,  286 ]. However, it should be 
noted that all these studies were done in young female animals that were ovariecto-
mized to mimic a surgical menopause. In contrast, as mentioned earlier, elevated 
levels of sex hormones may have a negative effect on stroke in the aged. 

 Hormone treatment in studies using older female animals does not reliably result 
in stroke neuroprotection and may in fact exacerbate stroke recovery. While some 
studies show that estrogen treatment to middle-aged or older female animals is neu-
roprotective [ 76 ], a growing number of studies show that estrogen treatment to 
ovariectomized middle-aged female animals either has no protective effect [ 62 , 
 154 ] or paradoxically, increases infarct volume [ 243 ,  244 ]. Besides gonadal ste-
roids, other endocrine systems are also affected by aging and disease, and it has 
been proposed that these changes may impact the overall effectiveness of estrogen 
in an aging model [ 254 ]. Support for this idea comes from a study where post stroke 
IGF-1 treatment to estrogen-exposed middle aged female rats reversed the detri-
mental effects of estrogen. Conversely, IGF-1 receptor antagonist treatment of 
young females abrogated the protective effects of estrogen in this group, suggesting 
that cross talk between hormone systems (in this case estrogen and IGF-1) may be 
critical for neuroprotection [ 244 ]. Thus the loss of both IGF-1 and estrogen in aging 
females may be responsible for the more severe stroke outcomes seen in this group. 
Interestingly, IGF-1 levels are higher in young males, while their stroke outcomes 
are worse than young females, suggesting that the correlation between IGF-1 and 
neuroprotection may be more complex. 

 Overall, when key variables that affect stroke outcomes in patients, such as 
advanced age, sex and hypertension are included in preclinical studies in animal 
models, they appropriately refl ect the outcomes seen in human disease. 
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4.1     Pathophysiology of Stroke 

4.1.1     Ischemia Induced Cascade 

 Loss of glucose and oxygen to brain cells causes a series of events resulting in neu-
ronal death either through apoptosis or necrosis. Cell death occurs not only in those 
areas directly affected by the ischemia, but also in neighboring cells as a result of an 
ischemic cascade initiated in proximal cells. Many of these processes occur simul-
taneously, beginning with a failure of ATP-dependent systems that result in unregu-
lated calcium entry into the cell. A feed forward process then ensues, whereby 
calcium-induced release of the excitatory amino acid glutamate, further increases 
Ca +2  accumulation. Consequently, stimulation of calcium dependent enzymes initi-
ate a wide variety of cellular reactions resulting in free radical formation and oxida-
tive stress. Death of ischemic neurons causes toxicity in the local microenvironment, 
and activates local immune and infl ammatory cells, thus amplifying the possibility 
of cell death (reviewed in [ 212 ]).   

4.2     Is the Cellular Response to Stroke Different in Aging 
Animals? 

 At the cellular level, aged animals are able to mount a cytoprotective response to 
stroke but the timing of proliferation and activation of key support cells such as glia 
and endothelial cells is accelerated, resulting in rapid infarct development and poor 
prognosis in aged animals [ 221 ]. Endothelial cells, astrocytes and microglia are the 
major support cells of the brain and play a critical role in preserving neurons follow-
ing ischemic injury. A critical way in which these cells interact is the neurovascular 
unit, where blood brain barrier components (endothelial cells, astrocytes and peri-
cytes) form a functional unit with neighboring neurons. The blood brain barrier 
itself consists of endothelial cells and their intercellular tight junctions, supported 
by astrocytic end feet and pericytes [ 2 ,  113 ,  144 ,  230 ]. Paracellular transport 
between adjacent endothelial cells is restricted by the presence of tight junctions, 
composed of large transmembrane proteins such as claudins and occludins. 
Collectively, this structure maintains the homeostatic environment of the brain and 
excludes peripheral cells, proteins, and many molecules, including cytotoxic com-
pounds. Functional changes in the blood brain barrier occur as a result of ischemia, 
including loss of endothelial tight junctions, the internalization of plasma proteins, 
and traffi cking of peripheral immune cells into the brain parenchyma. Coupled with 
distress signals from local brain cells, this promotes the intercellular transfer of 
peripheral immune cells and transcytosis of plasma proteins, thus amplifying the 
infl ammatory response in the ischemic brain. The aging blood brain barrier, and its 
cellular components, may well underlie the greater stroke severity seen in this group. 
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4.2.1     Aging and the Blood Brain Barrier 

 Among the many age-related changes in the brain, alterations in the blood brain 
barrier are most likely to elevate the risk and severity of stroke. Age-related 
changes in the microvasculature increase blood brain barrier permeability which 
is further increased in patients with vascular dementia or Alzheimer’s disease 
[ 83 ]. There is growing evidence that hemorrhagic transformation after tPA treat-
ment is due to its action on proteolysis in the neurovascular unit (reviewed in 
[ 278 ]). One possibility is that tPA may act via matrix metalloproteinases (MMP) 
which are known to promote barrier leakiness. Stroke patients who receive tPA 
have elevated MMP-9 [ 119 ] and MMP9 levels are highest in tPA patients with 
hemorrhagic conversion [ 187 ]. Furthermore, MMP inhibitors signifi cantly reduce 
the severity of tPA induced cerebral hemorrhage [ 258 ]. Increased blood brain bar-
rier permeability with age has been reported in both animals and humans (reviewed 
in [ 200 ]). Following stroke, blood brain permeability is enhanced in older animals 
and tPA action on the barrier is accompanied by activation of occludin and clau-
din-5 [ 134 ]. 

 Sex differences and alterations in barrier function due to menopause or reproduc-
tive senescence are relatively understudied. Experimental studies evaluating the 
infl uence of estrogen on blood brain barrier permeability generally indicate a pro-
tective function [ 253 ]. 17β-estradiol also reduces edema in an experimental stroke 
model by reducing the activity [ 199 ] and abundance [ 46 ] of the Na-K-Cl cotrans-
porter. However, the synthetic estrogen ethinyl estradiol has been shown to increase 
endothelial permeability to albumin [ 93 ]. 

 In middle-aged female rats, there is increased permeability of the blood brain 
barrier in the hippocampus and olfactory bulb as compared to younger females [ 21 ]. 
At the molecular/cellular level, this is accompanied by increased perivascular IgG 
expression in the hippocampus, a marker commonly used to assess barrier integrity 
in aging and disease. Furthermore, constitutive expression of claudin-5 and occlu-
din were not altered by age, however junctional localization of these proteins, which 
is critical for their barrier function was reduced in cerebral microvessels from mid-
dle aged reproductively senescent females [ 19 ]. Disrupted tight junctions are also 
seen in aging female hamsters [ 101 ]. In fact, cerebral microvessels from a small 
sample of pre and post-menopausal women also confi rmed this reproductive age- 
related loss of junctional localization [ 19 ]. 

 Consistent with the high demand for active transport in these cells, barrier- 
forming endothelial cells contain signifi cantly greater mitochondrial content than 
non-barrier forming endothelial cells [ 205 ]. In both rats and monkeys, mitochon-
drial content of endothelial cells is reduced with age [ 40 ], while mitochondrial DNA 
mutations increase during aging and in age-related neurologic conditions such as 
Alzheimer’s disease [ 190 ]. Mitochondrial oxidative stress is a leading cause of vas-
cular/endothelial dysfunction in the aging population. With advancing age, the 
accumulation of reactive oxygen species increases in endothelial cells (reviewed in 
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[ 58 ,  269 ], resulting in inactivation of the vasodilator nitric oxide (NO), and 
consequently, reduced vasodilator capacity and perfusion of tissues [ 57 ]. 
Compensatory responses such as increased iNOS in microvessels are also seen in 
hypertensive subjects [ 250 ] and aging male rats [ 43 ]. Age-related elevation of oxi-
dative stress is accompanied by a chronic low-grade infl ammatory phenotype 
marked by NF-kB activation [ 269 ]. Furthermore, age-associated mitochondrial oxi-
dative stress promotes mitochondrial protein oxidation and mitochondrial DNA 
mutations (reviewed in [ 59 ]), and it is speculated to cause endothelial apoptosis 
[ 171 ,  285 ]. Decreased density of cerebral arterioles in aging [ 256 ] is consistent with 
the idea of vascular deterioration.  

4.2.2    Aging and Angiogenesis 

 In addition to their central role in the blood brain barrier, cerebrovascular endothelial 
cells play a critical role in stroke-associated angiogenesis and regulation of blood 
fl ow. Angiogenesis or formation of new vessels is an adaptive response to ischemic 
injury [ 64 ,  255 ]. Angiogenesis is stimulated by hypoxia, which upregulates angio-
genic factors such as HIF-1 and VEGF [ 106 ,  224 ]. Post-stroke angiogenesis is closely 
associated with neurogenesis [ 7 ,  52 ] such that the angiogenic niche promotes neuro-
genesis [ 202 ]. Neurons and astrocytes within the neurovascular unit also secrete 
angiogenic factors, which in turn enhance proliferation and differentiation of neuronal 
precursor cells to promote neurogenesis [ 259 ]. Thus reduced functional capacity of 
endothelial cells with age will not only affect vascular repair but also neurogenesis. 

 The impact of aging on angiogenesis in the stroke brain is poorly studied and the 
results equivocal. Aged male F344 rats show a signifi cant decrease in capillary 
angiogenesis compared to young animals following hypoxia [ 125 ], while in mice, 
both young and aged animals display similar microvessel densities 2–3 weeks after 
hypoxia, although hypoxia-induced upregulation of HIF-1α and Ang-2 was signifi -
cantly reduced in the aged mice [ 30 ]. Aging also impairs the angiogenic potential of 
senescent human umbilical vein endothelial cells [ 97 ], which is associated with 
reduced VEGF levels [ 231 ]. Exogenous VEGF treatment of aging mice, however, 
did not improve the angiogenic response, suggesting that VEGF-activated down-
stream signaling pathways may be permanently changed with age [ 94 ]. Although 
HIF-1 activation is a primary step in angiogenesis, PPAR-gamma coactivator 
1-alpha (PGC 1α) is also capable of inducing angiogenesis in aged F344 rats [ 194 ]. 
Using gene expression at the neurovascular unit as a marker for angiogenic capac-
ity, resting gene expression of PGC 1α was lower in aging animals, and the angio-
genic response to hypoxia was also weaker [ 191 ]. Estrogen promotes angiogenesis, 
decreases free radical production, increases cell survival, and stimulates angiogen-
esis in cerebral endothelial cells [ 141 ]. It also increased microvessel density prior to 
[ 10 ] and 10 days post stroke [ 9 ], indicating that the loss of estrogen in aging females 
may impair repair processes.  
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4.2.3    Aging and Cerebral Blood Flow 

 Reduced cerebral blood fl ow during aging appears to be universal, and has been 
documented in rats [ 33 ,  203 ], monkeys [ 197 ] and humans [ 240 ]. Interestingly, cere-
bral blood fl ow reduction may occur as early as midlife in humans (50 years) [ 240 ]), 
consistent with elevated stroke risk during this time frame. Impaired endothelial 
vasodilation, which is an early marker for arterial aging, has been attributed to the 
twin perils of oxidative stress and infl ammation. Accordingly, the vasodilatory com-
pound nitric oxide (NO) is reduced by an imbalance in pro and anti-oxidant systems 
in the aging vasculature, resulting in high levels of reactive oxygen species and low 
levels of antioxidant response due to decreases in critical proteins including manga-
nese superoxide dismutase (mnSOD2) and nuclear factor-erythroid 2 p45-related 
factor 2factor-2 (Nrf2) (reviewed in [ 80 ]). This is believed to act as a stimulus for a 
low -grade infl ammation [ 282 ] typically seen in aging vessels [ 290 ], resulting in a 
deleterious feed-forward amplifi cation of oxidative stress. 

 One of the most prominent reasons for NO insuffi ciency is age, due in part to the 
age-related reduction of nitric oxide synthase [ 218 ] and an age-related increase in 
arginase, that degrades the natural substrate for NOS [ 32 ]. In fact age is the most 
signifi cant predictor of endothelial-dependent vasodilation [ 100 ]. In coronary circu-
lation, endothelial-derived NO decreases dramatically in 70–80 year old patients as 
compared to 20 year old patients [ 79 ], consistent with the observation that cerebral 
blood fl ow is negatively correlated with age in a study of 20–100 year old individu-
als [ 261 ]. In contrast, the renin angiotensin system is permissive for hypertension 
[ 183 ] and age-related imbalances in the renin-angiotensin system (RAS) is also a 
risk factor for cardiovascular disease [ 12 ]. In animal models, inhibition of RAS 
increases lifespan and reduces age-related hypertension (reviewed in [ 71 ]). Through 
production of vasodilatory and vasoconstrictive molecules, the cerebrovascular 
endothelium plays an important role in regulating blood fl ow, which is also critical 
during reperfusion following stroke [ 109 ]. Some evidence links the age response to 
an imbalance between vasoconstrictive and vasodilatory factors, with an elevation 
in the former [ 72 ]. Vascular reactivity is also altered with age, such that adenosine 
administration induced greater vasodilation in young animals as compared to older 
animals [ 127 ], while intravascular serotonin exacerbates vasoconstriction in older 
animals [ 111 ]. Thus, the aging brain is more likely to be subject to hypoperfusion 
and potentially, greater neuronal damage in response to ischemic stroke 
conditions.  

4.2.4    The Aging Astrocyte 

 Astrocytes play an important role in the normal and pathologic brain. Specifi cally, 
astrocytes regulate synaptic activity, extracellular matrix secretion, blood–brain 
barrier integrity and the infl ammatory response (reviewed in [ 252 ]). Following 
brain injury, astrocytes become reactive with increased expression of glial fi brillary 
acidic protein (GFAP) [ 215 ,  262 ]. Astrocytes offer trophic support to neurons 
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through secretion and/or expression of several soluble factors including neurotroph-
ins [ 172 ,  227 ] growth factors [ 226 ,  297 ] and by regulating local glutamate concen-
trations [ 239 ]. Astrocytes are also a source of infl ammatory cytokines/chemokines 
[ 137 ,  150 ,  226 ] that can potentially ameliorate or exacerbate the injury response. 
However, astrocytic response to injury can be modulated by several factors includ-
ing age and hormonal status. 

 The aging brain shows distinct changes in astrocyte morphology [ 272 ], GFAP 
expression [ 195 ,  233 ] and astrocyte numbers [ 112 ,  189 ]. Aging accelerates injury- 
induced astrocyte reactivity [ 18 ,  221 ], and after ischemic injury, this enhanced glial 
response accelerates glial scar formation [ 18 ]. Furthermore, reduced expression of 
astrocyte-derived SC1, an extracellular matrix-associated glycoprotein, indicates 
that matrix remodeling may also be impaired in aged rats following focal ischemia 
[ 168 ]. 

 Reduced astrocyte function with age may also impact neurogenesis, a potential 
endogenous repair mechanism following brain injury. Decreased Wnt3 secretion (a 
neural stem cell differentiation factor) in astrocytes from middle aged (9 month old) 
mice resulted in impaired hippocampal neurogenesis in this age group as compared 
to younger (3 months.) mice [ 186 ,  204 ]. Reductions in astrocyte-derived growth 
factors and their receptors such as insulin-like growth factor 1 (IGF-1) [ 78 ,  155 ], 
fi broblast growth factor receptor 2 (FGFR-2) [ 45 ] and vascular endothelial growth 
factor (VEGF) [ 34 ] may also contribute to reduced adult neurogenesis. 

 Both constitutive and injury-induced functions of astrocytes are affected by age. 
Ex vivo cultures of astrocytes from the olfactory bulb of middle-aged female rats 
show several phenotypic changes such as increased stress fi ber formation, reduced 
laminin deposition, increased BDNF expression and reduced TrkB expression com-
pared to young astrocytes [ 156 ]. Furthermore, aging astrocytes show an impairment 
in their ability to promote neuronal differentiation of neural progenitor cells [ 156 ]. 
Moreover, ex vivo cultures of ischemia-activated astrocytes from aging females 
show reduced glutamate uptake as compared to astrocytes harvested from young 
adult females [ 155 ]. The impaired glutamate clearance and metabolic dysregulation 
observed in the aging astrocyte promotes a more toxic microenvironment in the 
older brain, thus probably contributing to the increased infarct size observed in old 
rats [ 221 ,  243 ].  

4.2.5    Effects of Sex Hormones on Astrocyte Function 

 The sex (or gonadal) hormones androgen, estrogen and progesterone and their 
metabolites play a signifi cant role in regulating astrocyte activity (reviewed in 
[ 251 ]), specifi cally by increasing expression of astrocyte-derived growth factors 
[ 92 ,  220 ] and regulating the glial glutamate transporters [ 213 ]. In the context of 
injury, reactive astrogliosis is attenuated following replacement with estrogen, tes-
tosterone [ 26 ,  61 ], dihyrotestosterone [ 61 ] progesterone as well as the neurosteroids 
dehydroepiandrosterone, pregnenolone and pregnenolone sulfate [ 96 ]. In addition, 
progesterone, estradiol [ 95 ] and the selective estrogen receptor modulators (SERMS) 
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raloxifene and tamoxifen [ 27 ] reduced reactive gliosis in females. Ischemia- 
activated cortical astrocytes from acyclic middle aged females showed impairments 
in glutamate clearance and lower growth factor synthesis as compared to astrocyte 
cultures from young females [ 155 ], indicating that a constitutive loss of ovarian 
estrogen may affect astrocyte function. 

 Interestingly, neuroprotective interventions by sex hormones may originate from 
the astrocyte itself or may result from paracrine signaling. Aromatase expression, a 
key enzyme in estrogen biosynthesis, is enhanced following a sub-lethal pressure 
increase in astrocyte cultures [ 98 ] while estrogen treatment of astrocytes inhibits the 
steroid hydroxylase CYP7B1 which is responsible for metabolizing dehydroepian-
drosterone (DHEA), an important precursor for both estrogen and testosterone [ 86 ]. 
Taken together these data suggest that sex hormones play a supportive role in astro-
cyte function, and further support the hypothesis that the loss of ovarian hormones 
at menopause may accelerate stroke severity in females.  

4.2.6    Aging Microglia 

 Microglia are the main effectors of the innate response in the ischemic brain. 
Microglia are thought to contain multimolecular complexes called infl ammasomes, 
which act as intracellular sensors for host-derived signals in cases of brain injury 
and stroke [ 276 ]. Activated microglia are responsible for phagocytosis of non- 
functioning cells and synthesis and release of cytokines that can result in cell death. 
Accordingly, minocycline, an anti-infl ammatory compound that targets microglia, 
reduces microglial activation and improves function and survival rate [ 114 ,  165 ]. In 
a small clinical trial, minocycline use was reported to improve neurologic function 
in stroke patients [ 147 ]. On the other hand, microglia also promote a neurogenic 
environment after stroke, since they also produce growth factors that are neuropro-
tective, and can elevate growth factor synthesis in neighboring cells [ 287 ]. 
Mesenchymal stem cells cultured in microglial media exhibit elevated level of sev-
eral growth factors including VEGF and IGF-1 [ 298 ]. Furthermore, selective abla-
tion of proliferating microglia exacerbates ischemic injury [ 146 ] while exogenous 
application of microglia reduces ischemic injury [ 138 ]. 

 Similar to macrophages, at least two activation states have been proposed for 
microglia. The classical M1 response is induced by microbial agents or T helper cell 
type 1 secretions and results in the production of pro-infl ammatory cytokines (IL- 
1β, TNF-α, IL-6, and IL-12), which are cytotoxic. The M2 activation is induced by 
Th2 cytokines (IL-4, IL-13), and is characterized by anti-infl ammatory responses 
and tissue repair. Both age [ 151 ] and mitochondrial dysfunction [ 85 ] impair IL-4 
mediated alternate activation and produce a failure to elevate growth factor levels in 
microglia. With aging, the brain environment develops a more pro-infl ammatory 
profi le and aging microglia may be a crucial component of this process. Microglial 
priming, which occurs with age, is associated with increased expression of infl am-
matory cytokines and an enhanced activated morphological profi le (reviewed in 
[ 198 ]). Oxidative stress and free radical accumulation with age is thought to increase 
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infl ammasome activity, and deletion of NLRP3 infl ammasome in cells of myeloid 
origin reduces the infl ammatory profi le of microglia in a region specifi c manner 
[ 290 ].  

4.2.7    Peripheral Immune Cells 

 One of the consequences of blood brain barrier dysregulation after stroke, coupled 
with elevated expression of specifi c receptors and adhesion factors by endothelial 
cells and astrocytes, is the infl ux of peripheral immune cells into the brain. 
Consequently, leukocytes including T cells, B cells, neutrophils and monocytes 
(macrophages) are mobilized to the ischemic region [ 81 ,  99 ], contributing to sec-
ondary infl ammation and accelerating cell death [ 173 ]. The signifi cant loss of 
splenic weight after transient [ 201 ] and permanent [ 274 ] ischemia suggests that 
immune cells stored in the spleen cells are mobilized into circulation after injury 
and recruited to the brain [ 241 ]. Accordingly, splenectomy [ 3 ] or treatments that 
maintain spleen mass such as infusion with human umbilical cord blood cells [ 274 ] 
reduced infarct volume. The latter treatment also reduced ischemia induced eleva-
tion of infl ammatory cytokines in the spleen [ 273 ], suggesting that the spleen may 
be a good target for stroke therapy. 

 More recent work has shown that the type of immune cells recruited to the brain 
may also affect stroke outcomes. Macrophages are immunologically diffi cult to dis-
tinguish from microglia and the reduction of this cell type in the brain after splenec-
tomy indicates that macrophages are mobilized to the ischemic brain [ 3 ]. Growing 
evidence indicates that T cell recruitment contributes to increased stroke pathology 
[ 108 ] and consistent with this evidence, T cell knock out mice have lower infarct 
volumes [ 288 ]. Additionally, specifi c cohorts of T cells have been shown to have 
cell protective or cell toxic effects. Thus, the gammadelta IL-17 producing cells 
(Th17) have been implicated in increased cell death [ 246 ], while regulatory T cells 
(Treg) and IL-10-producing Breg cells are thought to provide cell protection [ 35 , 
 161 ]. Irrespective of age, young, middle-aged and aging mice subject to ischemia 
improved after treatment with recombinant T cell receptor ligand (RTL), which 
causes T cells to become non-pathogenic [ 75 ,  299 ]. This study supports the idea that 
different neuroprotective mechanisms may be activated with age. In this context, it 
is worth noting that while splenectomy is neuroprotective in males, it does not 
improve infarct volume or neuroinfl ammation in females, so it remains to be deter-
mined whether this surgical process would be equally effective in aging females 
[ 74 ]. 

 The use of older animals in stroke research is particularly critical in light of the 
evidence that immune and other somatic responses will shape the ischemic response. 
Franceschi and colleagues have proposed the term infl amm-aging in recognition of 
the impact of aging on the immune system. Specifi cally, this denotes the upregula-
tion of the innate immune response in the elderly, as well as the persistent low grade 
chronic infl ammatory state seen in this group [ 88 ]. Not only does this condition 
underlie many neurologic diseases including Alzheimer’s and stroke, but also 
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 contributes to a paradoxical condition of immunodefi ciency, whereby hyperexcit-
ability of the immune system contributes to immune-suppression and lymphopenia 
that is often seen in the elderly.   

4.3     Global Gene Regulatory Mechanisms in Aging 

 The large number of gene families and disparate cell types that are affected during 
aging and ischemia suggest the involvement of global regulatory mechanisms. Aged 
animals not only exhibit altered levels of specifi c genes such as infl ammatory genes 
following ischemia as compared to young animals [ 221 ], but also display unique 
patterns of gene expression, with adult (3–4 months old) male rats upregulating 
genes involved in oxidative stress and aged (19–20 months old) rats displaying 
increased expression of pro-apoptotic and phagocytosis-promoting genes [ 39 ]. 
During the last decade, signifi cant research has focused on molecular processes 
capable of exerting widespread effects on the genome. These include both small 
(microRNA) non-coding RNA species that act as translational repressors, long non- 
coding RNA (lnc) that can act as transcriptional enhancers or repressors, and chemi-
cal modifi cation of the genome. 

4.3.1    Non-coding RNA 

 MicroRNAs (miRNAs) are 18–25 nucleotide-long, non-coding RNA molecules that 
are important regulators of mRNA transcript stability [ 65 ] and mRNA translation 
[ 5 ]. MicroRNAs can occur within exons, introns and polycistronic clusters in the 
genome [ 153 ]. 

 Though relatively few in number, miRNAs are predicted to control a large pro-
portion of the tissue- and cell-specifi c transcriptome [ 142 ,  162 ] regulating impor-
tant biological processes including mitosis, tissue-specifi c cellular differentiation, 
and cell death [ 55 ], maintaining the pluripotent state of embryonic stem cells [ 120 ], 
delaying neuronal maturation [ 143 ], or promoting neuronal differentiation [ 54 ]. 
Montano and Long (2010) [ 188 ] have proposed that RNA surveillance by regula-
tory molecules such as miRNA infl uence life span and longevity. Clusters of miRNA 
increase or decrease with aging, although these alterations are not always predictive 
of either benign or maladaptive aging. For example, miR-1 declines with age (day 
15) in  C. elegans  and its disappearance has been correlated with muscle aging [ 124 ]. 
However, only 7 % of  C. elegans  survive to day 15, which suggests alternatively that 
declining miR-1 may be a compensatory process that promotes survival. 

 Specifi c pathogenic processes that contribute to stroke are associated with 
miRNA species, such as miR33 with hyperlipidemia, miR155 with hypertension, 
miR21 and −126 with atherosclerosis and miR222 with plaque rupture (reviewed in 
[ 228 ]). MiRNA profi les are altered with stroke both in humans [ 163 ] and in experi-
mental [ 67 ,  126 ] stroke models. MiR17 is reported to be signifi cantly elevated in 
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acute stroke patients as compared to controls (patients with vascular risk but no 
stroke) [ 136 ], while plasma levels of miR-210 are lowered in ischemic stroke 
patients as compared to controls, although stroke outcomes are better in patients 
where miR-210 levels are higher [ 292 ]. 

 A recent study evaluated the association of microRNA polymorphisms with the 
risk of ischemic stroke in a Chinese population [ 123 ]. miR146a/rs2910164 C/G 
genotypes were signifi cantly associated with increased risk of ischemic stroke, and 
the association was more pronounced in subjects over 60 years old, females, non- 
drinkers, and subjects without hypertension or diabetes mellitus. In animal models, 
miR15a has been specifi cally associated with endothelial cell loss and blood brain 
barrier breakdown in stroke [ 289 ]. MicroRNA manipulation has also been shown to 
mediate neuroprotection in stroke models. Specifi cally, antagomirs to Let7f [ 242 ] 
miR200c [ 257 ] mir29c [ 211 ] and mir181 [ 283 ] have been shown to reduce ischemic 
injury and improve behavioral function. High levels of miR1 are associated with 
oxidative stress [ 277 ] and anti-miR1 antagomirs reduce cortical infarction in experi-
mental stroke [ 242 ]. IGF-1, which is neuroprotective for stroke in middle age 
females, regulates several microRNA that are implicated in barrier function [ 20 ]. 

 Long Non Coding (lnc) RNA on the other hand are >200 nucleotides and can 
extend to several kilobases in length. LncRNA can enhance or repress transcription 
by epigenetic silencing or by serving as scaffolds for large protein complexes [ 229 ]. 
At the present time, very little is known about the involvement of lncRNA in stroke 
as compared to microRNA. In two recent studies, an experimental stroke model 
identifi ed a large cohort of stroke-responsive lncRNA [ 68 ] and a subset of these 
stroke-responsive lncRNA were found to associate with chromatin modifying pro-
teins including Sin3A and coREST, suggesting a mechanism by which non coding 
RNA can regulate the genome post-ischemia [ 69 ]. 

 Little is known about non-coding RNA regulation following ischemia in aging 
populations, and this represents an important future direction for understanding 
stroke pathophysiology. A recent study comparing adult and middle-aged male and 
female rats showed that a small cohort of circulating miRNAs discriminate groups 
with small infarct volumes (adult females) versus groups with large infarcts (middle- 
aged females, young males) [ 245 ]. Such analyses may be useful in uncovering new 
mechanistic targets for understanding the impact of age in stroke outcomes.  

4.3.2    Epigenenomic Modifi cations 

 Heritable, but potentially reversible, modifi cations to the genome represent the most 
fundamental aspect of gene regulation aside from the DNA sequence [ 140 ]. 
Epigenetic modifi cations can be classifi ed into two categories: those that create an 
active chromatin state and positively regulate gene expression, or those that create a 
repressive chromatin state and negatively regulate gene expression [ 84 ]. Active/
inactive states of the genome are regulated by chemical modifi cations of nucleotides 
and/or post-translational modifi cation of histones in conjunction with chromatin 
compaction (euchromatin or heterochromatin) [ 49 ,  214 ]. Although as many as 60 
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covalent modifi cations of DNA and histones have been identifi ed to date [ 140 ] most 
studies have focused on the methylation of cytosine located 5′ to guanine (CpG 
methylation), and the methylation of lysine residues within the N-terminal tails of 
histone H3. DNA methylation is typically associated with repressed chromatin at 
promoters and regulatory elements, while histone H3 methylation of lysines 4, 36 
and 79 (H3K4, H3K36, and H3K79) are implicated in activation of transcription, 
while methylation of lysines 9 and 27 of histone H3 (H3K9 and H3K27) are impli-
cated in transcriptional repression [ 140 ]. Similarly, histone acetylation is also asso-
ciated with unwinding of chromatin.  

4.3.3    Histone Acetylation and Aging 

 Histone acetylation typically results in the unwinding of chromatin, which facili-
tates gene expression, while histone deacetylation causes chromatin compaction. 
With age, changes in the activity and cellular localization of histone deacetylases 
(HDACs) can alter the careful balance of histone acetyltransferases (HATs) and 
HDACs required for maintaining histone acetylation [ 22 ,  73 ]. Decreased acetyla-
tion levels have been reported for animal models of neurodegenerative diseases 
[ 236 ]. Age-dependent changes in synaptic plasticity [ 291 ] and memory impairment 
[ 214 ] were also associated with lowered histone acetylation.  

4.3.4    DNA Methylation in Aging 

 Both hypo- and hypermethylation of DNA have been reported in aging. One of the 
earliest studies linking epigenomic changes and aging reported that spawning fi sh 
have global decreases in DNA methylation with age [ 31 ]. Global hypomethylation 
was reported in human embryonic lung fi broblasts resulting from peroxide-induced 
senescence [ 295 ], and conversely, experimentally-induced hypomethylation 
reduced the lifespan of MRC-5 cells by 25 % [ 82 ]. A pervasive loss of methylation 
at Alu repetitive elements was also seen in a large scale study with humans ranging 
in age from 55 to 92 years [ 37 ]. In age-related dementias such as AD, overexpress-
sion of the amyloid precursor protein is associated with hypomethylation of the 
gene as well as APP promoter demethylation in the cortex [ 265 ,  280 ]. The mecha-
nism underlying DNA hypomethylation is not well understood. One obvious mech-
anism is via altered expression of demethylases, but methylation can also be reduced 
due to insuffi cient methyl donors, or essential nutrients involved in metabolism of 
methyl groups such as folic acid, Vitamin B12 and choline, suggesting that nutri-
tional defi ciencies in aging may impact the epigenome. In the brain, increased DNA 
methylation but decreased histone methylation has been reported with aging [ 263 ]. 

 In view of the crucial role that astrocytes play in the ischemic brain, age-related 
epigenomic modifi cation in this cell type may critically affect stroke outcomes. 
Astrocytes isolated from adult mice showed higher expression of genes involved in 
hemoglobin synthesis and neuronal differentiation than aging astrocytes, while 
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aged astrocytes showed higher expression of genes implicated in zinc ion binding 
and an increased infl ammatory phenotype indicating that normal aging alters gene 
expression profi les in astrocytes [ 208 ]. Astrocytes harvested from the ischemic cor-
tex of young adult female rats had greater H3K4 specifi c methyltransferase activity 
as compared to middle-aged females and consistent with this fi nding, astrocytes 
from young adult females displayed more H3K4me3 enriched peaks than middle- 
aged females [ 50 ]. H3K4me3 enriched peaks at the mir17-20 cluster and the VEGF 
gene were further confi rmed by measuring elevated mir20 RNA expression and 
VEGF protein in astrocytes from young adult females relative to middle aged 
females [ 50 ]. The use of these new tools to address cell specifi c changes in aging 
and ischemia will be critical for the development of next generation drug therapies, 
where the focus will be on global regulatory mechanisms.    

5     Conclusions 

 Stroke occurs more often in the elderly and the outcomes are more severe in this 
group, but it would be incorrect to call age a ‘non-modifi able’ risk factor. With 
greater recognition of stroke risk factors during aging, such as hypertension and 
diabetes, and aggressive management of these diseases and better access to health 
care among the elderly, the impact of age as a risk factor should be mitigated. 
Healthier life style choices have extended life span and the concern is that longevity 
may bring about greater disability. However, a study that measured cumulative risk 
(exercise, body mass and smoking) found that cumulative disability was reduced in 
the elderly with healthy habits and disability was postponed and compressed to the 
last few years of life [ 275 ].     
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1            Introduction 

 Aging changes the adult brain both structurally and functionally, facilitating and 
accelerating cognitive impairments and susceptibility to degenerative disorders 
even in healthy individuals [ 1 ,  2 ]. Indeed, aging remains the single most predomi-
nant risk factor for dementia and related neurodegenerative diseases, including 
Alzheimer’s disease (AD). Considering the rate at which the human population is 
aging, it becomes imperative to identify means by which to maintain cognitive 
integrity by protecting against, or even counteracting, the effects of aging. Indeed, 
according to the Department of Health and Human Services, forty million Americans 
are older than 65 years of age and by 2030 this number will have doubled, account-
ing for one in fi ve people in the United States. Hence, halting or reversing brain 
aging by only a small fraction could delay neurodegeneration and dementia, which 
would have a signifi cant impact on the quality of life in old persons. Here, we will 
review the clinical distinctions between age-related cognitive decline and AD and 
explore the role of established hallmarks of aging in the aged brain and in AD.  

2     Alzheimer’s Disease as a Clinical Entity 

 AD may be suspected in a patient who exhibits gradual, progressive cognitive decline 
[ 3 ]. The most common symptom associated with AD is loss of recent memory—that 
is, diffi culty forming new memories. People who know the patient well, like a spouse 
or other family member, may notice that the patient asks the same question more 
than once, repeats stories or conversations, or has trouble remembering recent events. 
By contrast, memory for events in the more distant past may be normal. At fi rst, 
recent memory loss is typically mild, subtle, and in some cases evident only to the 
patient; as the amnesia gradually worsens over months to a year or so, it eventually 
catches the attention of family, friends, and clinicians. A clinician may test memory 
by providing a list of words or other new information, then distract the patient for a 
few minutes with other tasks or conversation, and fi nally ask the patient to recall. 

 Other cognitive symptoms may occur in addition to or instead of recent memory 
loss. Common symptoms that may emerge either early or late in the course of AD 
include word fi nding defi cits, diffi culty with navigation or decoding a complex 
visual scene, and trouble with executive function tasks that include planning, orga-
nizing, judgment, or problem solving. Motor defi cits typically do not occur until 
late in the disease, except for apraxia, or loss of the ability to carry out complex 
motor tasks, which may occur earlier. In some cases of AD, language, visuospatial, 
or executive defi cits may dominate in the relative absence of amnesia. 

 When the clinician discovers cognitive dysfunction that is objectively evident yet 
not severe enough to interfere with the patient’s ability to perform typical, everyday 
activities, a diagnosis of mild cognitive impairment may be appropriate [ 4 ]. When 
cognitive dysfunction associates with diffi culty performing everyday tasks (e.g., 
driving, balancing a checkbook, keeping track of appointments, etc.), then a diagno-
sis of dementia may be given. Dementia may be subcategorized as early- versus 
late-onset, based arbitrarily on whether symptoms emerge before or after age sixty- 
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fi ve. Importantly, mild cognitive impairment and dementia are umbrella terms that 
are used to describe how much a patient’s cognitive dysfunction has impacted every-
day life; however, because these terms do not convey the suspected cause of the 
cognitive dysfunction, they are not intended as stand-alone diagnoses. Patients with 
amnestic mild cognitive impairment (i.e., in whom episodic memory impairment is 
present) have a 10–15 % annual risk of progressing to dementia, often due to AD [ 5 ]. 

 While there are many possible causes of mild cognitive impairment and dementia, 
AD accounts for approximately two thirds of cases among older adults. Other common 
causes, each with a slightly different but nevertheless overlapping spectrum of typical 
symptoms, include stroke (vascular dementia), Lewy body disease (closely associated 
with Parkinson’s disease), and frontotemporal dementia. Many other possible causes, 
while less frequent, may be worthy of consideration because some are reversible or at 
least treatable; these include vitamin defi ciencies (e.g., Vitamin B12), hormone imbal-
ance (e.g., hypothyroidism), infections (e.g., HIV, syphilis, or Lyme disease), tumors 
or other cancer-related conditions, psychiatric disease (e.g., depression), medication 
side effect or toxic exposure, or infl ammatory or autoimmune diseases (e.g., multiple 
sclerosis). A standard medical evaluation includes a detailed history, physical exami-
nation, neurological examination, objective cognitive testing (either a brief bedside test 
or a comprehensive neuropsychological evaluation that includes tests of memory, lan-
guage, visuospatial function, and executive function), neuroimaging with either com-
puted tomography (CT) or magnetic resonance imaging (MRI), and blood tests for 
thyroid hormone function and Vitamin B12 levels, among other tests as indicated by 
the patient’s specifi c situation. While such tests cannot provide direct evidence for AD, 
they can help to raise or lower suspicion for other diagnoses. 

 AD is diagnosed when a patient exhibits typical symptoms of the illness, and no 
other cause is uncovered during the medical evaluation. Importantly, AD is defi ned 
by the presence of two distinct protein accumulations in the brain of a patient with 
progressive cognitive decline: beta-amyloid, which self-aggregates into extracellu-
lar plaques between cortical neurons, and the microtubule-associated protein tau, 
which self-aggregates into tangles within the neurites and cell bodies of cortical 
neurons [ 6 ]. Classically, because these protein aggregates may be observed directly 
only during microscopic evaluation of the post-mortem brain, a diagnosis of AD in 
life may only be suspected. However, newly emerging biomarker tests are changing 
this situation, by allowing clinicians to test for the presence of beta-amyloid or tau 
pathology in a living patient. These tests, which do not substitute for the certainty of 
an autopsy but nevertheless may increase or decrease suspicion for AD, include 
direct measurements of beta-amyloid and tau concentrations in the cerebrospinal 
fl uid obtained by lumbar puncture [ 7 ], as well as positron emission tomography 
(PET) scan after intravenous administration of a radiolabeled tracer that selectively 
binds either to beta-amyloid [ 8 ] or tau deposits [ 9 ] in the brain. 

 Treatment options for AD are limited. An active lifestyle may reduce the rate of 
future cognitive decline and reduce dependence upon caregivers; regular aerobic 
exercise, social and cognitive stimulation, and a healthy diet are important lifestyle 
components. Four medications are currently approved for the treatment of AD: 
donepezil, rivastigmine, and galantamine are centrally-acting cholinesterase inhibi-
tors that increase the half-life of acetylcholine at synapses in the brain, modestly 
boosting alertness and cognitive function for many patients with mild-to-moderate 
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AD dementia. Memantine is a  N -methyl-D-aspartate-type (NMDA) glutamate 
receptor antagonist that exhibits similar modest benefi ts among patients with 
moderate- to-severe AD dementia. None of these medications exhibits any robust 
infl uence over the pace of disease progression, and none has any direct impact on 
the underlying molecular pathogenesis. Clinical trials of many other potential thera-
pies are underway.  

3     Spectrum of Normal and Abnormal Aging 

 Cognitive change occurs with aging in the absence of any disease [ 10 ]. Beginning 
gradually in middle age, cognitive processing speed slows, fl uid intelligence 
declines, and episodic memory skills wane. Older adults exhibit changes in sus-
tained attention, working memory, and distractibility compared to their younger 
counterparts [ 11 ]. Cognitive change attributed to age alone, while robust enough to 
register as slight changes over time on neuropsychological assessments, is never 
suffi ciently severe to impact daily function or to merit a clinical designation of mild 
cognitive impairment or dementia. Moreover, isolated age-associated cognitive 
decline is very slow, with changes that are perceptible perhaps decade-to-decade, 
but not year-to-year [ 12 ]. 

 It is not the case that cognitive aging is simply a slow-motion version of 
AD. Rather, there are distinct processes at play in the two conditions. Indeed, fun-
damental changes occur naturally throughout the brain over the human life span, 
from macroscopic loss of brain volume to microscopic reductions in neuron and 
synapse numbers. Altered gene expression affects neural signaling with age; for 
instance, NMDA receptors, the calcium-permeable ion channels that play a central 
role in the induction of synaptic plasticity, exhibit a robust age-dependent change in 
subunit composition that affects how new experiences sculpt synaptic strength [ 13 , 
 14 ]. 

 However, the distinction between pathological and non-pathological cognitive 
decline is generally evident only in hindsight, based on the retrospectively-
observed pace and pattern of cognitive change, and the end result in terms of 
functional status. Prospectively, it is very diffi cult to know, among a group of simi-
lar individuals experiencing the sorts of typical, age-associated cognitive changes 
described here, who will go on to experience a benign course, versus those who 
are actually experiencing the fi rst, subtle symptoms of a cognitive illness like 
AD. A major challenge for the fi eld is the fact that the molecular changes associ-
ated with AD and other neurodegenerative illnesses begin years—likely decades—
before symptoms become clinically apparent. When symptoms do appear, they are 
at fi rst subtle and not easily differentiated from the typical effects of aging. Given 
the likelihood that newly-emerging drug therapies will be effective only at an early 
stage of the disease, this symptomatic overlap between typical aging and prodro-
mal AD is problematic, as there is a need to identify patients before the damage is 
indelible. 
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 Even at a molecular level, distinguishing typical aging from disease is not 
straightforward. Roughly a third of asymptomatic older adults exhibit signs of beta- 
amyloid plaque deposition on amyloid PET imaging [ 15 ]. Similarly, as many as 
60 % of adults around age 60 years exhibit at least the fi rst stages of tau protein 
deposits in the medial temporal lobe of the brain at autopsy [ 16 ], far exceeding the 
proportion who exhibit actual cognitive decline; newer data suggest that tau pathol-
ogy may begin in the locus coeruleus, a brainstem nucleus containing noradrenergic 
neurons, as early as middle age [ 17 ]. The detection of molecular pathology in the 
brain, either at autopsy or with newly emerging molecular diagnostic tests, is not 
synonymous with the presence of a clinical disease. Certainly the presence of abnor-
mal protein accumulations raises the risk of future cognitive decline, but the magni-
tude of that risk is not yet defi nitively established by available research. In other 
words, a cognitively healthy patient who tests positive on an amyloid PET scan has 
an unclear fate; she may be on the precipice of imminent cognitive decline or may 
survive many years with normal cognitive health. Even if we could peer into her 
brain with a high-powered microscope years before her death, we may still lack 
confi dence about her cognitive fate. 

 It is worth mentioning that beta-amyloid and tau are not unique in their capacity 
to self-aggregate in the brains of older adults. Lewy bodies, the intracytoplasmic 
neuronal accumulations of alpha-synuclein protein associated with Parkinson dis-
ease and Lewy body dementia, frequently appear in the brains of cognitively healthy 
older adults. The same is true for TDP-43, a protein that self-aggregates in some 
forms of frontotemporal dementia. When are plaques, tangles, Lewy bodies, and 
TDP-43 deposits simply benign fi ndings in an aging brain, and at what point do they 
become signifi cant enough to be blamed for cognitive changes? To confuse the pic-
ture even more, it is rare to fi nd, at autopsy, isolated evidence of a single neurode-
generative disease; rather, Lewy bodies and TDP-43 deposits frequently appear in 
the brains of patients with AD, and patients with Lewy body dementia often exhibit 
plaques and tangles. How do we know where one disease stops and the other starts? 

 The answers to these questions are not yet clear. Indeed, the very notion of what 
constitutes normality is open to debate. What is clear is that cognitive changes due 
to the inherent biology of aging versus superimposed neurodegenerative disease—
while distinct processes—are not mutually exclusive, and probably exist on a spec-
trum in every aging adult.  

4     Risk Factors for Alzheimer’s Disease 

 Despite the uncertainties outlined above, there are some known risk factors for 
AD. These may be categorized by whether or not they are modifi able: Modifi able 
risk factors for AD, while less important than non-modifi able factors in the overall 
risk profi le, deserve close attention because they may be mitigated through lifestyle 
choices. They include the presence of vascular risk factors and insulin-resistant dia-
betes mellitus [ 18 ]. Repeated concussions or other forms of head trauma associate 

The Role of Aging in Alzheimer’s Disease



202

with an increased chance of developing AD or other neurodegenerative illnesses 
later in life [ 19 ]. A sedentary lifestyle may increase one’s chances of developing 
AD, whereas regular aerobic exercise is protective [ 20 ]. 

 Less exposure to education is an additional modifi able risk factor for 
AD. Individuals with higher education and perhaps greater cognitive stimulation in 
midlife appear to be protected from developing symptoms of cognitive decline, even 
though, at autopsy, they may nevertheless exhibit the neuropathological signs of AD 
[ 21 ]. Such fi ndings have given rise to the concept of cognitive reserve, or the buildup 
of resistance against the cognitively detrimental effects of damage to the brain. 
Although the mechanism of cognitive reserve is not known, it is hypothesized that 
education and ongoing learning in life lead to a greater number of synapses and 
perhaps even neurons in the brain that can act in a compensatory capacity in the face 
of a degenerative illness. 

 Non-modifi able risk factors dominate the overall risk for developing 
AD. Chronological age stands out as conferring by far the most risk. About a third 
of individuals aged 85 years and older suffer from AD dementia; many more have 
the pathological signs of the disease, in the absence of overt symptoms. The vast 
majority of patients are 75 years or older. 

 Genetics and family history are also non-modifi able risks. Of the many genes 
that infl uence overall risk for late-onset, sporadic AD, the  APOE  genotype has a 
greater effect than all of the others. The  APOE  gene encodes the apolipoprotein E 
protein, which plays an important role in cholesterol traffi cking; it is expressed in 
astroglial cells and, to a small extent, in neurons in the brain. There are three  APOE  
allelic isoforms: ε3, ε4, and ε2, in decreasing order of population prevalence. 
Carriers of the ε4 allele exhibit an increased risk of developing AD, such that het-
erozygotes and homozygotes have a 2–3-fold and 12-fold increased lifetime risk 
relative to noncarriers [ 22 ]. Carriers of the least common ε2 allele have a reduced 
risk relative to ε3 homozygotes, the most common genotype. Gender also plays a 
role; female  APOE  ε4 heterozygotes exhibit a greater chance of developing AD than 
their male counterparts [ 23 ]. A history of AD in multiple family members may 
increase suspicion for an  APOE  ε4 allele or other risk-conferring genetic 
polymorphisms. 

 It is important to point out that genetic  polymorphisms  that infl uence the risk of 
acquiring late-onset, sporadic AD are very different from genetic  mutations  associ-
ated with familial, early-onset AD. Mutations in the genes for amyloid precursor 
protein (APP), presenilin 1, and presenilin 2 lead to cognitive decline in the third or 
fourth decade of life, causing AD in an autosomal dominant, completely penetrant 
fashion. Down syndrome (trisomy 21) associates with early-onset AD, due to over-
expression of the APP gene, which happens to localize to chromosome 21. Such 
genetic cases account for only a tiny fraction of overall AD burden worldwide and 
are not directly relevant to the vast majority of patients who experience sporadic 
disease. 

 While much is known about risk factors for AD, less is known about the predic-
tors of better or worse phenotypes of normal aging in the absence of neurodegenera-
tive disease. As described in the previous section, part of the diffi culty with such 
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research is a lack of clarity about the presence or absence of preclinical neurodegen-
erative disease in a living individual. For instance, whereas the  APOE  ε4 allele is 
not associated with any difference in baseline cognition among older adults, it does 
predict a faster rate of decline [ 24 ,  25 ]; however, given the tight association of 
 APOE  ε4 carrier status with beta-amyloid accumulation, this observation may be 
explained by the emergence of AD symptoms among carriers rather than an accel-
eration of AD-independent aspects of cognitive aging. Most likely, many lifestyle 
factors that associate with a reduced risk for AD, like exercise and education, also 
predict a more benign course of cognitive aging. Genetics infl uences the pace of 
cognitive aging, although the identity of specifi c genes is only beginning to emerge 
[ 25 ,  26 ]. As one example, a polymorphism in the gene encoding klotho, a trans-
membrane β-glucuronidase enzyme, promotes longevity and associates with 
improved cognition in older adults [ 27 ]. The gene for another protein, forkhead box 
O3, exhibits a polymorphism associated with longevity [ 28 ], and its possible asso-
ciation with cognitive aging should be examined.  

5     Structural and Functional Changes in the Brain 

 A proliferation of advanced neuroimaging technologies and analytical techniques 
has broadened the perspective on how the brain changes in aging and AD. MRI 
reveals fi ne structural details of the brain and permits volumetric analysis and detec-
tion of atrophy in subjects who undergo repeated, longitudinal imaging. Indeed, 
perhaps not surprisingly, atrophy is a robust fi nding in aging adults. Not only do 
older adults exhibit smaller brains than younger adults, but also year-to-year volu-
metric decline occurs among cognitively healthy older adults who do not exhibit 
any concerning signs for preclinical AD [ 29 – 31 ]. Atrophy accelerates in AD, but 
this is observed only with serial imaging in the same patient and is not captured with 
a single scan at one point in time. 

 The hippocampus is a special area of focus for structural imaging, because post-
mortem pathology points to this structure as an early victim of neurodegeneration 
and atrophy in AD [ 32 ]. Indeed, hippocampal atrophy is a robust fi nding that dif-
ferentiates patients with AD from age-matched, cognitively-normal controls [ 33 ]. 
However, the fi nding emerges only after averaging images from groups of patients 
and controls; there is so much variability in hippocampal size from individual to 
individual that hippocampal volume, whether in raw, unadjusted terms or normal-
ized to overall brain volume, is not strongly predictive of diagnosis until rather late 
into the course of dementia. In other words, a single MRI in one individual is less 
sensitive to AD than traditional clinical data. The overlap between healthy aging 
and AD is evident even when using ultra-high fi eld MRI to resolve a very tiny sub-
region of the hippocampus known to degenerate fi rst in AD [ 34 ]. 

 Functional imaging offers another set of perspectives on how the brain changes 
with age and with the onset of neurodegenerative disease. Whereas structural imag-
ing yields a fi nding only after enough wholesale loss of neurons, neurites, glial 
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cells, etc. occurs to result in macroscopic shrinkage of a brain region, functional 
imaging offers the ability to detect changes in patterns of neural activation that 
could predate involution. When subjects perform episodic memory tasks during 
functional MRI scanning, complex results emerge out of older adults who are cog-
nitively normal or have mild cognitive impairment or AD dementia: compared to 
young adults, healthy older adults exhibit very similar patterns of hippocampal acti-
vation during memory tasks, although they show differential activation of frontal 
and parietal lobe areas [ 35 ]. In patients with mild cognitive impairment, hippocam-
pal activity during episodic memory tasks actually increases relative to age-matched, 
cognitively healthy controls; as the clinical severity worsens towards dementia, hip-
pocampal activation during memory tasks decreases below that seen in controls 
[ 36 ]. The mechanism and implications of this apparent hippocampal hyperactivity 
during prodromal AD are not known, including whether it represents a compensa-
tory strategy or is instead an inherent part of the pathophysiology. Interestingly, 
network dysfunction, resulting in hippocampal overactivation and subclinical sei-
zures, has been observed in mouse models of AD [ 37 ]. Antiepileptic therapy, spe-
cifi cally with levetiracetam, improves network dysfunction and cognitive defi cits in 
the mouse models [ 38 ] and is now being explored in humans [ 39 ,  40 ]. 

 High-resolution MRI, suffi cient to resolve individual hippocampal subfi elds, 
yields additional insights. It is clear from post-mortem tissue examination that the 
hippocampal CA1 subfi eld is selectively vulnerable to degeneration in AD, and 
disproportionate CA1 atrophy is observed using a variety of advanced structural 
MRI techniques in vivo [ 34 ,  41 ,  42 ]. Functional imaging reveals a slightly different 
story: In healthy older adults and patients with mild cognitive impairment, it is the 
dentate gyrus and CA3 areas (which cannot be differentiated with in vivo imaging 
because of their close proximity) that appear abnormal, exhibiting hyperactivity in 
association with impairment of pattern separation, or the ability to discriminate 
novel stimuli from slightly different, previously-encountered stimuli [ 43 ,  44 ]. This 
fi nding of dentate gyrus/CA3 hyperactivity – which may possibly underlie the 
observation of global hippocampal hyperactivity observed with lower resolution 
functional MRI – differentiated patients with mild cognitive impairment from nor-
mal controls, and among healthy controls, the amount of activity in this region cor-
related negatively with cognitive performance. Together, these data suggest that 
dentate gyrus/CA3 hyperactivity, while more apparent in prodromal AD than in 
healthy aging, is nevertheless a feature in both. This contrasts with some other data, 
derived in part from animal models, suggesting that normal aging and AD are 
cleanly distinguished by dentate gyrus versus CA1 dysfunction [ 45 ]; however, these 
fi ndings have not been readily reproduced in humans. 

 Functional MRI, in addition to showing patterns of regional brain activation 
while performing a task, also reveals areas of the brain that exhibit coordinated 
activity when the subject is at rest, in so-called resting-state networks. One resting- 
state network, the default mode network, includes the medial and dorsolateral pari-
etal association cortex, medial prefrontal cortex, and the medial temporal lobe, and 
is more active than other networks at rest. The integrity of the default mode network 
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deteriorates in AD [ 46 ], and it also deteriorates in healthy older adults at risk of AD 
because of  APOE  ε4 positivity or the presence of amyloid deposition [ 47 ]. 

 In summary, and echoing the theme of earlier sections, brain structure and func-
tion clearly changes with aging and with AD, but there is a high degree of overlap 
between these two states. This overlap may refl ect a limitation of available technol-
ogy or may instead refl ect a true overlap in underlying biology.  

6     Biological Hallmarks in Brain Aging and Alzheimer’s 
Disease 

 Given these astonishingly intricate connections between brain aging and AD, how 
can we possibly untangle and comprehend the extent to which aging is responsible 
for the development of the disease? In their landmark review, “the hallmarks of 
aging”, López-Otín and colleagues describe nine cellular and molecular, age- 
dependent changes which have been observed across multiple species, tissues, and 
cells and can be considered common hallmarks of the aging process [ 48 ]. We will 
use these hallmarks as guides to compare normal brain aging with AD in humans 
and discuss animal and tissue model studies to support fi ndings and arguments, if 
appropriate. A few hallmarks for which there is substantial evidence for involve-
ment in AD are discussed in more detail: telomere attrition, epigenetic alterations, 
loss of proteostasis, stem cell dysfunction, altered intercellular communication and 
neuroinfl ammation. To what extent these processes underlie or promote AD is 
unclear but they provide possible therapeutic targets that might interfere with AD 
pathogenesis by impinging on the aging process directly. As well, we hope that 
future studies of these well-defi ned hallmarks in the aging and AD brain will pro-
vide additional insight into the mechanisms underlying AD. 

6.1      Genomic Instability and Telomere Attrition 

 Aging results in the accumulation of damage in nuclear and mitochondrial DNA 
and interference with DNA repair processes can accelerate aging. Telomeres shorten 
with cell divisions and restoring telomere length can delay aging. While glial and 
endothelial cells in the brain have the capacity to divide the vast majority of neurons 
don’t renew and some may live longer than a century. As such, they need to with-
stand stressors and employ repair mechanisms to maintain proper function. Of par-
ticular importance is the preservation of DNA, which can be damaged by reactive 
oxygen and nitrogen species, replication errors, and other mechanisms. Among 
other defects this leads to single base damage and single or double strand DNA 
breaks in neurons [ 49 ]. Pathways which increase damage or decrease repair could 
conceivably contribute to brain aging and AD and there is some evidence in support 
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of this hypothesis [ 50 ,  51 ]. In a landmark study, Yankner and colleagues showed 
that with age DNA damage accumulates in the brain, specifi cally in promoter 
regions of genes involved in synaptic plasticity, vesicular transport, and mitochon-
drial function, and that levels of these genes were reduced with age [ 52 ]. Remarkably, 
neurons may regulate DNA errors to control plasticity and cellular diversity and to 
facilitate chromatin remodeling in these highly transcriptionally active cells. Thus, 
exploratory behavior and neuronal activity in mice led to the formation of transient 
double stranded DNA breaks. In APP transgenic mice more breaks were observed 
and these were maybe more permanent and damaging [ 53 ]. 

 Telomere attrition contributes to the age-dependent loss of proliferative capacity 
in some cell types and provides a strong link to cellular senescence and organismal 
aging. The activity of telomerase, the enzyme that adds telomeric repeats to termi-
nal DNA, decreases with age in mice [ 54 ,  55 ], and mice lacking telomerase show 
reduced neural stem cell activity in adults but not during development [ 54 ,  56 ]. This 
decrease in telomerase activity may in part be dependent on p53 as removal of p53 
is suffi cient to rescue defects in proliferation, self-renewal, and differentiation of 
neural stem cells in telomerase-defi cient mice. Also, physical exercise, which is 
known to increase adult neurogenesis and cognitive function, increased telomerase 
activity in neural stem cells [ 55 ]. The role of telomeres in AD and AD mouse mod-
els is not well understood and controversial [ 57 ]; while there appears to be no sig-
nifi cant telomere abnormality in AD brains, several studies reported accelerated 
telomere shortening in leukocytes from patients compared with age-matched con-
trols [ 58 ]. However, among 10 studies investigating telomere length in leukocytes 
from AD patients, half observed a shortening of telomeres while the others found no 
change [ 57 ]. In a recent study of 274 individuals, leukocytes with either shorter or 
longer telomeres compared with those found in normal subjects were both associ-
ated with mild cognitive impairment, a major risk factor for development of AD 
[ 59 ]. Possibly explaining some of these discrepancies between studies or even 
within studies are observations that leukocyte telomere length, or better, the ratio 
between telomerase activity and telomere length, are inversely related to hippocam-
pal volume in early aging [ 60 ]. In experimental models of AD, APP mice lacking 
telomerase (G3tert defi cient) show reduced amyloidosis accompanied by microglial 
activation and impaired neurogenesis [ 61 ] suggesting independent effects of telo-
meres on different AD relevant pathways. Consistent with this interpretation, and 
this may relate to neuroinfl ammation and changes in intercellular communication, 
telomeres in microglia may be altered in the aging brain [ 62 ]. Microglia are phago-
cytic cells and the key representative of the immune system in the brain (see section 
 6.6 ). They maintain proliferative capacity in adulthood but seem to show signs of 
senescence in normal and AD brains [ 63 ]. Accordingly, mice lacking telomerase 
showed reduced dendrites and dendrite branching and increased expression of acti-
vation markers in microglia [ 61 ]. Adding complexity, telomerase (TERT) has 
recently been found to exert extranuclear functions beyond telomere maintenance, 
including protection of mitochondria from oxidative stress and prosurvival effects 
in mature neurons. Human TERT was detected in mature human neurons and while 
its total level was unchanged in AD brains, the enzyme colocalized with  mitochondria 
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in advanced stages of the disease [ 64 ]. Intriguingly, in these AD brains, TERT was 
not detected in neurons with tau pathology and in cultured neurons, TERT protected 
against the accumulation of tau lesions, supporting the idea that the protein confers 
a protective effect to neurons [ 64 ]. Together, these reports suggest that DNA dam-
age and telomerase activity may have a role in both normal brain aging and AD but 
the exact mechanisms remain to be defi ned.  

6.2     Epigenetic Alterations 

 Posttranslational modifi cations of histones and changes in DNA methylation pat-
terns constitute important aspects of gene regulation and they have increasingly 
been implicated in aging. Epigenetic regulation of gene expression also has a criti-
cal role in memory and learning and may thus assume a particularly important role 
in the aging of this tissue [ 65 ]. Consequently, it is likely that age-related changes in 
epigenetic processes would contribute to cognitive dysfunction and AD. What’s 
more, epigenetic mechanisms are key to neuronal fate determination and function 
with repressor element 1-silencing transcription factor (REST) playing a dominant 
role [ 66 ]. Together with HDAC, MECP2 and CoREST, this factor regulates devel-
opmental and adult neurogenesis as well as gene activity in mature neurons. 
Interestingly, as cellular stress increases with age, REST appears to be important in 
promoting expression of anti-apoptotic, anti-oxidant, and other protective genes 
including BCL2, SOD1, and FOXO [ 67 ]. In AD, REST is depleted from the nucleus 
and appears in autophagosomes instead; moreover, genetic ablation of REST in 
mice or the REST homologue SPR-4 in  C. elegans  increases neuronal susceptibility 
to oxidative stress and results in neurodegeneration and shortened lifespan, respec-
tively. Epigenetic regulation of memory and hippocampal plasticity in particular is 
altered with age in mice undergoing specifi c learning tasks. Thus, while baseline 
hippocampal histone H3 and H4 acetylation as well as levels of HDACs and histone 
acetyltransferases (HATs) were unchanged with age, old mice failed to acetylate 
histone H4K12 in response to a learning task [ 68 ]. Consistent with this lack of 
H4K12 acetylation, only few genes were differentially expressed based on genome 
wide transcript analysis or ChIP sequencing in the aged hippocampus in response to 
the learning paradigm [ 68 ]. To identify genes involved in age-related memory loss, 
Pavlopoulos and colleagues analyzed gene expression in the dentate gyrus, a region 
of the hippocampus thought to show age- rather than AD-specifi c deterioration, in 
pathology-free subjects from 33 to 88 years of age. The histone binding protein 
RbAp48, which functions in histone acetylation and transcriptional regulation, 
showed the most prominent decline with age, and mice expressing an inhibitor of 
RbAp48 showed hippocampus dependent memory defi cits associated with a 
regional decrease in histone acetylation. Upregulation of RbAp48 reversed age- 
related memory loss and normalized histone acetylation [ 69 ]. 

 DNA methylation controls the expression of genes and, with age, these patterns 
change, although it has not been demonstrated that reversing age-related DNA 
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methylation can extend lifespan. A study of close to 400 human brains aged 
1–102 years showed a strong positive correlation between methylation and age 
across three brain regions [ 70 ]. Two independent, epigenome wide association stud-
ies (EWAS) of AD analyzed together multiple brain regions in close to 1,000 autop-
sied brains and correlated DNA methylation changes with pathology [ 71 – 73 ]. 
Remarkably, four methylated sites, close to  ANK1 ,  RHBDF2 ,  RPL13  and  CDH23 , 
were linked to AD pathology in both studies and all except CDH23 are biologically 
linked to  PTK2B , a known AD-associated gene. In a more focused approach, analy-
sis of 28 genetic loci associated with AD in 740 autopsied brains from AD cases and 
controls showed signifi cant DNA methylation changes in SORL1, ABCA7, HLA- 
DRB5, SLC24A4 and BIN1, some of which correlated with brain pathology [ 74 ]. 
Using a genome wide approach, Gjoneska et al. recently compared the transcrip-
tome and epigenome of a mouse model of AD-related neurodegeneration and brain 
tissue dissected from AD brains [ 75 ]. They observed a downregulation of synaptic 
plasticity genes and regulatory regions and a concomitant increase in immune 
response genes and regulatory regions such as the ETS transcription factor PU.1, a 
critical factor for the development of the myeloid lineage including microglia [ 76 ]. 

 Remarkably, apart from DNA methylation, few studies assessed the role of epi-
genetic changes in the human brain in normal aging or AD thus far and there is little 
consensus at this point. Studies investigating miRNA changes in the disease focused 
frequently only on one or a few specifi c species and only one study carried out an 
unbiased screen [ 77 ]. Clearly, larger and broader screens will be necessary to gain 
an understanding of the role of these epigenetic regulators. Using selected reaction 
monitoring (SRM) proteomics and confi rmation by immunoblot, Zhang et al. 
reported strongly reduced acetylation of histone H3 K18/23 in temporal lobes of 
AD brains compared with controls in a study of 15 brains in total [ 78 ]. Histone 
modifi cations have been implicated in AD pathogenesis in mouse models. For 
example, the deacetylase SIRT1 shows disease-dependent upregulation in neurons 
in a mouse model of AD and overexpression of SIRT1 reduced neurodegeneration 
dependent on its deacetylase activity [ 79 ]. Subsequent studies by the same group 
showed that DNA double strand breaks led to a recruitment of SIRT1 in injured 
neurons where it deaceylated HDAC1 and thus stimulated enzymatic activity, which 
was necessary for DNA repair [ 80 ]. While overall SIRT1 mRNA levels were not 
changed with age in the cortex of wild type mice [ 81 ], SIRT1 activity decreased 
with normal brain aging in microglia and resulted in increased production of IL1- 
beta and tau-dependent memory defi cits [ 82 ]. It is thus possible that, in this fashion, 
loss of deacetylase activity promotes neuroinfl ammation and AD pathogenesis. 

 Overall, it is well known that epigenetic changes are key to learning and memory 
and some studies suggest that these pathways become dysfunctional during brain 
aging [ 65 ,  83 ,  84 ]. It seems clear from recent studies that the AD brain shows meth-
ylation changes which are linked to the genetic and biological understanding of the 
disease. As ChIP sequencing techniques become more reliable and amenable to 
high throughput studies, it is likely that additional epigenetic modifi cation will be 
discovered in AD and aid in the understanding of the disease. In general, our knowl-
edge of epigenetic changes with normal brain aging remains scant.  
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6.3     Mitochondrial Dysfunction 

 Mitochondria are the cell’s purveyors of life and death by regulating energy metabo-
lism and cell death pathways. They also regulate cellular redox potential, calcium 
levels, cell cycle and infl uence many other key pathways. It is thus not surprising 
that these organelles have a major role in aging in general, and in brain aging and 
AD in particular. For excellent general overviews about this large fi eld of research 
we refer to [ 85 – 87 ]. Neurons have very high numbers of mitochondria and their 
dysfunction would be expected to have signifi cant consequences but, at the same 
time, it could be expected that nature has built in extra protective mechanisms to 
avoid premature failure of the nervous system. One hypothesis proposes that mito-
chondrial DNA damage accumulates with age, leading to reduced mitochondrial 
enzymatic activity, a loss of mitochondrial bioenergetic function, and subsequent 
cellular degeneration [ 88 ]. There is indeed support for an accumulation of mito-
chondrial damage in the aging normal human brain and in AD [ 89 – 91 ]. Additionally, 
mitochondrial enzyme levels including the nuclear encoded F1 ATP synthase [ 52 ] 
or activity of complex I and complex IV [ 92 ] were reduced in the aging human or 
rodent brain, respectively. Likewise, it has been reported that pyruvate and ketoglu-
tarate dehydrogenase as well as COX activities are reduced in mitochondria from 
AD brains compared with normal controls, and that the number of normal- appearing 
mitochondria is lower in AD [ 86 ]. Mitochondrial impairments have also been exten-
sively documented in APP or tau transgenic mouse models for AD [ 85 ]. In sum-
mary, while it is clear that mitochondria are altered and fulfi ll a key role in both 
brain aging and AD, it is debated whether dysfunctional mitochondria are principal 
drivers of brain aging and AD or primarily a consequence of accumulating beta- 
amyloid and other brain lesions.  

6.4     Loss of Proteostasis 

 The equilibrium between synthesis and degradation determines the levels of a given 
protein but many other regulatory pathways contribute to this process as well as the 
qualitative aspects of the product, including protein folding, polymerization/aggre-
gation, tagging for degradation, etc. Changes in any of these have been implicated 
in aging and age-related loss of protein homeostasis, and would be expected to have 
particularly drastic consequences in a tissue with largely post-mitotic cells. Indeed, 
neurodegenerative diseases are largely characterized by accumulation of protein 
deposits and strong evidence points to a causal role for protein dyshomeostasis in 
many such diseases. AD is the archetype neurodegenerative disease where to this 
day, only the combined presence and abundance of amyloid plaques and neurofi bril-
lary tangles allows for the unequivocal diagnosis of AD by the neuropathologist 
upon autopsy. We have learned that amyloid plaques are extracellular assemblies of 
highly ordered fi brils consisting predominantly of 40–42 amino acid fragments 
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derived from APP, and that autosomal dominant mutations in APP result in amyloid 
accumulation and disease [ 93 ]. Likewise, we know that neurofi brillary tangles form 
inside neurons, are made of fi brils of the microtubule associated protein tau, and 
that autosomal dominant mutations in tau result in tangle formation and develop-
ment of a related neurological disease called frontotemporal dementia [ 6 ]. Thus, 
AD is clearly a disease of proteostasis failure and much of the last two decades of 
research in the fi eld has tried to understand the basis of this failure in both autoso-
mal dominant and sporadic forms of the disease [ 93 ]. Ground-breaking measure-
ments of beta-amyloid steady state levels in brains of living humans by Bateman 
and colleagues demonstrated that production of beta-amyloid is not increased in 
sporadic AD, but that instead, impaired clearance is chiefl y responsible for its accu-
mulation [ 94 ]. This clearance defect may include a combination of problems includ-
ing impairments in phagocytic capacity of microglia [ 95 ] and astrocytes [ 96 ], 
transport of beta-amyloid across the blood–brain-barrier [ 97 ], or extracellular deg-
radation of beta-amyloid [ 98 ]. Signifi cant evidence exists that beta-amyloid may 
also accumulate inside neurons and contribute to their dysfunction [ 99 ]. 

 Posttranslationally modifi ed tau protein is a sensitive indicator of neuronal injury 
and forms increasingly more complex and insoluble aggregates in neurons in AD 
[ 6 ]. It has long been maintained that this pathology begins in the entorhinal cortex 
from which it spreads to hippocampal and cortical areas [ 100 ] but, in a herculean 
effort characterizing tau pathology in more than 2,300 postmortem brains aged 
1–100 years old, the same authors reported that subtle tau abnormalities occur 
already in the youngest brains and that they are fi rst observed in the locus caeruleus 
[ 17 ]. Braak concludes from these fi ndings “that the pathologic process underlying 
AD is not age-dependent but an uncommonly slowly progressive one that frequently 
extends into old age”. While this interpretation is possible, the lack of fi brillar tau in 
younger brains could also indicate that age-dependent processes turn relatively 
harmless tau lesions into neurotoxic ones. Furthermore, the fact that tangle pathol-
ogy can be replicated in mouse models in a matter of months – albeit with mutant 
forms of tau – argues for biological processes, rather than time alone, playing a key 
role in tauopathies. 

 Both beta-amyloid and tau accumulate in the brain decades before clinical symp-
toms manifest and changes in extracellular beta-amyloid and tau levels in the CSF 
appear to be reliable predictors of clinical disease onset [ 7 ]. As discussed above, 
new PET imaging probes, which allow for the detection of abnormal beta-amyloid 
[ 8 ] and tau [ 9 ] deposits in living people, seem to support these fi ndings made in 
CSF. Because many brains from cognitively healthy people show abnormal beta- 
amyloid and tau deposits, the distinction between normal brain aging and slow dis-
ease progression becomes extremely diffi cult. Studies in mouse models expressing 
human APP or tau containing familial mutations form pathological protein deposits 
but, thus far, to our knowledge, no data exist whether such deposits develop with the 
same kinetics in a young or old mouse brain, within the same mouse model. 

 Interestingly, part of the machinery that controls protein folding and mainte-
nance and elimination of abnormally folded proteins shows prominent changes in 
aging neurons and other brain cells. Proteomic studies of AD brains and mouse 
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models of the disease showed signifi cant oxidation and inactivation of various 
 proteins and enzymes including UCHL1 [ 101 ], which is necessary for the degrada-
tion of misfolded or damaged proteins by the proteasome, the ubiquitin E3 ligase 
CHIP, hsp70, ubiquitin, etc. [ 102 ,  103 ]. In support for a central role of the ubiquitin- 
proteasome degradation system (UPS) in AD, unbiased iTRAQ mass spectrometry 
of tissue from AD and age-matched controls showed prominent changes of multiple 
proteins which interact with ubiquitin in the hippocampus and cortex [ 104 ]. Genetic 
approaches in mouse models of AD support the notion that beta-amyloid and phos-
phorylated tau impair the UPS and that changes in UPS function directly modulate 
the accumulation of these proteins in vivo [ 102 ,  105 ,  106 ]. 

 The kinase mechanistic target of rapamycin (mTOR), which is a key regulator of 
protein homeostasis and inhibitor of autophagy (see below), is highly expressed 
together with PI3K and Akt in the developing brain, and tightly regulated in the 
adult brain during learning and memory processes. Sustained activation of this path-
way together with an insulin and IGF-1 resistant state has been observed in AD and 
linked to abnormal phosphorylation of tau and, ultimately, desensitization to insulin 
receptor and IGF-1 receptor signaling [ 107 ]. Beta-amyloid is a strong candidate for 
activating this PI3K/Akt/mTOR pathway in a feed-forward loop [ 107 ]. Inhibition of 
mTOR by pharmacological or genetic means reduces neurodegeneration, tauopathy, 
and amyloidosis in mouse models of AD [ 108 ]. Inhibition of mTOR by rapamycin, 
which increased levels of autophagy, ameliorated cognitive defi cits and lowered 
beta-amyloid brain concentrations in APP transgenic mice [ 109 ]; likewise, rapamy-
cin mediated an increase in GSK-beta phosphorylation and autophagy induction 
was associated with fewer cognitive defi cits and reduced tau pathology in tau trans-
genic mice [ 108 ]. While some of these effects of rapamycin target autophagy, other 
more general metabolic and anti-aging pathways will be activated as well. 

 Interestingly, human brains display a diversity of granular structures containing 
cross-linked proteins, lipids, and carbohydrates which accumulate prominently with 
age and occur alongside the classical beta-amyloid and tau lesions in AD. Some of 
these structures are extracellular, such as corporea amylacea. Others, including 
Hirano bodies, Marinesco bodies, granulovacuolar inclusions, stress granules, and 
lipofuscin are found inside neurons or glial cells; with the exception of lipofuscin 
granules, these structures remain poorly characterized and their origin and signifi -
cance to neurodegeneration are still unclear [ 110 ]. Of particular interest to neurode-
generation are lipofuscin deposits which were fi rst described in neurons by Hannover 
in 1842 and are now a well-established aging marker for post-mitotic cells [ 111 ]. 
Lipofuscin forms as undegradable material within lysosomes and can accumulate 
independent of age, e.g. in lysosomal storage diseases, as a result of abnormal 
autophagy or impaired lysosomal degradation. As proposed by Brunk and Terman 
[ 111 ], during normal aging, oxidative modifi cations to macromolecules make them 
undegradable in lysosomes, leading to the recruitment of large amounts of newly 
synthesized lysosomal enzymes which, however, still fail to degrade the material. 
Consequently, there will be an insuffi cient supply of lysosomal enzymes available 
for autophagy, leading to accumulation of aged mitochondria and other cellular 
organelles and material. The levels of many lysosomal proteins and enzymes are 
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increased in the aging brain and more dramatically in AD and lysosomal dysfunc-
tion may have a major role in AD pathogenesis [ 112 ]. Along with lysosomal dys-
function, or possibly as a consequence, the AD brain is characterized by extensive 
endosomal abnormalities and the accumulation of autophagosomes [ 113 ]. Genetic 
manipulation of pathways that regulate autophagosomal pathways in APP or tau 
transgenic mice showed prominent effects on disease progression and accumulation 
of these proteins [ 108 ,  114 ,  115 ]. Stress granules, which contain proteins and RNAs 
that accumulate in response to stress, are gaining interest due to their possible role 
in neurodegenerative diseases [ 116 ]. Relevant to AD, granulovacuolar degeneration 
bodies were found to contain markers of stress granules, including pS6 and p54/
Rck, and to be highly abundant in neurons from AD compared with control brains. 
Such neurons did not contain tau aggregates and displayed reduced oxidative dam-
age, suggesting a potentially protective function of these granules [ 117 ]. In line with 
these fi ndings, stress granules containing different types of proteins were associated 
with tau pathology in AD brains and tau transgenic mice and, based on experiments 
overexpressing the stress granule protein TIA-1, the authors proposed that some 
stress granules promote tauopathy [ 118 ]. 

 In aggregate, these observations strongly support a major role for protein dysho-
meostasis in both normal brain aging and AD. The relative importance of various 
aspects of protein maintenance and turnover in AD pathogenesis are unclear as they 
are unclear for aging in general. It is likely, however, that pathways that stabilize 
protein homeostasis will be benefi cial for AD.  

6.5     Stem Cell Exhaustion 

 Stem cells are critical to the regeneration of many tissues and with age, the capacity 
of these cells to self-renew and produce progeny declines. The adult brain was con-
sidered in the past to be a post-mitotic tissue without stem cell activity, and it took 
several decades from the fi rst reports of adult neurogenesis in rats by Altman and 
colleagues [ 119 ] until it became accepted that several mammalian species, includ-
ing primates, have the capability to generate new neurons in select brain regions 
[ 120 ]. Following a pioneering study by Gage and colleagues demonstrating the 
uptake of BrdU into dividing hippocampal neurons in cancer patients treated with 
this drug [ 121 ], Frisen and his team produced the most convincing evidence for 
neurogenesis in the human brain, thus far, by taking advantage of radioactive  14 C 
isotope released into the biosphere following atomic bomb tests to birth date neu-
rons [ 122 ]. Their studies showed that a large portion of the human hippocampus is 
subject to neuronal turnover, that 700 new cells are added per day, on average, and 
that neurogenesis declines with age – intriguingly, that decline seems less pro-
nounced than the one observed in rodents [ 122 ,  123 ]. Based on extensive studies of 
the functional relevance of adult neurogenesis in rodents (see below) it is likely that 
human neurogenesis contributes to cognitive function and, consequently, it is pos-
sible that the age-related decline in neurogenesis results in reduced function [ 120 ]. 
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 Adult neurogenesis in rodents occurs mainly in two distinct brain regions, the 
subventricular zone (SVZ) and the subgranular zone (SGZ) of the dentate gyrus, a 
subregion of the hippocampus. Adult neural stem cells are a relatively quiescent 
population that can both self-renew and give rise to more rapidly dividing progeni-
tors which in turn produce neurons (neurogenesis), as well as astrocytes and oligo-
dendrocytes (gliogenesis) [ 124 ]. Ultimately, newly born neurons in the SVZ migrate 
and incorporate into the olfactory bulb where they contribute to olfaction. In a simi-
lar fashion, neurons born in the SGZ become granule neurons that integrate into the 
existing circuitry of the hippocampus where they are involved in learning and mem-
ory. Consequently, the profound decline in neurogenesis with age is linked to func-
tional declines in olfaction and spatial learning and memory [ 124 ,  125 ]. The cause 
for this decline and exhaustion of stem cell activity is unknown. 

 Theoretically, inhibition of adult neural stem cell activity can occur due to limits 
in the potential number of cellular divisions, through intra- or extracellular factors 
that induce cell cycle arrest to maintain a pool of viable quiescent stem cells, or the 
molecular composition of the neurogenic niche to either enhance or mitigate cellu-
lar proliferation [ 126 ,  127 ]. Indeed, recent studies in the aged brain have linked the 
decline in neural progenitor cell function and olfactory bulb neurogenesis to p16 INK4a  
[ 128 ], the polycomb gene Bmi-1 signaling pathway [ 129 ], and FoxO3a [ 130 ], for 
example. In addition, telomere control seems to be important in neural stem cells as 
mice defi cient in telomerase show exhaustion of SVZ stem cells [ 56 ] and telomer-
ase expression decreases with age [ 54 ,  55 ] (see also Sect.  6.1 ). Furthermore, adult 
neurogenesis is controlled by a number of epigenetic mechanisms. For example, the 
immediate early gene Gadd45b, which is required for neuronal activity-induced 
DNA demethylation, is necessary for hippocampal neurogenesis and induction of 
BDNF and FGF [ 131 ]. In addition, valproic acid, which blocks histone deacetylases 
(HDAC), promotes neuronal differentiation [ 132 ] and REST controls neurogenesis 
by keeping stem cells in a quiescent state [ 133 ]. 

 Besides these intracellular factors, a number of more global extracellular regula-
tors have resulted in changes of neural progenitor cell proliferation and neurogene-
sis, including insulin-like growth factor 1 (IGF-1) and vascular endothelial growth 
factor (VEGF) [ 134 ,  135 ]. Importantly, the neurogenic niche is localized around 
blood vessels, which allows for the possible communication with the systemic envi-
ronment [ 136 – 139 ]. Hence, perturbations to the systemic milieu of an organism, 
such as those induced by exercise or dietary restriction, can increase stem cell func-
tionality and enhance learning and memory in aging mice [ 140 ,  141 ] and exercise 
in humans has similar benefi cial effects [ 142 – 144 ]. Using heterochronic parabiosis, 
Villeda et al. showed that blood-borne factors present in the systemic milieu can 
inhibit or promote adult neurogenesis in an age-dependent fashion in mice [ 136 ]. 
Accordingly, exposing an old mouse to a young systemic environment or to plasma 
from young mice increased neurogenesis, synaptic plasticity, and improved contex-
tual fear conditioning, spatial learning and memory [ 136 ,  145 ]. In support of the 
existence of pro-neurogenic factors in the young circulation, heterochronic parabio-
sis increased neurogenesis in the old SVZ, thus enhancing olfaction in mice, and 
growth and differentiation factor (GDF)-11 was suffi cient to mimic at least some of 
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these benefi ts [ 146 ]. Given the potent effects of growth factors on neurogenesis it is 
maybe not surprising that mTOR signalling holds a key in controlling proliferation 
of stem and progenitor cells in the brain [ 147 ]. Specifi cally, the mTOR complex-1 
(mTORC1) is expressed in a unique pool of transiently amplifying progenitor cells 
and signalling via mTOR decreases with age. Surprisingly, inhibition of mTORC1 
depletes this progenitor pool, inducing a quiescence-like phenotype which may be 
similar to the one observed with aging and which was reversible by EGF-induced 
upregulation of mTOR activity [ 147 ]. How the benefi cial effects of rapamycin on 
brain function factor into this observation is currently unclear, but it is interesting to 
speculate whether factors associated with a young circulatory environment exert 
similar effects on quiescent cell populations. 

 Conversely, circulating factors associated with aging or infl ammation are known 
to inhibit neurogenesis and cognitive function and non-steroidal anti-infl ammatory 
drugs were able to prevent this [ 148 ]. For example, increased levels of TNFα [ 149 ] 
or IL1-β [ 150 ] resulted in reduced levels of adult neurogenesis and adult rats treated 
with IFN-α showed depression-like symptoms and reduced cell proliferation in the 
dentate gyrus [ 151 ]. Interestingly, patients treated with recombinant IFN-α as part 
of a therapy for hepatitis C virus infection or cancer frequently develop depression 
or cognitive defi cits linked to the treatment [ 152 ,  153 ] which has been suggested to 
depend on binding of IFN-α to complement receptor 2 on neural stem cells [ 154 ]. 
In an attempt to identify age-related factors linked to reduced neurogenesis, Villeda 
and colleagues used a focused proteomic approach in the heterochronic parabiosis 
model [ 136 ]. They demonstrated that CCL11/eotaxin, a chemokine involved in 
allergic responses and not previously linked to aging, was suffi cient to reduce neu-
rogenesis and impair cognition when administered systemically to young mice. 
Interestingly, CCL11 expression is also increased in both the choroid plexus during 
aging [ 155 ] and in fat deposits with obesity, an important risk factor for cognitive 
impairment; conversely, CCL11 decreases following exercise in obese patients 
[ 156 ,  157 ]. 

 The fi rst study that explored neurogenesis in AD brains reported an increase in 
markers for immature neurons including doublecortin and NSA-NCAM, although 
no statistical analysis of these results was presented [ 158 ] and there is still no con-
sensus as to the degree to which neurogenesis is altered in the disease. In mouse 
models overexpressing APP alone or in combination with presenilin containing 
familial AD mutations, neurogenesis was typically reduced when compared with 
wild type mice [ 159 ,  160 ] although some groups reported increased adult neurogen-
esis in certain strains [ 161 ]. Interestingly, while overexpression of wild type or 
mutant presenilin-1 reduced the number of neural progenitors in the mouse hippo-
campus, only mutant protein was suffi cient to reduce the survival of newborn neu-
rons [ 162 ]. Because APP and presenilin function in neurogenesis during 
development, discrepancies observed in adult neurogenesis between the various 
models could be a result of differences in temporal, spatial, or levels of expression 
of transgenes [ 124 ,  125 ]. 

 In summary, there is overwhelming evidence that neural stem cells have key 
functions in mammalian learning and memory and that adult neurogenesis takes 
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place in the human hippocampus. It is also clear that with age stem cell activity 
declines prominently. The mechanisms behind this exhaustion and the func-
tional consequences to AD and human cognition in general need further 
investigation.  

6.6      Altered Intercellular Communication 
and Neuroinfl ammation 

 Communication between cells of the same type, the same tissue, or across tissues is 
governed by thousands of secreted proteins, peptides, lipid mediators, and other 
molecules and must be under tight regulatory control. As the organism develops, 
matures, and ages, there are dramatic changes in the composition of this network, 
and with disease, additional adaptations will occur. Proteomic, lipidomic, and 
metabolomic technologies are trying to characterize these changes and a growing 
number of studies have applied them to brain aging and AD. Because brain tissue 
typically cannot be studied at the molecular level in living individuals, it has been 
particularly challenging to study physiological changes in the human brain or 
chronic neurodegenerative diseases such as AD, which develop over decades and 
have no strong genetic component or etiology. As an alternative, and taking advan-
tage of the concept of intercellular communication between tissues, a growing num-
ber of studies are correlating changes in blood to normal brain aging or AD, with the 
hypothesis that such changes mirror, in part, changes in the brain. 

 Age-related changes in intercellular communication have been studied as a func-
tion of changes in secreted proteins including endocrine and neuroendocrine factors 
[ 48 ]. Quantifi able molecular markers of intercellular communication in the blood 
have indeed greatly advanced the understanding and diagnosis of human disease, 
and recent studies in blood suggest that aging is similarly associated with changes 
in intercellular communication factors. Targeted proteomic studies measuring con-
centrations of dozens to hundreds of intercellular communication factors in plasma 
from AD patients using antibody-based multiplex assays described protein signa-
tures which may be specifi c to prodromal stages of the disease [ 163 ], or which 
characterize patients who progress from a prodromal stage to AD [ 164 – 166 ]. Other 
signatures appear to correlate with APOE genotype [ 167 ] or with pathological 
changes such as Aβ and tau protein levels in CSF or brains of AD patients [ 168 , 
 169 ]. While there is some general overlap between these studies (e.g. apoE, clus-
terin, ICAM1, RANTES, complement) most signatures have not been indepen-
dently validated and their biological signifi cance or diagnostic value is unclear. 
More sophisticated and unbiased methods to study the plasma proteome use mass 
spectrometry, often in combination with initial fractionation or selection steps such 
as 2D gel electrophoresis, chromatography, or antibodies. One such study found 
complement factor H, alpha2-macroglobulin and other proteins to be associated 
with AD [ 170 ]. To our knowledge, unbiased plasma proteome approaches have not 
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been used to study human brain aging but, as described above, Villeda and  colleagues 
used multiplex assays to identify plasma communication factors that correlate with 
age-related changes in neurogenesis and which are altered in response to heteroch-
ronic parabiosis in mice [ 136 ]. They discovered proteins which increase with age in 
mice and humans, including in CSF, and showed that at least one of these factors, 
CCL11, is suffi cient to induce changes in young mice that would normally occur at 
a much older age. Whether this represents “accelerated” aging of the brain remains 
to be investigated but the study demonstrated that intercellular communication fac-
tors in the circulation are not only correlated with, but also suffi cient to modulate 
brain aging. 

 Interestingly, other proteins associated with brain aging and reduced neurogen-
esis in the above study, including the chemokines CCL2, CCL12, CCL19, as well 
as beta2-microglobulin and haptoglobin [ 136 ], are immune regulatory factors and 
are likely part of the concerted low-grade infl ammatory response associated with 
aging, also known as “infl ammaging” [ 171 ]. Searching for factors which decrease 
with aging, increase with heterochronic parabiosis, and benefi t the old brain, 
Katsimpardi et al. reported that GDF-11 increases neurogenesis, improves olfac-
tion, and exerts benefi cial effects on the brain vasculature [ 146 ]. Other age-related 
circulatory factors with benefi cial effects on the brain include Klotho, a pleiotropic 
protein which suppresses insulin and wnt signaling and has been shown to extend 
lifespan in mice. Recent studies show that a lifespan-extending version of the pro-
tein, which is expressed at increased levels in the circulation of carriers, is associ-
ated with enhanced cognition in humans, and that mice overexpressing klotho 
showed increased synaptic plasticity and memory function, possibly by increasing 
levels of the NMDA receptor subunit GluN2B [ 27 ]. Furthermore, overexpression of 
klotho reduced mortality and enhanced cognition in APP mice [ 172 ]. It is likely that 
other age-related circulatory factors with detrimental or benefi cial effects on the 
aging brain will be discovered and it remains to be explored whether they have a 
role in AD. 

 Immune and infl ammatory processes have long been suspected to have a role in 
AD [ 173 ,  174 ], and long-term use of NSAIDs, taken for several years before the 
onset of clinical symptoms, and ideally at younger age, is associated with reduced 
risk for AD [ 175 – 177 ]. In addition, studies in patients with mild to moderate AD 
have shown that systemic infl ammation and the number of systemic infl ammatory 
events (e.g. urinary tract infection) contribute to the progression and severity of AD 
[ 178 ,  179 ]. However, the link between infl ammation and AD is still unclear and 
likely involves both systemic and central mechanisms. One idea about how brain 
infl ammation ties in with AD is that astrocytes and microglia become senescent and 
assume a so-called senescence associated secretory phenotype (SASP; [ 180 ]). 
Indeed, some aging astrocytes appear to express the hallmarks of the SASP includ-
ing increased expression of intermediate fi lament proteins, cytokines, and intracel-
lular protein aggregates [ 181 ]. As discussed above, this aged phenotype could be 
the result of epigenetic changes or replicative senescence. In support of epigenetic 
factors, Gjoneska et al. fi nd a coordinated increase in the expression of immune 
response genes targeted by the transcription factor PU.1, which is restricted to 
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microglia in the brain [ 75 ]. Alternatively, these phagocytic cells may become 
 activated and “infl amed” as a result of protein dyshomeostasis. For a detailed dis-
cussion of microglia in brain aging and AD see [ 63 ]. Additional support for a role 
of immune-based mechanisms in brain aging and AD comes from recent genome 
wide expression studies in multiple brain regions of >1,600 brains. One study 
showed that activation of infl ammatory genes is a hallmark of normal brain aging 
that likely precedes the development of AD [ 182 ]. A gene network analysis has also 
suggested that TYROBP/DAP12, an adaptor protein expressed in microglia, is 
deregulated in AD patients compared to healthy controls [ 183 ]. DAP12 binds to 
various receptors including complement receptor 3, one of the major phagocytic 
receptors expressed on microglia, as well as TREM2 [ 184 ]. In fact, the most direct 
evidence that altered immune function and infl ammation have a role in AD comes 
from genetic studies which show that rare polymorphisms in the microglial gene 
TREM2 increase AD risk by several fold [ 185 ,  186 ]. Genome wide association 
studies (GWAS) in AD also identifi ed a number of single nucleotide polymorphisms 
in immune related genes, which modify the risk of developing the disease [ 187 –
 189 ]. In the brain, most of these receptors are exclusively expressed on microglia. 

 In conclusion, there is very strong genetic, transcriptomic, and proteomic evi-
dence that altered intercellular communication and infl ammation are major compo-
nents of both normal brain aging and AD. It is, however, not necessarily clear 
whether upregulation of immune and infl ammatory pathways is a driver of aging 
and disease or, at least in part, a reparative or regenerative process [ 174 ]. Likewise, 
the interplay between central and systemic infl ammation is complex as age-related 
changes in the hypothalamus, for example, may orchestrate organismal aging [ 190 ].   

7     Conclusions and Future Prospects 

 In this brief and somewhat selective review of brain aging and AD we conclude that 
all aspects of organismal aging are observed in the brain and the boundaries between 
aging and disease are largely fl uent. As observed in other tissues, defi ned hallmarks 
of aging are strongly inter-dependent and it remains elusive whether such hallmarks 
are a cause or consequence of the aging process. Clearly, they are not the result of 
AD unless the disease starts at birth, as has been postulated by some [ 17 ], in which 
case aging itself would need to be called a disease. Rather, we believe there is a 
continuum from brain aging to AD, which is susceptible to genetic, epigenetic, and 
environmental infl uences. An overwhelming number of individuals above age 80 
show signs of AD pathology and cognitive decline; still, there are extremely rare, 
exceptional centenarians without pathology [ 191 ] indicating that AD is not entirely 
inevitable – but almost. Studying these rare subjects should be a high priority. 

 Genetic mouse models of AD recapitulate pathological abnormalities, synaptic 
loss, and cognitive defi cits often during young adulthood while the same manifesta-
tions in humans are not observed until much later in life. If these models are to be 
relevant for the understanding of disease progression, particularly sporadic AD, the 
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role of aging needs to be considered and aggressive models which develop disease 
before midlife are likely not very informative. 

 Given the profound role immune responses and infl ammation seem to play in 
both brain aging and AD, it will be critical to determine which aspects of immunity 
are maladaptive and which ones are attempts to maintain or repair damage. Indeed, 
the oldest old may show gains in brain immunity [ 192 ] and rejuvenation of immu-
nity has been proposed as an approach to treat brain aging [ 193 ]. In fact, a number 
of colony stimulating factors, which are mitogens for immune cells, show benefi t in 
models of AD and some are being evaluated in patients [ 194 ]. 

 Remarkable effects of heterochronic parabiosis in mice on multiple tissues 
including the brain [ 136 ,  145 ,  146 ] suggest that the brain is malleable and that a 
dysregulation of intercellular communication may underlie, in part, brain aging and 
cognitive decline. Understanding the molecular basis of these rejuvenation 
approaches will likely provide new insight into brain aging and plasticity. 

 In this vein, and maybe most importantly, neuroscientists have focused for too 
long on neurons alone and ignored glial cells and vascular cells, let alone systemic 
factors as important regulators of brain function and dysfunction. It is now evident 
that with age, every cell type shows signs of deterioration and dependent on a per-
son’s genetic and environmental exposure, the sequence and severity of cellular 
dysfunction may produce the particular manifestations of aging and neurodegenera-
tion. By altering basic processes involved in aging, it might be possible to counter-
act the cellular dysfunction that leads to neurodegeneration, including AD.     
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1            Clinical Symptoms 

 Parkinson’s disease (PD) is the most common movement disease of older adults, 
with an average onset of around 60 years of age [ 1 ,  2 ]. Life expectancy is reduced 
amongst patients suffering from PD, with a mortality ratio twice that of unaffected 
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individuals [ 3 ]. Mortality risk factors associated with the disease include cognitive 
decline and age at time of onset [ 4 ]. The disease results in progressive defi cits in 
motor movement due to the preferential loss of dopaminergic (DAergic) neurons in 
an area of the midbrain known as the substantia nigra pars compacta (SNpc) [ 5 ,  6 ]. 
Cardinal symptoms include resting tremor, delayed initiation and slowness of move-
ment (bradykinesia), muscular rigidity, and impaired balance [ 7 ]. Onset of motor 
symptoms is often asymmetric, with the most common initial manifestation being a 
mild resting tremor in one arm [ 8 ]. As the disease progresses, the patient may note 
gait diffi culties, micrographia (shrinkage in size of handwriting), and issues with 
axial posture [ 9 ]. Other changes related to motor function include decreased facial 
expression and laryngeal dysfunction resulting in diffi culties with speech [ 10 ]. 

 The involvement of several neurotransmitter systems beyond DAergic that may 
play a signifi cant role in the disease has recently been recognized [ 11 ]. These include 
the serotonergic, cholinergic, and noradrenergic networks, effects on which may 
explain some of the non-motor symptoms associated with the disease [ 12 – 15 ]. These 
can occur prior to the onset of motor symptoms and are currently being tested clini-
cally as early disease indicators, including hyposmia (reduction in olfactory function) 
and disturbances in REM sleep [ 16 – 18 ]. Other common non-motor symptoms accom-
panying the disease include constipation due to reduced intestinal motility, fatigue, 
pain, depression, anxiety, and cognitive issues [ 11 ,  19 ]. Patients with PD indeed have 
a two to six-fold increased risk for development of dementia than control populations 
[ 20 ]. Cause of death include pulmonary infections due to aspiration of saliva into the 
lungs, accidents associated with increased risks of falls due to loss in motor function, 
chocking due to diffi culty swallowing, and blockage of blood vessels leading to pul-
monary embolism and deep vein thrombosis. Individuals do not die of PD, but rather 
of the life-threatening complications associated with the condition [ 21 ,  22 ]. 

 Progression of symptoms is also associated with the presence of abnormal intra-
neuronal proteinacious accumulations called Lewy bodies that occur in both neuro-
nal cell bodies and in neurites [ 6 ,  23 ]. A major component of these inclusions is a 
protein known as α-synuclein. PD is considered part of a larger group of disorders 
known as synucleopathies that include other related diseases such as Dementia with 
Lewy Bodies (DLB) [ 24 ]. Extent and expression of the disease at defi ned sites within 
the nervous system has been proposed to track closely with the presence of Lewy 
bodies at these various locations and may in part explain patient-to-patient variabil-
ity in symptoms [ 19 ]. According to the Braak staging scale, a means of classifying 
neuropathology associated with PD based on observations at autopsy, Lewy bodies 
fi rst appear in enteric neurons of the gut then the olfactory bulb and lower brain stem, 
prior to individuals displaying any motor symptoms [ 25 – 27 ]. As the disease evolves, 
Lewy bodies spread to the SNpc and then to the neocortex. This has led to the prion 
hypothesis of PD that postulates that α-synuclein spreads transcellularly, temporally 
inducing progressive pathological aggregation within affected neurons in a pattern 
that tracks with resulting symptomology [ 28 ]. If correct, this could have major 
implications in terms of the success of proposed therapies for the disorder, including 
use of cellular transplantation (see below). However there are clearly caveats to the 
data supporting this theory that are under intense investigation [ 29 ].  
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2     Current Therapies 

 Currently, there is no cure for PD. Existing therapies are instead primarily directed 
towards alleviating the most disturbing symptoms in individuals with the disease, 
which can vary widely in terms of both presence of particular symptoms and rate of 
progression [ 7 ]. More than a third of individuals with PD, for example, do not dis-
play a tremor, therefore presence of tremor in an older individual alone is not neces-
sarily a sign of PD per se. For this reason, there is no standard treatment for the 
disorder and treatments must be tailored to meet the needs of each individual patient. 

 Approaches to lessen PD symptoms include both medication and surgical thera-
pies [ 10 ]. The most widely used therapy is Levo-Dopa (L-Dopa) [ 30 ]. L-dopa is a 
precursor of dopamine and acts to increase synthesis of this neurotransmitter in 
remaining DAergic neurons of the SNpc. It is particularly effective in reducing bra-
dykinesia and rigidity in early stages of the disease. It is often given in conjunction 
with carbidopa, a peripheral dopa decarboxylase inhibitor that acts to lessen side 
effects due to conversion of L-dopa to dopamine outside of the brain, which can 
lead to nausea and vomiting [ 31 ]. Due to the rapid turnover of dopamine (DA), 
resulting in oscillations in its levels and diffi culties in adjusting dosage to obtain 
ideal brain concentrations, patients often develop symptoms related to the drug 
itself, including dyskinesias (abnormal involuntary movements) and fl uctuations in 
treatment effi cacy causing transient freezing [ 32 ]. These side effects are controlled 
in many cases by addition of other drugs to the patient’s medication regime [ 32 ]. 
While L-dopa can control PD symptoms, it does not however halt the progression 
of the underlying disease. As neurons continue to be lost, L-dopa effi cacy becomes 
diminished due to loss of striatal DAergic terminals necessary for neurotransmitter 
storage and buffering [ 33 ]. An alternative or complement to treatment with L-dopa 
is the use of dopamine agonists, which act as a sort of pseudo-DA to activate 
DAergic receptors in the brain [ 34 ,  35 ]. These include Requip, Mirapex, and Neupro 
that are taken either alone or in combination with Sinemet (L-dopa/carbidopa) [ 36 ]. 
Due to better tolerance and reduced long-term risk of complications, these are now 
often the fi rst choice of treatment for PD. They however have their own side effects, 
including increased risk for drug-associated psychosis [ 37 ]. Other alternatives 
include the use of anticholinergics (Artane, Cogentin) which balance levels of 
acetycholine in the brain and Eldepryl and Azilect (selegeline, rasagaline) which 
prevent breakdown of dopamine via inhibiting the enzyme monoamine oxidase B 
(MAO-B) [ 38 – 40 ]. A newly described MAO-B inhibitor, safi namide, is currently 
undergoing clinical trial [ 31 ,  41 ]. Another strategy to prolong DA response is extra-
cellular inhibition of its degradation by the enzyme catechol-o-methyl-transferase 
(COMT) via administration of entacapone or related agents. Given that PD can 
occur in conjunction with several other age-related comorbidities, it is particularly 
important for patients to check with their physicians about potential negative inter-
actions between drugs used to treat PD and other age-related conditions. Sometimes 
there are additionally dietary considerations due to interactions of medications with 
specifi c foods [ 38 ]. The American Academy of Neurology has recently released a 
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series of recommendations for the treatment of non-motor symptoms including 
erectile dysfunction, constipation, night-time sleep disturbances due to uncontrolled 
limb movement, daytime somnolence, and fatigue, all of which may cause consider-
able pain and discomfort and affect quality of daily life (American Academy of 
Neurology, 2010). 

 At the point in time at which medicinal therapies lose their effectiveness, surgical 
interventions such as deep brain stimulation (DBS) may be tried [ 42 ,  43 ]. DBS 
involves electrical stimulation of the thalamus and subthalamic regions, aiding in 
the attenuation of tremors and freezing by blocking certain electrical signals within 
the brain contributing to these symptoms [ 9 ]. It is important to emphasize that 
although all of these therapies can act to reduce motor symptoms and therefore 
increase the longevity of PD patients, they do not result in a halting of the underly-
ing neurodegeneration associated with the disease. 

 Other recommended evidence-based treatment approaches include general life-
style modifi cations such as rest and exercise for improvement of motor function and 
reducing stress, and speech therapy to aid with losses in communication abilities 
[ 44 – 46 ]. Use of alternative medicinal therapies including herbs, vitamins, and sup-
plements have in the majority of cases not been thoroughly studied scientifi cally in 
terms of either effi cacy or safety nor vetted by the FDA for use in the disease. In the 
few cases in which such agents have undergone more rigorous study (vitamin E, 
coenzyme Q), their benefi cial effects have not held out under clinical trial conditions, 
although they may be of benefi t to certain patients [ 31 ,  47 ]. Creatine is currently 
under a phase III clinical trial for effi cacy [ 48 ]. A meta-analysis of vitamin E intake 
in the food suggests a relationship between high intake and reduced risk for develop-
ment of PD [ 49 ,  50 ]; however, vitamin E did not show effi cacy in a previous clinical 
trial (DATATOP). Other over-the-counter nutriceuticals (low-dose lithium, vitamin 
D, nicotine, etc.) have shown effi cacy either in pre-clinical or in epidemiological 
studies but have yet to be thoroughly assessed in human clinical trials, although 
some trials are being initiated or are ongoing [ 51 ]. Other clinical trials involve repo-
sitioning drugs already approved for treatment of other diseases for use in PD, 
including pioglitazone (BioPEP), normally prescribed for type II diabetes, and the 
calcium channel blocker isradipine (STEADY PD III), used to treat high blood pres-
sure. Results from recent studies suggesting that statins may lower the risk for PD 
have also peaked interest in initiating longer-term studies to verify these effects [ 52 ]. 

 Over the last decade, there has been a large amount of research put into novel 
restorative therapies including gene therapy and cellular replacement via transplan-
tation. Based on pre-clinical data, for example, clinical trials were performed infus-
ing the neurotrophic factor glial-derived neurotrophic factor (GDNF) directly into 
the brains of PD patients as a means of protecting against additional DAergic cell 
loss [ 53 ]. However, results from various clinical trials proved to be contradictory, 
perhaps due to differences in trial design. Other confounding factors include hetero-
geneity of the patient population and the diffi culties inherent in teasing out symp-
tomatic versus drug-mediated effects. Recruitment for phase I clinical trials is 
currently underway to test the safety and tolerability of adeno associated virus 
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(AAV)-mediated delivery of GDNF [ 54 ]. A previous AAV phase II trial delivering 
the GDNF analogue neurturin (NTN) showed some negative side effects and a lack 
of overall improvement in symptoms [ 55 ,  56 ]. A subsequent phase II trial utilizing 
higher viral dosages and longer follow-up times is currently underway [ 57 ]. Some 
success has been met in the use of gene therapy involving the AAV-mediated deliv-
ery of glutamic acid decarboxylase (GAD), an enzyme that acts to modulate GABA 
production in the subthalamic nucleus. This was reported to result in improved 
motor function in PD patients following a 6-month observational period, with mini-
mal side effects (64, 65). 

 As with gene therapy, several clinical trials using cellular transplantation have 
been undertaken, as early as the 1980’s. The goal has been to replace lost DAergic 
neurons, utilizing DAergic fetal cells [ 58 ,  59 ]. Study results have been variable, but 
more detailed placebo-controlled double-blind trials (versus open-labeled) gener-
ally report lack of signifi cant overall improvement in motor function and the induc-
tion of drug-related side effects such as dyskinesia. Recent excitement has been 
engendered by the ability to produce inducible pluripotent stem cell (iPSC) popula-
tions from a patient’s own tissues which can be differentiated towards a DAergic 
fate for transplant, particularly in combination with gene therapy to promote their 
survival in vivo [ 60 – 62 ]. However, excitement has been somewhat tempered based 
on evidence suggesting that transplanted cells have limited success in clinical trials 
and may actually take on the same fate as affected endogenous neurons [ 28 ]. More 
studies are undoubtedly required before moving such studies towards new clinical 
trials, including how to deal with reduced transplant effi ciency in the older brain. In 
other words, not only do we need to consider the cells themselves, but also the envi-
ronment into which they are placed.  

3     Known Molecular or Cellular Underpinnings 

 Although familial forms of the disease account for roughly 5–10 % of PD, it is 
largely considered a sporadic condition arising from a combination of genetic sus-
ceptibility and environmental exposures across the lifespan [ 63 ]. These vary from 
individual to individual, which may to some degree help explain disparate disease 
presentation. This has led to the notion that PD may constitute not a single disease 
entity, but rather a syndrome. 

 Aging is the number one risk factor for the disorder and factors common to both 
normal brain aging and selective cell death in PD merit special consideration in 
terms of overlapping factors that may be causative in both conditions [ 64 – 66 ]. Is PD 
a case of accelerated aging in a specifi c population of cells particularly sensitive to 
certain genetically induced phenotypes and/or environmental exposures? Advanced 
age is certainly directly linked to a more rapid disease progression and older indi-
viduals are more refractory to medical treatments for the disorder, suggesting that 
there is an important interplay between the two [ 67 ]. 
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 Through studies of both the post-mortem PD brain and genetic pathways respon-
sible for familial forms of the disease, much has been gleaned about the cause of 
cellular dysfunction in PD. Some of the pathways implicated so far include ele-
ments identifi ed as also important for basic aging including mitochondrial dysfunc-
tion, oxidative stress, calcium mishandling, infl ammation, and effects on proteostasis 
[ 68 ,  69 ]. Identifi cation of these molecular targets has led to exploration of interven-
tions designed to prevent or reverse their detrimental effects as a means of slowing 
or reversing the course of the disease. 

3.1     Mitochondrial Dysfunction 

 Neurons are particularly dependent on mitochondrial oxidative phosphorylation as 
a source of ATP, with a very limited capacity for glycolysis [ 70 ,  71 ]. Since the dis-
covery of defects in mitochondrial complex I activity in postmortem brain samples 
and increased levels of mtDNA mutations in patients with the disease, mitochon-
drial dysfunction has become a major focus of research [ 69 ,  72 ]. As a consequence, 
models based on both mitochondrial neurotoxins (MPTP, paraquat, rotenone) and 
gene defects that impact on mitochondrial function identifi ed in rarer familial forms 
of the disease (α-synuclein, parkin, PINK, LRRK2) have been established [ 70 ]. 
These have been helpful in the segmental dissection of different aspects of disease 
pathology, including the role of mitochondrial defects in neuropathological features 
associated with the disease [ 73 ]. 

 The master transcription factor peroxisome proliferator-activated receptor γ 
(PPARγ) coactivatory-1α (PGC-1α) is an important regulator of mitochondrial bio-
genesis and function. Its dysregulation has recently been identifi ed as a key factor in 
PD (138). Activators of PGC-1α including resveratrol (acting via SIRT1) and diabe-
tes drugs such as pioglitazone (currently in clinical trial for early PD, BioPEP) have 
been shown to be neuroprotective in animal models of the disease (139). However, 
use of agents that act to increase mitochondrial biogenesis will need to be balanced 
with those which increase lysosomal turnover of defective mitochondria so as to not 
increase the build-up of the latter. Interestingly, recent data in a Huntington mouse 
model has demonstrated that the neuroprotective effects of increased PGC-1α result 
in up-regulation of the master transcriptional regulator of lysosomal biogenesis, 
transcription factor EB (TFEB), suggesting the existence of a tight regulation 
between mitochondrial biogenesis and turnover [ 74 ]. Enhancement of fi ssion-fusion 
events in early stages of the disease may also be effective in repairing damaged 
mitochondria. However, as levels of damaged mitochondria increase, these pro-
cesses lose their effectiveness and are replaced by removal of dysfunctional mito-
chondrial via lysosomal degradation. Genes associated with familial forms of PD 
including parkin, PINK, and LRRK2 have suggested that defects in mitochondrial 
turnover or mitophagy contribute to neuropathology and interventions that up- 
regulate these processes are likely to improve neuronal function [ 69 ]. TFEB has 
itself been recently been identifi ed as a potential target for intervention in PD, 
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although primarily as a means of removing defective protein aggregates (see below) 
[ 75 ]. Ability to remove both defective proteins and organelles suggests that TFEB 
induction could have dual neuroprotective benefi ts [ 76 ].  

3.2     Oxidative Stress 

 Mitochondrial dysfunction itself can result in production of ROS that in turn can 
cause further damage to the mitochondria, resulting in a destructive feed forward 
cycle, ultimately resulting in neuronal cell death. Oxidative stress is another feature 
of normal brain aging that has been widely implicated in select cell death associated 
with PD (86–87). Whether or not age-related oxidative stress actually contributes to 
brain aging is controversial; however, DAergic neurons are particularly sensitive to 
the effects of oxidative stress due to several factors including their high number of 
synapses, their undermyelinated axons requiring large numbers of mitochondria to 
support their activity and the ability for dopamine to be oxidized to toxic by- 
products that can impact on mitochondrial function [ 77 ,  78 ]. This can be exacer-
bated by the relatively low levels of antioxidants such as glutathione within these 
cells, high levels of the ROS-producing enzyme monoamine oxidase B (MAO-B) 
within neighboring astrocytes, and regionally high levels of reactive iron [ 79 ]. Due 
to its proximity to mitochondrial ROS-production, lack of protective histones, and 
its high replication rate, mitochondrial DNA (mtDNA) is particularly prone to the 
deleterious effects of oxidative modifi cation [ 80 ]. Mitochondrial damage is another 
feature shared by the normal aging brain and DAergic cells within the PD SNpc [ 81 , 
 82 ]. 

 As mentioned previously, reductions in oxidative stress via vitamin E did not 
show effi cacy in earlier clinical trials (DATATOP), although whether this was due to 
inappropriate dosing regimes or lack of targeting to the most vulnerable cellular 
locations is unclear. A recent clinical trial using mitochondrially targeted CoQ10 
(MitoQ) also failed to demonstrate slowing of clinical progression of the disease 
[ 83 ].  

3.3     Calcium Mishandling 

 A loss in cellular calcium homeostasis is another potential contributor to the patho-
genesis of PD that is also altered in the normal aging brain [ 84 ]. Losses in mito-
chondrial function can affect the ability of the organelle to sequester calcium and 
this in turn can result in the generation of mitochondrial-mediated oxidative stress 
and subsequent damage to the organelle that can further affect its function [ 85 ]. 

 A growing body of evidence suggests that with age, nigral DAergic neurons 
become more reliant on L-type calcium channels to maintain pace-making activity 
and that agents that block channel activity such as isradipine (currently under 
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 clinical trial, STEADY PD III) may slow or halt PD progression [ 79 ,  86 ]. A recent 
study reported that DAergic SNpc neurons in slices isolated from older wild type 
mice (25–30 months) show signifi cantly lower spontaneous fi ring rates, shorter 
spike widths, and lower pacemaking ability, as compared to younger animals (2–7 
months) [ 87 ]. This effect is due to the impact of L-type Cav1.2α and Cav1.3α chan-
nels on pacemaker fi ring. This was speculated to be due to changes in calcium stores 
resulting in effects on calcium-activated potassium channels, suggesting that age-
related alterations in the function of these channels may be an important underlying 
cause of PD [ 86 ,  87 ].  

3.4     Infl ammation 

 Immune cell activation likely evolved as a means of removing foreign patho-
gens or damaged cells, the latter as a consequence of acute cellular stress or 
injury. However, in the face of chronic age-related neurodegeneration, inflam-
matory responses may actually contribute to neuronal loss via the ongoing 
release of damaging inflammatory agents, including reactive oxygen and nitro-
gen species (ROS/RNS), inflammatory cytokines and chemokines, and matrix 
metalloproteinases (MMPs) [ 88 ,  89 ]. Several lines of evidence suggest that 
inflammatory processes within the central nervous system (CNS) may contrib-
ute to neuronal cell loss associated with PD [ 89 ,  90 ]. The SNpc itself contains 
a particularly high density of immune cells such as microglia, even in the nor-
mal young brain. Post-mortem studies in the PD SNpc demonstrate the presence 
of markers of both innate and adaptive immunity. Activated microglia, astro-
cytes and CD4 +  and CD8 +  T lymphocytes have been detected in affected brain 
regions, along with increased expression of pro- inflammatory mediators [ 91 –
 94 ]. In addition, preclinical studies in various animal models strongly suggest 
the involvement of inflammatory processes in associated neuronal cell death 
[ 95 ]. Neuroinflammatory processes may contribute to deleterious events lead-
ing to neuronal degeneration. Results from epidemiological studies in humans 
have suggested that use of anti-inflammatory drugs reduces the risk for devel-
opment of PD, although reports have been somewhat mixed [ 96 – 99 ]. Possible 
factors involved in neuroprotection may include inhibition of cyclooxygenase 2 
and reduced production of prostaglandins [ 100 ,  101 ]. Interestingly, ibuprofen, 
which shows the strongest effects in a prospective meta-analysis study, is a 
known inducer of PPARγ [ 102 ]. A genome-wide association study (GWAS) has 
confirmed the involvement of various immune-related factors [ 103 ]. 
Neuroinflammatory processes represent an attractive therapeutic target for 
slowing progression of the disorder. 

 During aging, astrocyte numbers increase and a greater proportion become acti-
vated (astrogliosis) [ 104 ,  105 ]. This is correlated with an increase in levels of glial 
fi brillary activated protein (GFAP). While microglial cell numbers do not appear to 
be signifi cantly increased in normal aging as they are in PD, the cells that are  present 
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are more likely to be in an activated state, known as ‘microglial priming’, an 
enhancement of the innate immune response [ 106 ]. 

 It is important to note that in addition to involvement in neuroinfl ammatory 
events, astrocytes also normally interact with endothelial cells to help maintain 
integrity of the blood–brain-barrier (BBB), remove ions and glutamate from the 
extracellular space following bursts of neuronal activity, and respond to the meta-
bolic needs of neurons including via the release of supportive growth factors [ 107 ]. 
These physiological functions decrease with brain aging and may contribute to neu-
ronal losses associated with PD.  

3.5     Defects in Proteostasis 

 A common feature of neurodegenerative diseases including PD is accumulation of 
proteinaceous deposits in the CNS or peripheral nervous system [ 28 ]. The location 
of these deposits appears to be disease-specifi c. Unwanted proteins are cleared from 
the cell by the ubiquitin proteasome system (UPS) or lysosomal-mediated autoph-
agy [ 108 ]. Defects in both of these systems have been associated with both aging 
and PD, and attempts to correct them by various means have been extensively stud-
ied [ 109 ,  110 ]. The PD-related protein α-synuclein, associated with both familial 
and sporadic PD, comprises roughly 1 % of proteins found within Lewy bodies and 
its toxicity is believed to be caused by accumulation of misfolded proteins and for-
mation of toxic oligomers [ 111 ]. Inclusions containing α-synuclein aggregates have 
been found in transplanted fetal DAergic cells in PD patients. As cells were derived 
from unrelated donors, it is unlikely that they are the source of the pathology and 
this is cited as evidence, along with recent work in mouse models, backing the 
‘prion transmission theory’ of PD progression [ 28 ,  112 ]. This is another potential 
target for therapy, but although prion-like disease spread is known to require endo-
somal release and uptake, much more about the molecular mechanisms involved in 
this process still needs to be elucidated. A recent publication suggested that one of 
the factors involved in removal of intracellular α-synuclein via secretion into the 
extracellular space is the protein ATP13A2 or PARK9 whose mutation is involved 
in a juvenile onset form of parkinsonism called Kufor-Rakeb syndrome (KRS) 
[ 113 ]. 

 One interventional target that has been extensively explored experimentally in 
PD is the heat shock proteins (HSPs) [ 114 ]. This family of proteins is a group of 
molecular chaperones that promote either proper refolding of proteins or their trans-
fer to the UPS and lysosome for degradation. Drugs such as the hsp70 inducer gel-
danamycin have shown effi cacy in several animal models of PD, but unfortunately 
have side effects including liver damage [ 115 ]. Drugs that enhance clearance of 
defective proteins have also shown effi cacy in animal PD models, including rapamy-
cin that enhances lysosomal protein turnover [ 116 ]. Interventions that bind and pre-
vent toxic oligomerization of α-synuclein including polyphenols like curcumin, 
immunotherapy or siRNA therapy have also been demonstrated to have some 
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 benefi ts in animal models and a clinical trial of the latter (AFFiRiS) has recently 
been initiated [ 117 ,  118 ]. There is however some concern that this may prevent 
potentially neuroprotective aggregation of the protein, and this may actually exac-
erbate the condition. It is also conceivable that post-translational modifi cations that 
drive aggregate formation may evade antibody binding and may increase neuroin-
fl ammation (see above).   

4     What Have We Learned and Where Do We Go from Here? 

 Development of PD therapeutics that halt or slow disease progression and prevent 
disability is the highest priority for researchers in the fi eld. Unfortunately, attempts 
to intervene have to date provided little to no benefi t in human clinical trials [ 51 ]. 
There may be several contributing factors involved, including heterogeneity of the 
patient populations examined, interventions attempted too late in disease stage for 
effect, short durations of treatments, and small group sizes. It may also refl ect lack 
of thoroughly vetted pre-clinical studies in order to better understand dose responses, 
treatment pharmacokinetics, and appropriate therapeutic windows. Identifi cation of 
a disease-modifying neuroprotective intervention has remained elusive to date, 
likely due in part to these factors. It may however also imply that exploration of 
novel targets far afi eld from those conventionally studied is needed.  

5     Possible Role of Major Hallmarks of Aging 

 A traditional approach in age-related disease research has been to investigate single 
disease conditions in isolation. While this has yielded important information and 
enormous efforts have been expended to develop therapies based on these fi ndings, 
there have been few successful interventions as a consequence. This is likely due to 
an incomplete picture of the nature of complex chronic disease states. Preventive 
and therapeutic treatments for diseases like PD will likely require the discovery of 
unique targets far removed from those identifi ed to date by conventional approaches. 

 Recently, it has begun to be appreciated that in order to fully understand these 
disorders, researchers need to better understand the underlying role of aging in con-
ditions as disparate as atherosclerosis, diabetes, cancer, osteoporosis, and neurode-
generative diseases. Studying the role of aging mechanisms across a wide variety of 
disease states will allow scientists to broaden the scope of research beyond tradi-
tional disciplines, towards the central concept that these multiple human disease 
states likely arise from a common underlying cause: aging itself. The term “gerosci-
ence” was coined by scientists at the Buck Institute for Research on Aging in 2007 
as an acknowledgement and organizing principle of this scientifi c concept. In 2011, 
the Geroscience Interest Group (GSIG) was formed, a trans-NIH team interested in 
this concept, and geroscience as a scientifi c discipline was formally recognized in 
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the U.S. Senate Appropriations in 2013. The NIH, with support from the Alliance 
for Aging Research and the Gerontological Society of America, hosted a conference 
entitled “Advances in Geroscience: Impacts on Healthspan and Chronic Disease” in 
October of 2013 to examine the extent to which the physiological effects of aging 
represent a common major risk factor for chronic diseases. This led to a leading- 
edge commentary in the journal  Cell  entitled ‘Geroscience: Linking Aging to 
Chronic Disease’ [ 119 ]. 

 PD itself falls under this rubric and potentially could be viewed as a case of 
accelerated aging in a particular population of cells in response to individual varia-
tion in genetic makeup and environmental exposures. Interestingly, the SNpc dis-
plays more age-related neuronal cell loss than any other region of the brain [ 65 ]. 
How does aging then contribute to the preferential death of these cells? 

5.1     Age-Related Loss in Adaptation to Stress and Increased 
Macromolecular Damage 

 Aging leads to a decrease in the effi ciency of many aspects of organismal stress- 
resistance [ 120 ]. This includes reductions in the ability to maintain proteostasis and 
function of organelles such as the mitochondria and endoplasmic reticulum (ER) 
due to losses in both the Unfolded Protein Stress (UPS) and autophagic functions. 
Cellular defenses against the effects of oxidative stress are also reduced. The 
decreased ability of aged organisms to deal with stressors can lead to damage to 
both proteins and organelles that, due to their unique cellular features, can have 
particularly devastating effects on DAergic SNpc neurons [ 121 ]. Many of the 
disease- related effects that occur within the PD SNpc also occur during normal 
aging, albeit to a lesser degree [ 87 ]. These include: (1) effects on mitochondrial 
function including reduced enzymatic activity of both mitochondrial complex I and 
α-ketoglutarate dehydrogenase (KDGH), reduced NAD +  levels, and increased 
mtDNA deletions [ 122 – 125 ]; (2) reduced ability to deal with effects of increased 
cellular ROS including reductions in cellular glutathione content and reduced activ-
ity of the major anti-oxidant regulator nuclear factor erythroid-derived 2 (NRF2), 
coupled with increased levels of redox-available iron in this brain region [ 126 – 128 ]; 
and (3) increased levels of protein accumulation, including elevated levels of 
α-synuclein [ 129 ]. In the normal aging SNpc, α-synuclein appears to be primarily 
in a more soluble form rather than associated with Lewy bodies as in the PD SNpc, 
although in both aging and disease this appears to be associated with a decline in 
neuronal function [ 130 ]. This may be due to the presence of higher levels of ROS 
and RNS in the context of PD. Accumulation of α-synuclein has been linked to 
alterations in mitochondrial fi ssion-fusion and function [ 131 ]. Taken together, these 
data suggests that PD may constitute acceleration of the aging process in the SNpc 
in susceptible individuals. Reductions in the deleterious effects of these age-related 
changes may therefore greatly reduce the risk of developing PD. 
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 Conversion of α-ketoglutarate and NAD +  to succinyl coA and NADH by KDGH 
is the rate-limiting step in the conversion of carbohydrates to energy as part of the 
mitochondrial TCA cycle. NADH and succinate feed into electron transport chain 
(ETC) complexes I and II, respectively, to support mitochondrial respiration. KDGH 
activity in the brain is reduced in both aging and in PD, likely as a consequence of 
increases in mitochondrial ROS and lipid peroxidation to which the enzyme is par-
ticularly susceptible [ 132 ,  133 ]. This is reversible by raising levels of thiols, particu-
larly glutathione, which is normally found at millimolar levels in the cell and is 
reduced during normal aging and in PD [ 134 ]. Lipoic acid, via its ability to activate 
the NRF2 pathway, can induce phase II genes including those involved in glutathi-
one synthesis and metabolism [ 135 ]. NRF2 is also involved in a pathway resulting 
in induction of the mitochondrial transcription factor A (TFAM) that controls 
mtDNA transcription, translation, and repair. Accumulation of mtDNA damage has 
been reported to be particularly high in the aged SNpc and conditionally knocking 
out TFAM selectively within DAergic neurons results in PD-like neuronal cell loss 
and formation of protein inclusions, suggesting age-related increases in mtDNA 
mutation load may be a contributing factor to the disease [ 136 ]. Lipoic acid has 
been reported to have restorative effects on mitochondrial complex I activity in both 
aging and PD models [ 66 ]. 

 NRF2 is induced by PGC1α and its co-activators, coordinating in turn expression 
of several nuclear-encoded mitochondrial proteins including TFAM. Losses in 
PGC1α have been implicated in age-related reduction in muscular strength as well 
as cardiac and cognitive function, due to an increase in metabolic abnormalities and 
subsequent reduction in cellular, tissue, and organ function [ 137 ]. PGC1α has also 
recently been identifi ed as a central therapeutic target for the treatment of PD [ 138 ]. 

 In addition to PGC1α, mitochondrial biogenesis is also controlled by the NAD +  
dependent protein deacetylase sirtuin 1 (SIRT1). Sirtuins are a family of conserved 
enzymes whose modulation has been demonstrated to alter the course of aging in 
various model systems. Alterations in the activity of these enzymes have also 
recently been shown to have effects in neurodegenerative diseases, including PD 
[ 139 ]. Activation of SIRT1 by resveratrol, for example, has been shown to be neu-
roprotective in mouse PD models [ 140 ]. SIRT1 inactivation has been reported to 
result in increased activity of the heat shock factor I (HSF1) that drives transcription 
of a group of molecular chaperones that regulate protein homeostasis [ 141 ]. 
Recently, inactivation of SIRT1 via its nitrosylation, which prevents its ability to 
bind zinc, has been demonstrated to result in enhanced infl ammation including in a 
mouse model of PD, contributing to neurodegenerative effects. This was discovered 
to be due to activation of p53 and subsequent induction of NFkappaB [ 142 ]. The 
authors point to inhibition of SIRT1 by nitrosylation as a possible major target for 
other major age-related diseases that involve infl ammatory processes, including dia-
betes, atherosclerosis, and Alzheimer’s disease (see below). In contrast to SIRT1, 
SIRT2 inhibition has been reported to be protective in the MPTP model of PD, by 
preventing deacetylation of Foxo3a and subsequent activation of apoptosis via the 
factor BIM [ 143 ]. Its inhibition may also prevent formation of α-synuclein 
aggregates. 
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 Aging is correlated with loss in function of various molecular chaperones nor-
mally involved in repair of conformational alterations in cellular proteins in response 
to stress events. This is particularly relevant in post-mitotic cells such as neurons, 
and chaperone defi ciency has been implicated in several neurodegenerative dis-
eases, including PD [ 144 – 146 ]. Loss of the ability to respond to stress can result in 
accumulation of age- and disease-related misfolded proteins, protein aggregation, 
and disruption of cellular function. The capacity to induce heat shock proteins 
including HSP70 and HSP90 is compromised in both the aging brain and in PD and 
further exacerbated in the face of age-related increases in oxidative damage. 
Interventions towards replacing levels of chaperone function have been proposed as 
a potential therapeutic for brain aging.  

5.2     Systemic Infl ammaging: ‘Damage at a Distance’ 

 In addition to local infl ammation within the brain itself, systemic infl ammation has 
also been suggested to play a role in PD [ 147 ]. The brain is normally protected from 
the effects of systemic infl ammation due to the presence of the blood–brain barrier 
(BBB). Age-related damage, however, contributes to BBB leakiness, allowing the 
infl ux of systemic pro-infl ammatory factors into the brain and resulting in the acti-
vation of microglia and astrocytes that can exacerbate ongoing neurodegeneration 
[ 148 ]. Recent studies suggest that activation of the peripheral immune system can 
elicit a pro-infl ammatory response in the brain of aged subjects that does not occur 
in younger cohorts. For example, peripheral lipopolysaccharide (LPS) challenge in 
older mice results in enhanced microglial secretion of the pro-infl ammatory cyto-
kines IL-1β and IL-1 [ 149 ]. It has been suggested that this may be due to age-related 
microglial priming resulting in enhanced activation following entrance of immune 
signals from the periphery, releasing elevated levels of pro-infl ammatory cytokines. 
Infectious diseases are associated with increased risk for development of PD, par-
ticularly in the elderly [ 150 ]. 

 In addition to systemic pro-infl ammatory factors, damage to the BBB can also 
allow the entrance of peripheral immune cells into the brain, including neutrophils 
and macrophages [ 151 – 153 ]. Secretion of chemokines by activated microglia can 
attract neutrophils and monocytes from the bloodstream. In contrast, up-regulation 
of anti-infl ammatory factors in the periphery may act to reduce glial cell activation 
in the brain and therefore neuropathology. In addition to entrance via a leaky BBB, 
infl ammatory agents may also enter the CNS via the autonomic nervous system, 
particularly the vagal nerve afferents which lies close to the liver and lymphatic 
nodes [ 154 ,  155 ]. Conversely, damage within the brain may trigger infl ammatory 
effects in the periphery. For example, brain injury has been reported to result in 
increases in pro-infl ammatory cells in the liver, resulting in neutrophil translocation 
in the brain [ 156 ].  
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5.3     Cellular Senescence 

 Cellular senescence is a potent anti-cancer mechanism that occurs in most, if not all, 
dividing cell types [ 157 ]. The senescence response arrests cell proliferation, stably 
and essentially irreversibly, in response to stresses that puts cells at risk for malig-
nant transformation. Senescent cells can secrete numerous pro-infl ammatory cyto-
kines, chemokines, growth factors and proteases, a feature termed the 
senescence-associated secretory phenotype (SASP) [ 158 – 162 ]. Many SASP factors 
have been shown, or are suspected, to cause or contribute to the loss of tissue struc-
ture and function that occurs with age, including those associated with neurodegen-
erative disease. A seminal publication showed that elimination of senescent cells 
that accumulate in a progeroid mouse model prevents the onset of three major aging 
phenotypes (cataracts, sarcopenia and loss of subcutaneous fat), providing the fi rst 
evidence that senescent cells play a causal role in at least some age-related patholo-
gies in vivo [ 163 ]. While cell senescence has been causally linked to age-related 
pathologies in peripheral tissues, its potential role in brain aging and neurodegen-
erative disease has just begun to be explored. Recent fi ndings suggest that cultured 
glial cells are capable of undergoing senescence and developing a SASP. In response 
to exogenous H 2 O 2 , for example, cultured astrocytes displayed numerous senescent 
characteristics: arrested growth, an enlarged morphology, senescence-associated 
β-galactosidase (SA-βgal) activity, and increased expression of p21 and p16 INK4a  
[ 164 ]. In vivo and in conjunction with age-related cognitive impairment, changes in 
the aging brain include increased expression of astrocytic GFAP in cells with a 
senescent-like morphology. Telomere shortening in rat microglia both in culture 
following repeated cell divisions and with advancing age in vivo has been reported 
to lead to cellular senescence that may impact cellular function [ 165 ,  166 ]. In 
response to repeated lipopolysaccharide administration, cultured microglial cells 
display growth arrest, enhanced SA-βgal activity, and senescence-associated het-
erochromatic foci [ 167 ]. This may be what primes microglia for enhanced activa-
tion in response to systemic infl ammatory stimuli. Both normal brain aging and 
chronic age-related neurodegenerative diseases are associated with microglial- 
mediated increases in components that are associated with the SASP, including pro- 
infl ammatory cytokines such as IL-1β and IL-6. Other non-neuronal cell types in 
the brain may also be capable of undergoing senescence including oligodendro-
cytes, which could affect neuronal myelination and subsequent signaling capabili-
ties as well as endothelial cells, resulting in breakdown of the BBB and infl ux of 
peripheral infl ammatory factors [ 168 ]. Cellular senescence has been reported to 
occur in the vascular endothelium in the periphery, suggesting that this same cell 
type may be vulnerable in the aging brain. Replication-competent cell types capable 
of undergoing senescence and expressing a SASP could potentially affect the func-
tion of neighboring neurons and contribute to their degeneration. They could also 
promote an amplifi cation of glial cell activation. A recent publication showed that 
both p16 INK4a  and the SASP factor matrix metalloproteinase (MMP) 3 increase in 
brains from AD patients compared to age-matched controls; interestingly, this 
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increase occurred primarily in cortical astrocytes [ 169 ]. This may be important not 
only in these disease states themselves, but in terms of the effective use of cellular 
transplantation as a therapy for these disorders (see below).  

5.4     Reduced Adult Neurogenesis 

 Neurogenesis entails the production of new neurons from neural precursor cells 
(NPCs). In adult brains, NPCs proliferate in the subventricular zone (SVZ) of the 
lateral ventricle and the subgranular zone (SGZ) of the hippocampal dentate gyrus 
(DG) [ 170 ]. They then migrate to sites of injury (in the case of PD, the nigrostriata) 
and differentiate into functional neuronal and glial cell types. We and others showed 
that the ability of NPCs to proliferate, migrate, and differentiate is signifi cantly 
blunted by advancing age and the degree of this decline is exacerbated by 
PD-inducing agents such as MPTP [ 171 – 175 ]. This may be due to increased oxida-
tive stress or neuroinfl ammation, resulting in neural progenitor cell (NPC) senes-
cence or loss. It is currently not clear that induction of endogenous NPCs alone is 
suffi cient in the context of the aging brain to restore losses in DAergic SNpc neu-
rons. In addition to neurons, it will also likely be of import to consider alterations in 
the regenerative capacity and function of non-neuronal brain cells during aging and 
in PD. 

 Cellular transplantation to replace lost or damaged neurons in patients with the 
disease is a therapeutic option that mimics what occurs to a lesser degree during 
endogenous adult neurogenesis. However as mentioned previously, there are poten-
tial roadblocks. Upon extensive culturing (2 months), DAergic neurons derived 
from patients with sporadic PD show characteristic morphological features found in 
the diseased brain, including reduced neurite number, accumulation of cellular 
α-synuclein, and increased numbers of autophagic vacuoles [ 176 ]. This suggests 
that long-term cell survival may be diminished, particularly in the environment of 
on aging brain. It would be of interest to know whether cell survival is increased in 
brains made more youthful, for example following removal of senescent cells.  

5.5     Beyond Mendelian Genetics: Epigenetics 
and the Transcriptome 

 Increases in DNA methylation and alterations in post-translational histone modifi -
cations including changes in histone methylation and acetylation patterns have been 
reported in various models of PD and observed in patient samples [ 177 ]. For exam-
ple, DNA methylation has been shown to regulate expression of the gene encoding 
α-synuclein, SNCA, as well as others. Masliah and colleagues have reported that 
α-synuclein can interact with the demethylase Dnmt1 in the cytoplasm, preventing 
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it from translocating to the nucleus and resulting in elevations in DNA methylation 
[ 178 ,  179 ]. Alpha-synuclein has itself been reported to interact directly with his-
tones and to inhibit histone H3 acetylation [ 180 ,  181 ]. Both of these can impact 
gene expression patterns. Our laboratory has shown that selective binding of 
α-synuclein to particular histone marks not only tracks with human disease and 
occurs in PD models, but also leads to functional effects on patterns of genome- 
wide transcription, including expression of PGC1alpha [ 181 ] (our unpublished 
data). HDAC inhibitors have been shown to be neuroprotective in various models of 
the disorder [ 182 ]. The histone deacetylase LSD-1 is inhibited by lithium, an agent 
shown by our laboratory to be neuroprotective in PD mouse models [ 183 ,  184 ]. 
LSD-1 is also inhibited by MAO-B inhibitors currently under use as treatment for 
the disorder [ 143 ]. A known target of transcriptional LSD-1 repression is  p57   kip2   , a 
g ene that aids in the differentiation and maintenance of midbrain DAergic neurons 
[ 185 ]. Beyond its effects on histones, LSD-1 inhibition can also impact on p53’s 
ability to interact with 53BP1 and to induce apoptosis [ 186 ]. Its other non-histone 
substrates include FOXO transcription factors and NFkappaB [ 187 ]. Lithium and 
LSD-1 inhibition both result in increased lifespan in  C. elegans , suggesting that 
they may have impacts in terms of aging itself [ 188 ]. 

 Aging is also associated with extensive remodeling of gene expression profi les in 
different tissues as a consequence of epigenetic alterations. The HSPs 22 and 70, 
implicated in PD as well as in lifespan determination, are strongly regulated by 
histone modifi cation [ 189 ]. Changes in mitochondrial function that increase cellular 
ROS and affect NAD + /NADH ratios in PD and aging may also impact nuclear DNA 
methylation and histone modifi cations [ 190 ,  191 ]. Alterations in epigenetics as a 
consequence of aging and PD are likely impacted by individual environmental fac-
tors over the lifespan, which may in part explain individual variability in the presen-
tation of both conditions.   

6     Needed Research in This Area 

 There are several areas of research needed in order for us to achieve a better under-
standing of the interplay between aging and PD. These include a better understand-
ing of the dual protective roles of autophagy in turnover of damaged proteins and 
organelles like the mitochondria, the precise sources of infl ammation (glial cell acti-
vation, cellular senescence), and causes of lost neurogenesis in adult neural stem 
cells (e.g. whether cellular senescence is a factor). We also need to better understand 
the difference between transient stressors that allow adaptation versus chronic 
stressors which result in damage—retrograde mitochondrial signaling including 
brief elevations in mitochondrial ROS is a good example of the former [ 192 ]. More 
work needs to be devoted to linking fi ndings in cellular and animal models to 
humans. This include the development of working mouse models of PD that take 
aging into consideration, as well as the use of patient iPSC-derived DAergic neu-
rons, human autopsy tissues, and epidemiological/clinical studies. Undoubtedly this 
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would be aided by an increased use of non-human primate models in both PD and 
aging. Studies in rhesus monkeys show a strong correlation not only between the 
presence of α-synuclein in aged versus MPTP-treated monkeys, but also of other 
disease hallmarks including selective reductions in DAergic SNpc cell number, 
defects in UPS and lysosomal activities, markers of oxidative and nitrosative stress, 
and neuroinfl ammation [ 193 ]. Marmosets are shorter-lived and have also been used 
in PD research, so they represent an attractive alternative model [ 194 ]. 

 An especially vital area of research is obtaining a better understanding of the 
interrelationship between genes and environment (the ‘exposome’) on PD and aging 
[ 195 ]. Dietary fat and exposure to heavy metals and pesticides are all examples of 
environmental factors linked to increased risk for PD [ 196 – 198 ]. The relationship 
between dietary restriction (DR), the gut microbiome, and aging may also have 
important implications for mechanisms underlying PD. Intermittent fasting (every 
other day fasting) has been proposed to have an effect on brain function [ 199 ]. DR 
has been linked to prevention of aging in several model systems as well as benefi cial 
effects in PD mouse models [ 200 ]. PD patients show elevated heart rate and impaired 
cardiovascular stress response due to effects on the autonomic nervous system pre-
ceding DAergic SNpc loss correlating with α-synuclein accumulation [ 201 ]; DR 
resulted in prevention of these effects in a mouse model of the disease [ 202 ]. 
Production of ketone bodies during periods of fasting may also have benefi cial 
effects in the brain due to inhibition of histone deacetylases, impacting on the tran-
scription of genes like neurotrophic BDNF, reduction of pro-infl ammatory cyto-
kines, enhancement of neurogenesis, and perhaps even induction of mitochondrial 
biogenesis via SIRT1-related elevation in PGC1α levels [ 203 ]. 

 The diversity and make-up of the gut microbiome has been shown to change with 
age, coinciding with infl ammaging [ 204 ]. These alterations have been demonstrated 
to be involved in risk for chronic age-related diseases including cardiovascular dis-
ease, infl ammatory bowel syndrome, metabolic disease, and cancer [ 205 ]. This is 
alterable for better or worse by lifestyle and diet, and as a consequence the gut 
microbiome has been identifi ed as a target for improving overall health in the elderly 
population [ 206 ]. Scientifi c evidence for an involvement of the gut microbiome in 
brain function has recently begun to gain ground for disorders such as autism and 
depression [ 207 ]. Given its role in infl ammaging, composition of the gut microbi-
ome could potentially also play a role in neurodegenerative diseases like PD. The 
gut microbiome is responsible for the production and processing of micronutrients 
such as folate, thiamine, ribofl avin, and biotin. Defi ciencies in these have all been 
linked to PD as well as to aging in some cases [ 208 ]. Pyroxidine is also produced 
via activity of gut microbes and is known to accelerate the rate of conversion of 
L-Dopa in the periphery, which can be slowed by inclusion of carbidopa [ 209 ]. 
Disruptions in circadian rhythms have recently been linked to alterations in the gut 
microbiome [ 210 ]. Both are associated with similar chronic age-related diseases 
[ 205 ,  211 ]. Mice with genetically altered circadian rhythms were found to have 
signifi cantly altered gut microbiota when fed a high-fat, high-sugar diet [ 212 ,  213 ]. 
These data suggest that age-related changes in the circadian clock can drive changes 
in the microbiome and impact chronic disease states, perhaps including PD. Indeed 
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loss of midbrain DAergic neurons in the Mitopark mouse has recently been found 
to be associated with disruption of circadian rhythms [ 214 ]. 

 Recent animal studies have also shown that gut microorganisms can activate the 
vagus nerve via immunomodulatory effects and that this plays a critical role in 
mediating brain function [ 215 ,  216 ]. The vagus nerve connects the enteric nervous 
system to the brain and is considered a possible pathway for transmission of 
α-synuclein [ 217 ]. Understanding the role of the vagus nerve may have important 
implications for the development of microbial- or nutrition-based therapeutic strate-
gies for PD and related disorders.  

7     Conclusions 

 The most recent scientifi c evidence in the fi eld suggests that PD is one of several 
disorders for which aging is not merely a risk factor, but an underlying cause of 
disease. This suggests the exciting possibility that by seeking to prevent or slow 
basic processes that drive aging, we will uncover potent new therapies for PD and 
related neurodegenerative conditions as well as other age-related disorders. This 
enterprise will involve additional research in order to identify the most promising 
potential therapeutic directions.     
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1            Skeletal and Muscle Compartments: Relationship 
to the Geroscience Pillars 

 The skeleton is one of the largest systems in the body consisting of a mineralized 
matrix and a highly active cellular remodeling unit, composed of osteoblasts, osteo-
clasts, osteocytes and bone lining cells [ 1 ]. The most obvious function of the skel-
eton is to provide structural integrity for the organism while maintaining a degree of 
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elasticity that allows for a broad range of locomotor activities. In addition to its 
structural function, the skeleton also serves as a mineral depot insuring the mainte-
nance of serum calcium and phosphate levels through normal remodeling processes 
and by secretion of peptide factors such as FGF-23. Every 10 years the human 
skeleton is completely remodeled. Just as importantly, the skeleton encases the bone 
marrow and maintains a niche along trabecular bone elements for active hematopoi-
esis. The marrow niche consists of osteoblasts, adipocytes, reticuloendothelial cells, 
sinusoids, and mesenchymal stromal and stem cells. These progenitors respond to 
injuries at various sites, not restricted to bone, providing new cells for critical repair 
processes [ 2 ]. Remarkably, the adult skeleton also harbors a huge adipose depot, 
comprising 10–15 % of all fatty tissues in the body [ 3 ]. With aging that percentage 
increases, particularly as peripheral adipose depots shrink. Whether this is a 
response to chronic infl ammation, metabolic changes from insulin resistance, dis-
use because of muscle atrophy or molecular drivers related to senescence within the 
marrow is currently being debated. Regardless, alterations in either the structural or 
metabolic functions of the skeleton, a key component of the aging process, have 
tremendous implications for the overall health of the organism. 

 Muscle represents the single largest component of the body, representing ~40 % 
mass by weight in a typical individual. There are more than 600 muscles in the body, 
with distinct differences in metabolism, cellular makeup, the ability to generate 
force, as well as specifi city for workload. Skeletal muscles are composed of indi-
vidual fi bers, anchored to the skeleton through tendons, and each fi ber is essentially 
a single cell, containing multiple nuclei throughout its length. Muscle fi bers can be 
generally broken down into two key types, fast twitch, and slow twitch, with a num-
ber of further subtypes dependent on species. Fast twitch fi bers are primarily glyco-
lytic, and generally are associated with explosive energy demands such as sprinting. 
Slow twitch fi bers are primarily oxidative, and are typically associated with more 
sustained workloads such as long distance running, and certain muscles can be pre-
dominantly comprised of only one type, while other muscles have mixed fi ber types. 
Muscle is one of the major sites of metabolism in the body, and is responsible for 
more energy consumption than fat and bone combined. Although we do not yet have 
a complete picture of age-related atrophy with regards to each distinct muscle in any 
species, it is generally agreed that there is a loss of muscle mass with age. The exact 
extent of loss is not yet clear, and may vary depending on environment, lifestyle, and 
genetics. Importantly, accompanying the loss of muscle, there is a corresponding 
decline in function. Initially, the loss of muscle mass with age was thought to be due 
to a loss of type II fi bers, however recent studies have suggested that the loss in 
muscle mass can be almost entirely explained by atrophy, rather than loss, of type II 
fi bers alone. Therefore, changes in metabolism, mitochondrial autophagy, enhanced 
reactive oxygen species and impaired stem cell regenerative capacity, all could lead 
to muscle atrophy, disuse and ultimately to a failure in loading [ 4 ]. Thus musculo-
skeletal aging must be considered within the context of extending healthspan since 
general mobility is critical for a good quality of life. Muscle and bone are intimately 
associated with each other, yet we typically study each in isolation, and there are 
few studies examining them together as a functional system. 

 There are three skeletal compartments with unique functional characteristics, 
trabecular bone, cortical bone and the periosteum. Each compartment is com-
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posed of nearly identical cells that arise from the same precursor but functionally 
may be very different. Not unexpectedly, these cells and their compartments differ 
in their response to the stressors of aging, including changes in metabolism, reac-
tive  oxygen species, and infl ammation. Trabecular bone comprises about 20 % of 
the human skeleton in young adults and is present primarily in the axial bones. In 
rodents it comprises less than 5 % of bone mass and cross sectional studies to date 
have suggested that it is lost much earlier during the aging process relative to 
cortical bone. Its large surface area provides a framework for skeletal remodeling 
and calcium homeostasis, ensuring adequate calcium for the body while also pro-
viding the elasticity necessary for bi- and quadra-pedal locomotion. 

 It is estimated that every 10 years, the human skeleton is remodeled, with the 
greatest frequency of turnover in trabecular bone [ 1 ,  5 ]. There is no evidence that 
remodeling slows with age, and indeed, there may be increased bone resorption dur-
ing the latter decades of life. This may be associated with enhanced reactive oxygen 
species generation, epigenetic changes, or enhanced expression of RANKL from 
osteocytes that leads to greater bone resorption. 

 The cortical compartment surrounds the trabecular elements and is composed of 
a solid layer of calcifi ed matrix in lamellar bone. Cortical bone is a hard tissue with 
elastic properties that enhance its strength. It is also very dynamic. The endocortical 
surface of cortical bone is subject to remodeling due to the presence of osteoclasts 
and osteoblasts, as well as its proximity to the marrow space, where progenitor cells 
reside, although the rate of turnover is much lower than in the trabecular skeleton. 
The periosteum is the outer layer of the skeleton and serves several functions but 
does not remodel, even though it is a major source of progenitor cells for fracture 
healing and for endochondral bone formation. Importantly, the periosteum contrib-
utes to skeletal growth, the response to mechanical loading, the injury and fracture 
response, and the compensatory mechanisms associated with aging that attempt to 
preserve strength in the face of trabecular and cortical loss. Importantly, despite 
several determinants directly related to aging (i.e. geroscience pillars) including 
metabolic, infl ammatory and epigenetic processes, the periosteum appears to 
respond appropriately to changes with the trabecular compartment even at advanced 
ages. However, few studies have addressed why a highly innervated and vascular 
tissue (i.e. the periosteum) can withstand the stressors of aging that have deleterious 
effects on other hard and soft tissues. 

 Like bone, there are substantial changes in the musculature with age. Between 
the forth and fi fth decade of life, homeostatic control of muscle mass declines, 
resulting in an overall loss of muscle mass in later years of life – termed sarcopenia 
(“poverty of the fl esh”). This loss of muscle mass due to intrinsic aging has been 
estimated to be of the order of 1 % a year from ~50 years of age, and can result in 
as much as a 30 % loss of muscle mass by the mid-80s. Although sarcopenia 
appears to be a universal attribute of aging, which has been documented in multiple 
mammalian species [ 6 – 9 ] as well as invertebrate models of aging [ 10 ,  11 ], com-
paratively little work has been done in determining how sarcopenia dynamically 
affects the more than 600 different muscle types in aging mammals [ 7 ,  9 ,  12 – 14 ]. 
Even less has been reported about the effect of sarcopenia on different compart-
ments of the skeleton. Most studies to date have focused on large muscle groups 
where it is possible to obtain suffi cient material to enumerate the number and type 
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of fi bers present at specifi c ages, and nearly all data collected to date is cross sec-
tional in nature. Common methods to measure atrophy in the fi bers and subsequent 
loss of muscle mass include non-invasive techniques such as MRI (for evaluating 
cross sectional area of the thigh for example), as well as muscle biopsies, used to 
enumerate the total number of fi bers present in the biopsy as well as defi ning the 
level of atrophy and the corresponding fi ber type (myosin heavy chain specifi c 
isoforms distinguish fi ber types). The mechanisms through which muscle mass is 
lost with age are currently unknown, but are likely multifactorial. Factors that have 
been implicated in sarcopenia include lifestyle, hormonal milieu, mitochondrial 
dysfunction, nutritional status, protein synthesis, stem cell decline, loss of neuro-
muscular junctions, and fi ber atrophy [ 4 ,  15 – 22 ]. Mitochondrial dysfunction could 
result from enhanced ROS production, epigenetic changes due to environmental 
determinants, metabolic load (particularly glucose) and infl ammation. Since both 
bone and muscle share common regulatory features such as cytokines, neurotropic 
factors, and the sympathetic nervous system, it seems likely that with aging there 
are concomitant changes in both tissues that ultimately result in falls and 
fractures. 

 Skeletal aging begins after the rapid phases of bone modeling and growth dur-
ing adolescence. The acquisition of peak bone mass is related to a complex series 
of hormonal changes associated with matrix biosynthesis and mineralization. 
This is followed in humans by a plateau phase of variable duration in early adult-
hood, followed by loss of bone mass from two of the three skeletal compartments. 
During growth, bone modeling occurs through endochondral bone formation (i.e. 
requiring cartilage) by longitudinal expansion of the growth plate from the sec-
ondary and primary spongiosa [ 23 ]. Membranous bone formation without the 
need for chondrocytes occurs primarily in the craniofacial bones. After peak bone 
acquisition (ages 12–16), skeletal remodeling balances resorption with formation 
by a general maintenance phase that may last from 5 to 25 years in humans. 
Ultimately bone loss occurs from the trabecular and cortical skeleton although 
there is debate about the timing and magnitude as well as the compartmental spe-
cifi c effects [ 24 ]. In general, trabecular bone is lost fi rst and may begin as early as 
the third decade of life in humans [ 25 ]. By the nineth decade of life, there is a 
marked diminution in trabecular bone in the distal extremities with even less tra-
beculae in the vertebrae. In female C57BL/6J mice, trabecular bone from the dis-
tal femur and tibia begins an incessant decline by as early as 8 weeks of age, 
whereas spongy bone loss from the vertebrae doesn’t start until nearly 16 weeks 
[ 26 ]. These changes are relatively similar with regards to the biological age of 
human bone loss. However, unlike humans, trabecular bone in the femur/tibia of 
mice is essentially absent after ~12 months of age, although further studies are 
needed to longitudinally follow bone with age. In addition, both in humans and 
mice there is a much slower rate of loss of trabecular bone in males than females. 
It is still uncertain how age-related trabecular bone changes impact, if at all the 
muscle bone interface. 

 Cortical bone remodels in humans and in rats but less so in mice. Conversely, 
bone loss from this compartment starts much later on the endocortical surface than 
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on the endosteal perimeter, and is incessant [ 27 ]. Cortical thickness declines with 
aging at a relatively constant rate although it can be accelerated by hormonal imbal-
ances (e.g. estrogen loss at menopause, hypogonadism in males, glucocorticoid 
excess in both sexes) [ 28 ]. The stressors that compose the pillars of Geroscience and 
impact soft tissue also play a major role in cortical bone changes. However, less 
work has been done in determining the relative magnitude or the sum of these 
effects. Traditionally, hormonal imbalances have been ascribed as the major mecha-
nism for bone loss. But emerging studies suggest that accumulation of toxic sub-
stances, mitochondrial dysfunction, metabolic stress, and impaired stem cell 
responsiveness also play critical roles. 

 Cortical bone can become porous with age, although the mechanism for the 
development of these pores within the matrix remains uncertain. One possibility is 
that cortical bone becomes trabecularized by higher rates of resorption and this 
leads to areas of porosity that are imbedded within the cortex. Seeman has proposed 
the notion that most age-related osteoporosis represents disease of the cortical skel-
eton [ 29 ]. Hence around midlife, in women, remodeling balance becomes negative; 
less bone is deposited than it is resorbed by each bone’s basic multicellular units 
(BMUs), and remodeling rate increases; there are more BMUs removing bone upon 
intracortical, endocortical, and trabecular surfaces. Canals enlarge and coalesce cre-
ating giant pores. Remodeling upon trabecular surfaces removes canals, whereas 
intracortical and endocortical remodeling fragments the cortex. Seeman proposes 
that bone loss becomes almost entirely cortical as trabeculae disappear [ 29 ]. Overall, 
remodeling removes more bone from a diminishing total mineralized bone matrix 
volume so that by old age, total mineralized bone matrix volume is halved; but 70 % 
of all bone loss is cortical because 80 % of the skeleton is cortical; a third of all the 
bone loss arises from the 20 % of the skeleton that is trabecular. Hence most of the 
fractures occurring with aging are non-vertebral (hip, humerus, tibia, fi bula, radius) 
and predominantly cortical whereas 20 % are vertebral. If indeed, cortical bone 
changes are the major determinants of osteoporosis, then the impact on muscle, and 
vice versa must be signifi cant. 

 As cortical bone thins, and porosity increases, structural fragility becomes more 
pronounced. Intriguingly, in mammals there is a compensatory mechanism in place 
during aging that is activated by the rapid loss of long bone. This is termed ‘perios-
teal expansion’ and it has a potential to increase bone area and partially buffer the 
higher rate of endosteal and endocortical resorption with age [ 30 ]. The unique 
capacity of the periosteum, which is the site of insertion of tendons from large 
muscles, to expand, improves skeletal properties such as the polar moment of iner-
tia, and stiffness, thereby partially preserving bone strength and reducing the risk of 
fracture. Males tend to have a more vigorous periosteal response to aging and injury 
than females; this may be due to inherent cell autonomous differences by sex. The 
molecular drivers of this difference have not been elucidated nor is it clear that 
androgens direct this process. Moreover, the signals for periosteal compensation are 
also not known but it is this interface between bone and muscle that provides some 
fascinating insights into the physiology of aging and hence can shed light on the 
defects inherent in osteoporosis.  
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2     Unique Aspects of the Bone-Muscle Interface: Relationship 
to Geroscience 

 To understand the importance of the muscle-bone interface within the broader con-
text of geroscience, it is critical to defi ne the anatomical relationships. Muscles 
insert on bone via tendons that connect to a fi brous layer on the surface of bone. The 
periosteal layer or membrane is contiguous with this fi brous layer and covers all 
bones in the body except the joints. It is made up of sensory fi bers, endothelial tis-
sue, stromal elements including mesenchymal stromal cells (MSCs) that could 
become osteoblasts, vascular networks and some adipocytes. The periosteum is 
really a dense irregular connective tissue [ 31 ]. It can be divided into an outer “fi brous 
layer” and an inner “cambium layer” (or “osteogenic layer”). The fi brous layer con-
tains fi broblasts, while the cambium layer contains progenitor cells that develop 
into osteoblasts. These osteoblasts are responsible for increasing the width of a long 
bone and the overall size of the other bone types. After a bone fracture the progeni-
tor cells can develop into osteoblasts and chondroblasts, which are essential for 
fracture healing. Bone has very few long track sensory nerves beyond the innerva-
tions to osteoblasts whereas the periosteum has nociceptive nerve endings, making 
it very sensitive to manipulation. The nerve endings are accompanied by many 
blood vessels, branches of which penetrate the bone to supply the osteocytes, or 
older osteoblasts embedded within the cortex. These perpendicular branches pass 
into the bone along channels known as Volkmann canals to the vessels in the 
Haversian canals, which run the length of the bone. 

 Osteocytes are older osteoblasts that serve as mechano-sensors to modulate skel-
etal remodeling through the secretion of peptide factors such as sclerostin. This 
connection between cell surfaces (via the periosteum), which is activated by loading 
of the bone, can respond to fl uid fl ux within the cortical lacunae and communicate 
with other cells via the canaliculi. Recent studies of the osteocyte further support its 
importance in regulating bone remodeling through several factors, including 
RANKL which can cause osteocytic osteolysis (i.e. dissolution of matrix around 
osteocytes) and sclerostin which by binding to Lrp5, a critical receptor for osteo-
blasts, can inhibit new bone formation [ 1 ,  32 ]. In addition, osteocytes also secrete 
endocrine factors such as FGF-23 which modulates phosphate homeostasis [ 1 ]. 
Aging bone is characterized by osteocytic drop out, or what is termed ‘empty lacu-
nae’ [ 1 ,  25 – 27 ]. Apoptosis is the presumed mechanism, but the molecular drivers of 
that process are not known. In a recent study, Jilka et al. genetically deleted two 
osteocytic genes related to apoptosis and found that in aging mice, the lacunae were 
fi lled with viable osteocytes but paradoxically there was increased bone resorption 
and signifi cant cortical porosity [ 33 ]. 

 Fibrous cartilage often takes the place of the periosteum along grooves where 
tendons exert pressure against the bone. The periosteum itself is attached to bone by 
strong collagenous fi bers called Sharpey’s fi bers, which extend to the outer circum-
ferential and interstitial lamellae [ 34 ]. Pressure from muscle insertion on the fi brous 
membrane affects the mechanosensors almost certainly through growth factor 
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 signals from the periosteum, either locally or systemically. The periosteum also 
produces bone when it is stimulated appropriately [ 31 ]. Practically anything that 
breaks, tears, stretches, infl ames, or even touches the periosteum can lead to a reac-
tive process whereby new bone is formed. This is termed a  periosteal reaction , also 
known as a  periosteitis , which is a non-specifi c radiographic fi nding that occurs 
with periosteal irritation. Periosteal reactions can be broken down by pattern, but in 
all cases the response arises from the skeletal disease itself, not in the periosteum. 
With slow-growing processes, the periosteum has plenty of time to respond to the 
process. That is, it can produce new bone just as fast as any growing lesion. This is 
particularly important when considering the periosteal response to bone loss and the 
aging process. With aging, there is some clinical evidence that fracture healing is 
impaired. However there is tremendous inter-individual variation and mid- 
diaphyseal periosteal measures including cambium and fi brous layer thickness and 
cellularity do not correlate signifi cantly with age or body mass [ 20 ]. Gender cer-
tainly plays an important role in the periosteal response to aging but the cell autono-
mous factors involved remain unknown [ 35 ]. 

 The  tendon  is a tough band of fi brous connective tissue that usually connects 
muscle to bone and is capable of withstanding tension. It is that tension which is 
thought to provide the initial force on the bone that leads to signals for modeling and 
remodeling of the skeleton. There are no studies that report on differences in 
mechanical forces with aging, although certainly sarcopenia must have an impact. 
Tendons are similar to ligaments and fasciae; all three are made of collagen. The 
mechanical properties of the tendon are dependent on the collagen fi ber diameter 
and orientation. The collagen fi brils are parallel to each other and closely packed, 
but show a wave-like appearance due to planar undulations, or crimps, on a scale of 
several micrometers. In tendons, the collagen fi bers have some fl exibility due to the 
absence of hydroxyproline and proline residues at specifi c locations in the amino 
acid sequence, which allows the formation of other conformations such as bends or 
internal loops in the triple helix and results in the development of crimps. The 
crimps in the collagen fi brils allow the tendons to have some fl exibility as well as 
compressive stiffness. In addition, because the tendon is a multi-stranded structure 
made up of many partially independent fi brils and fascicles, it does not behave as a 
single rod, and this property also contributes to its fl exibility. The uniqueness of the 
tendon, and its transmutation of loading from the muscle must play a role in the 
periosteal compensation that occurs with aging [ 36 ]. However, if that signal is 
dampened by sarcopenia, or reduced loading, mechanically-induced expansion of 
the periosteum might be impaired, leading to altered biomechanical properties and 
ultimately skeletal fragility. 

 The extent of mechanical loading (e.g. through strength training) of muscle on 
bone via tendons and the periosteum has been strongly associated with cortical bone 
mass in both cross sectional and longitudinal studies [ 37 ]. Conversely, skeletal 
unloading due to bed rest, zero gravity states or muscle disease results in low bone 
mass and skeletal fragility. However, it is unclear whether all of the effects of bone 
unloading are mechanically mediated or if there are soluble mediators that might be 
released from atrophic muscles to negatively affect skeletal remodeling. Similarly, 

Aging and the Bone-Muscle Interface



264

the sarcopenia of aging is associated with falls, reduced muscle strength and frac-
tures. Whether these age-related changes are all mechanically-mediated or are 
related to the intertwined factors that defi ne aging, such as infl ammatory cytokines 
and myokines, metabolic dysfunction, changes in innervation and/or buildup of 
toxic superoxides, remain to be elucidated.  

3     Experimental Evidence that Periosteal Expansion Occurs 
During Aging 

 Bone loss is an inexorable feature of aging in all mammalian systems although the 
mechanisms are multi-factorial and species-specifi c. In rodents and humans, both 
cortical and trabecular bone are lost with advancing age although the rates differ 
considerably. In general, trabecular bone loss occurs fi rst, due in part to its greater 
surface area compared to the cortical compartment. Inbred strains of mice lose bone 
from the distal femur as early as 8 weeks of age [ 26 ]. In humans, studies using 
quantitative CT and microCT have demonstrated trabecular thinning and slow but 
incessant bone loss beginning in the third decade of life in women [ 25 ]. As such, 
even though menopause induces an estrogen defi cient state over a period of years, 
and this has been associated with accelerated bone loss, it is evident that the other 
common factors noted previously, i.e. metabolic, proteostatic, infl ammatory and/or 
toxic, contribute to age-related bone loss. A characteristic feature of this loss, inde-
pendent of gonadal steroids and in both cortical and trabecular compartments is 
uncoupled remodeling such that resorption accelerates beyond formation. Bone for-
mation may increase marginally in response to the ensuing loss, but with advanced 
age, this response appears to be blunted. This latter feature has been variously attrib-
uted to greater reactive oxygen species, reduced stem cell pools, senescent acceler-
ated impairment in bone formation, non-cell autonomous factors such as higher 
sympathetic tone and greater concentrations of toxic cytokines or ROS. Recently, 
Bartel et al. reported that Foxo proteins restrain age-related osteoclastogenesis by 
modulating H 2 O 2  accumulation [ 38 ]. 

 Mechanically, bone loss alters the skeletal microarchitecture and reduces bone 
strength. In the axial spine, trabecular loss leads to enhanced fragility and suscepti-
bility to compression fractures that can have a signifi cant impact on quality of life 
and morbidity [ 14 ]. In the cortical compartment, long bones undergo loss as well 
although it may differ by site and by the amount of trabecular bone within the 
appendicular skeleton. In mice, cortical remodeling is not a major feature but in rats, 
monkeys and humans, cortical turnover predominates in later life. The major cost to 
society of age-related cortical bone loss is a hip fracture. Signifi cant architectural 
changes occur during the slow but inexorable process of uncoupled bone turnover. 
In particular, the endocortical surface of the cortex (Fig.  1 ) undergoes resorption, 
leading to an expanded marrow cavity. This loss can lead to trabecularization of the 
cortex and cortical porosity.
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   Paradoxically, the periosteal surface of the cortex is not subject to loss and in fact 
expands at the same time as there is endocortical resorption [ 37 ]. Miller et al. aged 
genetically heterogeneous UM-HET3 mice that were produced by a cross between 
(C57BL/6J × BALB/cJ)F1 males and (C3H/HeJ × DBA/2J)F1 females to show that 
changes in bone diameter are associated with lifespan [ 39 ]. Remarkably, those mice 
with the greatest cortical thickness had the highest survival rate. Not surprisingly, 
the authors also noted that the endosteal envelope expanded by nearly 20 % due to 
increased bone resorption with age. Importantly, the increase in cortical area with 
age from 4 to 24 months was predominantly related to the increase in periosteal 
circumference (from 4.88 to 5.66 mm; p < 0.01) thereby partially maintaining corti-
cal thickness. How periosteal expansion is related to lifespan remains to be deter-
mined in mice but may refl ect the health of connective tissue or the pool of 
progenitors that are necessary for this compensation. 

 Studies in humans provide additional support for the compensation theory. 
Ahlborg et al. measured bone mass and the skeletal structure of the distal radius by 
single-photon absorptiometry every other year in 108 women, all of whom were 
followed from the time of menopause for a mean period of 15 years [ 35 ]. The mean 
(± SD) annual decrease in bone mineral density was 1.9 ± 0.7 %. The medullary 
bone diameter increased annually by 1.1 ± 0.9 %, and the periosteal diameter by 
0.7 ± 0.3 %; while the strength index decreased by 0.7 ± 0.7 %. The expansion of the 
medullary diameter with a simultaneous increase in the periosteal diameter was 
directly correlated (r = 0.54, P < 0.001), and women in the highest quartile of medul-
lary expansion had more loss of bone mineral density and greater periosteal 

20 years 60 years 90 years

Female

Male

Periosteum

Endosteum
Cortical bone

Marrow cavity

  Fig. 1    Changes with aging in the endocortical and periosteal envelope by gender. A cross sec-
tional view of a typical long bone (femur) showing different features which dynamically change 
with age and sex       
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 apposition than women in the lowest quartile (P < 0.001 for both comparisons) [ 35 ]. 
The strength index decreased as might be expected but might have been more severe 
had periosteal expansion not occurred. The factors that regulate this expansion are 
not clear, but interestingly, estradiol levels were inversely related to the periosteal 
expansion rate. In summary, aging is associated with progressive increases in med-
ullary diameter accompanied by periosteal expansion The structural implications of 
this compensatory response and their relationship to progressive age-related muscle 
loss need further exploration. The factors that permit the periosteum to resist age- 
related changes in metabolism and buildup of reactive oxygen species are also 
unknown.  

4     Cellular and Biochemical Aspects of the Periosteum 
in Relation to Aging 

 The periosteum is rich in distinct cell types, some of which may be responsive to 
signals from the osteocyte, or from mechanical loading of the tendon. Moreover, 
because it is highly vascularized, the periosteum is subject to endocrine actions of 
hormones such as IGF-I and PTH. But the periosteum also contains signifi cant num-
bers of progenitors and mesenchymal stem cells and it is the balance between mature 
and progenitor cells that ultimately defi ne the function of the periosteum [ 37 ,  31 ]. If 
one of the determinants of unhealthy aging is reduced stem cell pools or reduced 
stem cell function, the periosteum may be at least partially protected. Alternatively 
it is possible that adult periosteal cells may undergo senescence and thereby be resis-
tant to autocrine, paracrine or endocrine signals such as infl ammatory cytokines. In 
one report immunohistochemical detection of Ki67 and p53, Nitric Oxide (NO) pro-
duction and qRT- PCR of a selected gene panel for osteoblastic differentiation, bone 
remodeling and ‘stemness’ were evaluated. The authors confi rmed that both Ki67 
and p53 were noteworthy indicators of senescence in human periosteal precursor 
cells and their expression signifi cantly correlated with cell NO production [ 40 ]. 
Moreover, cell age affects genes involved in bone remodeling, with a signifi cant 
increase in interleukin-6 mRNA expression and receptor activator of nuclear factor 
kappa-B ligand (RANKL)/osteoprotegerin (OPG) ratio [ 40 ]. O’Keefe and col-
leagues recently reported that reduced fracture healing in aging involves decreased 
proliferation and differentiation of stem cells lining the bone surface. While PTH 
1–34 enhances the proliferation and expansion of the periosteal stem cell population 
and accelerates bone formation and fracture healing, the effects are proportionately 
reduced during the aging process compared to young mice [ 41 ]. 

 Another mechanism whereby periosteal expansion may be limited during aging 
is through the impairment of progenitor cell recruitment from muscles. Recent stud-
ies have established that muscle-derived stem cells are able to differentiate into 
cartilage and bone and can directly participate in fracture healing. The role of 
muscle- derived stem cells is particularly important in fractures associated with 
more severe injury to the periosteum. Muscle anabolic agents may improve function 
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and reduce the incidence of fracture with aging as well as maintaining the muscle- 
bone interface [ 42 ].  

5     Non-cell Autonomous Factors Regulating the Bone/Muscle 
Interface During Aging 

 Although the continued periosteal apposition that accompanies age-related bone 
loss is a biomechanically critical target for prophylactic treatment of bone fragility, 
the magnitude of periosteal expansion required to maintain strength and stiffness 
during aging has not been established. A new model for predicting periosteal appo-
sition rate for men and women was developed by Jepsen et al. to better understand 
the complex, nonlinear interactions that exist among bone morphology, tissue- 
modulus, and aging [ 43 ]. Periosteal apposition rate varied up to eightfold across 
bone sizes, and this depended on the relationship between cortical area and total 
area, which varies with external size and among anatomical sites. There was a 
65–145 % increase in periosteal apposition rate beyond that expected for bone loss 
alone. But periosteal apposition rate had to increase as much as 350 % over time to 
maintain stiffness for slender diaphyses, whereas robust bones required less than a 
32 % increase over time. Small changes in the amount of bone accrued during 
growth (i.e., adult cortical area) affected periosteal apposition rate of slender bones 
to a much greater extent compared to robust bones. Thus bone growth places a 
heavy burden on the biological activity required to maintain stiffness with aging. 
Finally, sex-specifi c differences in periosteal apposition were attributable in part to 
differences in bone size. The results indicate that a substantial proportion of the 
variation in periosteal expansion required to maintain bone strength during aging 
can be attributed to the natural variation in adult bone width [ 43 ]. Clinical data to 
differentiate the biological responses that are attributable to size effects from other 
genetic and environmental factors are necessary.  

6     Muscles, Myokines, and the Periosteum: Intertwining 
Factors During Aging 

 Muscles and bone are intimately linked beyond the biomechanical connection 
through bi-directional signals regulating gene expression, proliferation and differ-
entiation. It is generally accepted that muscle cells secrete factors (myokines) that 
infl uence adjacent bone cells, but few myokines have been identifi ed and character-
ized functionally. Importantly, the periosteum can serve as a barrier for locally 
secreted muscle factors unless the soluble substances are relatively small and can 
permeate the tissue. Lai et al. recently reported that PGE2, IGF-1, IL-15 and FGF-2 
can penetrate the periosteal membrane and hence drive bone cell function in the 
cortex [ 44 ]. IGF-I is particularly important since it is synthesized by muscle and 
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bone and has a growth promoting effect on both tissues. Low IGF-I is associated 
with reduced bone size and periosteal circumference as well as less muscle mass in 
genetically modifi ed animal models and in humans with growth hormone defi ciency 
(or resistance) and Type I IGF receptor resistance. Importantly, with aging, growth 
hormone secretion declines in mammals and circulating IGF-I decreases. IGF-I is 
also anti-apoptotic and as such a decline in circulatory or skeletal IGF-I could con-
tribute to a premature decline in bone cell populations. 

 Other myokines have recently been studied. Sims et al. demonstrated that 
osteocyte- specifi c deletion of the co-receptor subunit utilized by IL-6 family cyto-
kines, glycoprotein 130 (gp130), resulted in impaired bone formation in the tra-
becular bone, but enhanced periosteal expansion, suggesting a gp130-dependent 
periosteum-specifi c inhibition of osteoblast function, potentially induced by the 
local muscle fi bers [ 45 ]. This consistent but inverse relationship between osteoblast 
induced bone formation and periosteal expansion mimics conditions such as age- 
related and postmenopausal osteoporosis. Similarly, Sims and colleagues reported a 
negative relationship between ciliary neurotrophic factor from muscle and osteo-
blast differentiation [ 45 ]. 

 Myostatin is a member of the bone morphogenetic protein/transforming growth 
factor-β (BMP/TGFβ) super-family of secreted differentiation factors. Myostatin is 
a negative regulator of muscle mass as shown by increased muscle mass in myo-
statin defi cient mice. Interestingly, these mice also exhibit increased bone mass sug-
gesting that myostatin may also play a role in regulating bone mass. Indeed, a 
soluble myostatin decoy receptor (ActRIIB-Fc) increased bone and muscle mass. 
Bone volume fraction (BV/TV), as determined by microCT, was increased by 
132 % and 27 % in the distal femur and lumbar vertebrae, respectively. Surprisingly 
there was no effect on cortical bone or the periosteum, suggesting that one mecha-
nism for this myokine may be more endocrine than paracrine [ 46 ]. 

 Exercise training benefi ts muscle and bone by slowing age related bone loss, but 
also offers protection against several of the major pillars that defi ne an impaired 
healthspan. For example, metabolic disorders such as obesity and diabetes, as well 
as an infl ammatory component can be ameliorated by exercise. Exercise has been 
shown to reduce mitochondrial autophagy, enhance stem cell recruitment, and slow 
the rise in ROS from muscle cells. Irisin, a muscle cytokine produced from surface 
FNDC5 proteolysis, mediates a thermogenic program in adipose tissue of mice 
[ 47 ]. This leads to enhanced glucose utilization in adipose tissue by increasing 
uncoupling protein 1 and the transcriptional co-factor Pgc1α. However, it is unclear 
if irisin has a direct impact on either the periosteum or cortical bone, or whether 
these fi ndings are relevant in humans.  

7     Sarcopenia and the Bone-Muscle Interface 

 Although a considerable amount of work has been done in describing sarcopenia, it 
was only recently that a defi nition was agreed upon by an international working 
group that incorporated functional attributes as well as the loss of muscle mass in 
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the defi nition [ 48 ]. Sarcopenia is currently defi ned as “the age associated loss of 
skeletal mass and function”. The coupling of the terms “function” and “loss” is 
critical, as an increasing body of evidence has shown that functional impairment of 
aged muscle is a better correlate of frailty than the amount of muscle loss alone. In 
addition, other conditions where substantive muscle loss occurs such as that due to 
cancer (cachexia) cannot be considered as the same as the muscle loss due to aging. 
Remarkably, aging bone and muscle both exhibit fatty infi ltration although the 
degree to which this feature compromises musculoskeletal strength or function is 
not known. 

 More recently, one of the initial mechanistic explanations for sarcopenia is com-
ing under question. It has long been assumed that with age, the loss of muscle mass 
is due to a corresponding loss of fi bers (predominantly type II), and this has been 
reported many times, typically using methods which compare the numbers of fi bers 
in muscle biopsies of young individuals with those from older individuals. However, 
recent work in humans from the van Loon group [ 49 ] has suggested that the loss of 
muscle mass with age can be explained entirely by atrophy of type II fi bers alone. 
That is, muscle mass is lost with age due to a specifi c atrophy of type II fi bers, rather 
than loss of fi bers per se. van Loon and colleagues conclude that the number of 
fi bers is the same between young and old age groups, but the volume occupied by 
type II fi bers with age is much smaller, thereby accounting for the loss in muscle 
mass. This directly contradicts the “fi ber specifi c loss” with age hypothesis, as an 
explanation for why we lose muscle mass with age [ 49 ]. Importantly, the data in this 
key study was concluded in part from data collected longitudinally from the same 
subjects over time. Further studies are needed with methods which can longitudi-
nally profi le cell number, rather than rely on cross sectional study designs to defi ni-
tively answer this long standing question. 

 Under normal circumstances, muscle is replenished and renewed through the 
action of stem cells located in the basement membrane of the myofi ber. These stem 
cells are termed satellite cells, and have long been known to be essential for main-
taining muscle mass. There has been much interest over the last few years on the 
role that satellite cells may play in sarcopenia. There have been reports describing 
both a loss of satellite cells with age, as well as a decline in the niche that allows the 
satellite cell to replenish the myofi ber [ 50 ,  51 ]. Data has been presented showing 
that the quality of muscle can be improved through systemic administration of fac-
tors present in the blood of young animals through parabiotic pairing, in which the 
circulatory system of young and old animals are surgically joined [ 52 ]. However, 
more recently, the role of satellite cells in directly affecting muscle mass in aging 
was addressed in an elegant series of studies in which satellite cells were genetically 
ablated [ 53 ]. This allowed a direct test of the role of the satellite cell in maintaining 
muscle mass with advancing age. Essentially, transgenic mice were created which 
allowed the inactivation of satellite cells in older mice. Surprisingly, animals that 
had their reservoir of satellite cells genetically depleted via this genetic targeting 
strategy showed no difference in the rate of muscle loss compared to non-treated 
controls [ 53 ]. These data imply that sarcopenia is not due to either a loss of satellite 
cells with age in mice, or alteration of the niche preventing maturation of the satel-
lite cell. Both of these arguments have been made as causal factors involving satel-
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lite cells as a key mechanism in sarcopenia. Similarly, there have been several 
studies concluding that satellite cells are not involved in driving sarcopenia due to a 
lack of signifi cant difference in the numbers of satellite cells from younger versus 
older adults [ 54 ,  55 ]. In order to resolve such issues, further studies are needed, 
particularly addressing the challenging paradigm of longitudinal assessment of sat-
ellite cell number, fi ber type, and the degree of atrophy. Perhaps the notion that 
sarcopenia is due to a simple exhaustion of the satellite cell pool or reservoir is 
overly simplistic. Notwithstanding, sarcopenia must be an important component of 
change in the bone-muscle interface.  

8     CNS and the Bone Muscle Interface 

 Brain-derived neurotrophic factor (BDNF) plays important roles in neuronal dif-
ferentiation/ survival, the regulation of food intake, and the pathobiology of obesity 
and type 2 diabetes mellitus. BDNF and its receptor are expressed in osteoblasts and 
chondrocytes. BDNF in vitro has a positive effect on bone cells; whether central 
BDNF affects bone mass in vivo is not known. Camarino et al. examined bone mass 
and energy use in brain-targeted BDNF conditional knockout mice 
(Bdnf(2lox/2lox)/93) [ 56 ]. The deletion of BDNF in the brain led to a metabolic 
phenotype characterized by hyperphagia, obesity, and increased abdominal white 
adipose tissue. Central BDNF deletion produced a marked skeletal phenotype char-
acterized by increased femur length, elevated whole bone mineral density, and bone 
mineral content. Polar moment of inertia and cortical thickness were markedly 
increased suggesting a role for this neurotropic factor on the periosteum as well as 
the trabecular and cortical skeleton. 

 The effects of the sympathetic nervous system on bone have recently been 
explored and may be important during aging since several investigators have sug-
gested there is an increase in sympathetic tone with advanced age [ 57 ]. Beta adren-
ergic activation of receptors on the osteoblast causes uncoupled bone remodeling 
such that formation is suppressed and resorption is increased within the bone mar-
row milieu and trabecular skeleton. The effects of adrenergic activity on the perios-
teum are not known, although nerve fi bers are present in this highly vascular 
environment. However, in one model of chronically elevated SNS activity, the 
misty mouse, age-related changes in cortical bone were extremely pronounced. 
Cortical thickness was markedly reduced at 72 weeks vs wild type age-matched 
controls, as was trabecular bone volume [ 58 ]. Interestingly, periosteal expansion 
with aging did not occur in these mice leading to a much thinner bone during aging 
with enhanced skeletal fragility. Whether sympathetic tone prevents periosteal 
expansion as a compensatory mechanism during mammalian aging requires further 
investigation.  
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9     Research Directions: Musculoskeletal Aging 
as a Determinant of Healthspan 

 Aging is a physiologic process that affects the entire organism, including the mus-
culoskeletal system, through the pillars related to healthspan. There is the direct 
impairment in bone formation and the acceleration in resorption that occurs over 
time in virtually all mammals primarily as a result of changes in the stem cell pool, 
as well as chronic infl ammation, and greater accumulation of reactive oxygen spe-
cies. There is a secondary increase in periosteal formation in response to bone loss 
albeit not to the degree that matches an increase in medullary expansion. There are 
also indirect cell non-autonomous effects in the aging animal including enhanced 
sympathetic tone, changes in the parathyroid/vitamin D axis, impaired renal func-
tion, and gonadal defi ciency. Coincident with the aging skeleton, muscle mass is 
also declining and its function is reduced. As discussed above, the bone-muscle 
interface plays a critical role in modulating skeletal loading as well as cell signaling. 
Future research should start by more fully delineating how each of the pillars that 
compose the aging process affect bone, muscle and the interface between the two. 

 One major thrust should be in defi ning how the periosteum could be resistant to 
several of the determinants that impair healthy aging and its relationship to sarcope-
nia. Although the periosteal envelope can expand with aging, it is unclear whether 
the signals for that arise from the muscle, the bone matrix, from other bone cells or 
from an enhanced sensitivity to loading. One limitation is that studies of the perios-
teum have been relatively limited due to the diffi culty in isolating the progenitor 
cells and studying them ex vivo. Even if models were developed to study the bone- 
muscle interface, we still do not know whether its expansion has any impact on 
muscle function. On the other hand, we know that by increasing periosteal surface 
tension, biomechanical properties improve or at least stabilize in the face of endos-
teal resorption. In that same vein, delineating the communication network between 
osteocytes (mechanical sensors) and the periosteum will be essential for defi ning 
age-related periosteal effects. A more important question is whether the periosteum 
is protected from several critical determinants that defi ne aging; i.e. metabolic dys-
function, accumulation of ROS, excess mitochondrial autophagy, and cell senes-
cence in the stem cell pool. A focus on the Foxo proteins during aging provides the 
fi rst clues as to some of the protective mechanisms inherent within the cell that may 
be operative during aging. 

 Another important aspect of the bone muscle interface lies in the remarkable 
gender differences in the periosteal envelope across all ages. This parallels the dif-
ferences in muscle mass and bone size that is observed between males and females, 
suggesting that there is always a factor based on size that determines the musculo-
skeletal mass. But it is not clear whether periosteal osteoblasts differ between males 
and females, and if aging has a selective effect (positive or negative) on the ability 
of these bone-forming cells to expand and lay down collagen. 
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 Sarcopenia is a huge clinical problem because of the falls that result from muscle 
weakness. It is uncertain how progressive but modest muscle loss directly affects 
the skeleton and in particular the periosteum. Targeted therapy with myokine ago-
nists or antagonists are soon to be developed for frailty, yet we know little about the 
mechanisms at the bone-muscle interface. Finally, the CNS plays a critical role in 
the maintenance of both bone and muscle. How the SNS modulates periosteal tone 
and muscle mass is a major question. Understanding the role of neuropeptides at the 
bone-muscle interface provides another targeted area for research, particularly with 
aging. For example, Linder et al. have shown that loss of a peptide Cthrc1, causes 
accelerated age-related bone loss, low energy expenditure and reduced muscle 
strength in C57BL6J mice (V Lindner, 2015, personal communication). Remarkably, 
Cthrc1 is highly expressed in the pituitary and hypothalamus and circulates in mea-
sureable quantities. Hence, CNS signals, whether they be neurotropic or hormonal, 
can profoundly affect the muscle-bone interface. 

 The new discipline of Geroscience attempts to merge the physiology of aging 
with an understanding of the pathophysiology of age-related diseases and the delin-
eation of the pillars that defi ne age-associated disorders. We can no longer afford to 
study major organ systems in isolation with age, and a major thrust for future stud-
ies will be in defi ning regulation of the bone-muscle interface and the downstream 
consequences that result from impairment in either tissue.     
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1            Clinical Aspects of Osteoporosis 

 Osteoporosis is a generalized skeletal disorder in which decrease in bone mass and 
deterioration of bone quality lead to bone fragility and increased risk of fracture. 
Osteoporosis is primarily a disease of the elderly, with more than 70 % of fractures 
being sustained by those 65 or older [ 1 ]. In fact, the risk of fractures increases expo-
nentially with age [ 2 ] (Fig.  1 ). Fragility fractures, also termed osteoporotic fractures 
or low trauma fractures, occur when falling from a standing height during usual 
physical activity [ 3 ]. Fractures result from an interaction between bone strength and 
the mechanical force applied to it, usually during a fall. Younger individuals may 
experience fragility fractures when they have diseases or take medications that have 
harmful effects on bone. However, bone strength is infl uenced by bone quantity 
(mass) and bone quality, both of which decrease with age, thus leading to an increase 
in fragility fractures among the elderly. In addition, elders have an increased risk for 
falls, which further contributes to increased fracture incidence.

1.1       Scope and Signifi cance of the Problem 

 In 2005 there were more than two million fractures in the US [ 1 ] and this number is 
likely to increase due to the increasing age of the population. Because the risk of 
osteoporotic fractures increases with age [ 2 ], this population growth will likely 
result in increased numbers of fractures and associated health care costs. Osteoporotic 
fractures result in signifi cant morbidity, mortality, and reduced quality of life [ 3 ]. 
The three most common osteoporotic fractures are hip, vertebral, and wrist. [ 3 ] Hip 
fractures are the most devastating type of fracture in terms of both personal suffer-
ing and healthcare costs. Hip fractures are associated with increased mortality, loss 
of independent living, and decline in functional status [ 4 – 6 ]. Vertebral fractures are 
also associated with increased mortality as well as kyphosis, impaired breathing and 
digestion due to reduction in thoracic and abdominal cavities, loss of self-esteem 
due to change in appearance, depression, fatigue, and decreased activity [ 7 – 10 ]. A 
study of US Nationwide Inpatient Sample between 2000 and 2011 reported that 
among women aged 55 and over there were 4.9 million hospitalizations for osteo-
porotic fractures, compared with 2.9 million hospitalizations for myocardial infarc-
tions, three million for stroke, and 700,000 for breast cancer [ 11 ]. Osteoporotic 
fractures accounted for nearly 50 % of hospitalizations among women 75 years and 
older. Although the hospitalization rates for all other diseases declined during this 
11 year observation period, the rate of hospitalization for non-hip fractures actually 
increased [ 11 ].  
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1.2     Epidemiology of Fractures 

 Examining the differences in fracture rates between different populations may pro-
vide insight on biological and environmental factors infl uencing fragility. Fracture 
risk increases with age in all populations studied [ 2 ] and women have approxi-
mately twice as many fractures as men although female-to-male ratios vary depend-
ing on the skeletal site of fracture and the geographic region (Fig.  2 ) [ 12 ]. There are 
signifi cant geographic, racial, and ethnic differences in fracture rates, the reasons 
for which have not been clearly identifi ed. Although some of these differences may 
be due to under-reporting of fractures in countries with less developed medical care, 
there are probably true differences in fracture risk that are due to genetic as well as 
environmental factors. The best-studied geographic differences are for hip fracture 
rates because those fractures are most likely to be reported accurately (Fig.  2 ). Age- 
standardized rates of hip fractures reported from over 60 countries around the world 
vary by over 200-fold in women and 140-fold in men [ 12 ]. The highest reported 
rates are for Northern America and Europe, followed by Asia, the Middle East, 
Oceania, Latin America, and Africa. Even within the same continent there are sig-
nifi cant differences between countries. For example, in Europe, Norway reported 
532 and Poland only 173 hip fractures per 100,000 person years, a 4-fold difference 
[ 12 ]. Similarly, in the Middle East, the rates of hip fracture are 8 times higher in Iran 
than in Tunisia (Fig.  2 ).

   In contrast to hip fractures, vertebral fractures do not show as much geographic 
variability. This is particularly true for morphometric (radiographic) vertebral frac-
tures, which have similar prevalence in studies from different regions of the world 
[ 12 – 14 ]. 

 The reasons for geographic disparity in fracture rates are not clear [ 12 ]. It is 
likely that genetic differences account for at least some of the observed disparity. 
Additional factors that may be involved relate to socio-economic status, life expec-
tancy, health expenditures, and urbanization, all of which are higher in nations with 
higher fracture rates [ 12 ]. In addition, differences in physical activity, diet, vitamin 
D status, and hormonal factors are likely to be involved but have not been well stud-
ied to date. Finally, regional differences in fall risk have been reported and may 
contribute to differences in fracture rates [ 15 ,  16 ]. 

 The most peculiar observation regarding geographic differences in fracture rates 
is a recent fi nding of hip fracture rates increasing in the east (China) while decreas-
ing in the west (Western Europe, North America, and Oceania) [ 17 ]. The reasons for 
these trends are not clear. Decreasing fracture rates in the west may be due to 
increasing body weight (which is usually associated with higher bone mass and also 
may provide more mechanical cushioning when falling on the hip), decrease in 
unhealthy behaviors such as smoking, increased use of therapies for osteoporosis, 
or a cohort effect where later generations had better nutrition in utero and during 
childhood resulting in higher peak bone mass. The increasing fracture rates in China 
are equally puzzling. Some of the possible explanations include better reporting but 
also the adoption of western life-style that may lead to unfavorable changes in 
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 activity level. Increasing urbanization and employment in sedentary occupations are 
associated with decreased physical activity, sitting on chairs rather than on the fl oor, 
use of western style toilets rather than squatting, all of which may result in decreased 
muscle strength and higher fall risk.  

1.3     Pathogenesis and Evaluation of Osteoporosis 
and Fractures in the Elderly 

 Even in the elderly, peak bone mass is one of the most important determinants of 
fragility [ 18 ]. Peak bone mass is accrued during childhood and adolescence and 
those with low peak bone mass will be at an increased fracture risk later in life, such 
as is the case with those who develop eating disorders, use medications (glucocorti-
coids), or have diseases that affect bone during their formative years. Bone mass in 
the elderly also depends on the magnitude of bone loss after peak bone mass is 
achieved; those rates differ between trabecular and cortical bone, and between men 
and women [ 18 – 20 ]. Women have a more pronounced rate of loss during early 
menopause [ 18 ], which together with lower peak bone mass results in greater risk 
of fractures observed in elderly women [ 1 ,  6 ]. Compared with women, however, 
elderly men have worse fracture outcomes both in terms of mortality [ 4 ,  21 ] and 
recovery of their functional status [ 22 ,  23 ]. Thus osteoporosis in elderly men has 
received more attention in recent years with several professional associations pro-
viding guidelines for management of male osteoporosis [ 24 ,  25 ]. 

 Assessment of bone mass is usually performed using DXA (Dual Energy X-ray 
Absorptiometry) of the lumbar spine and proximal femur, with osteoporosis defi ned 
by the World Health Organization as a T-score of −2.5 or below (at least 2.5 stan-
dard deviations below the mean of young Caucasian women) and severe osteoporo-
sis as the same T-score with one or more fragility fracture [ 26 ]. 

 Although bone mass can be estimated by DXA, bone quality, which also contrib-
utes to fragility and deteriorates with age, is more diffi cult to assess, the only avail-
able methods being QCT and MR. The effect of bone quality on fragility is well 
illustrated by the fact that at any level of bone density, fracture risk increases with 
age and with a history of prior fractures [ 27 ]. Fracture probability decreases in the 
very oldest, as a result of competing probability of death in that population, and this 
is one of the reasons for inaccuracies of risk estimates in geriatric studies [ 28 ]. 
Although bone quality cannot be directly measured in live patients, its effect on 
fragility can be indirectly inferred through the use of FRAX algorithm (  http://www.
shef.ac.uk/FRAX/    ). This approach has resulted in improved stratifi cation of fracture 
risk by combining Bone Mineral Density (BMD) measurements with clinical risk 
factors (most important being age, prior fracture, and weight) [ 29 ]. Although there 
is universal agreement that fracture risk assessment in the elderly should include 
clinical risk factors, the exact method of using FRAX to derive treatment thresholds 
differs between countries. For example, the USA guidelines suggest pharmacologic 
therapy for individuals with BMD evidence of osteoporosis, or with history of hip 
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or vertebral fractures [ 3 ]. For those with osteopenia (intermediate risk) based on 
BMD, therapeutic decisions rely on FRAX-derived fracture probability [ 3 ]. In con-
trast, the UK approach is based on FRAX-defi ned treatment thresholds with BMD 
testing only recommended if a risk estimate is borderline [ 30 ]. 

 Prior fracture is predictive of future fracture even when controlling for age and 
BMD. Vertebral fractures in particular are important in this regard because they are 
most strongly associated with the risk of future fractures [ 31 – 33 ], and their association 
with fragility is under-estimated by FRAX [ 34 ]. Vertebral fractures, however, are clini-
cally apparent in less than 1/3 of subjects [ 35 ], and thus require spine imaging for their 
detection by radiographs or Vertebral Fracture Assessment (VFA) [ 36 ]. Because verte-
bral fracture prevalence increases dramatically with age [ 6 ], most of the elderly evalu-
ated for osteoporosis would be candidates for VFA or other spine imaging [ 3 ,  36 – 38 ]. 

 Finally, the increase in fracture risk with age is related not just to increasing bone 
fragility, but also to increased fall risk, which is not included in the FRAX model. 
Falls are common in the elderly with 30–50 % of populations over 65 falling at least 
once per year and 15 % falling 2 or more times per year [ 15 ,  16 ]. Among community- 
dwelling individuals over 85 years of age, annual incidence of falls is over 50 % for 
women and around 33 % for men [ 39 ,  40 ]. Because falls account for 86–95 % of 
osteoporotic fractures [ 16 ], understanding the determinants of falls in the elderly is 
very important for management of osteoporosis on both individual and population 
levels. Falls are at least in part due to decreased muscle function which together 
with weight loss, self-reported fatigue, slow walking speed, and low physical activ-
ity are components of the frailty syndrome [ 41 ,  42 ] (as discussed in detail in Chap. 
  2    ). Frailty is associated with increased fall and fracture risk [ 43 – 45 ] and thus repre-
sents an important therapeutic target in geriatric medicine. It is notable that although 
frailty increases with age, the effect of frailty on falls and fractures is largely inde-
pendent of chronological age [ 45 ] as evidenced by the fact that the association 
between frailty and falls or fractures was observed within each age group.  

1.4     Management of Osteoporosis in the Elderly 

1.4.1     Nutrition 

 Dietary advice should ensure adequate caloric and protein intake, low sodium 
(because high sodium increases urinary calcium excretion), high intake of fruits and 
vegetables (because this tends to produce alkalinizing effect which decreases bone 
loss), and adequate amounts of calcium (usually dairy products but other sources 
such as fortifi ed foods are also good choices). Nutritional defi ciencies are common 
in the elderly [ 46 ] and particularly in women with osteoporosis. Many osteoporotic 
women have a life-long history of eating disorders, or at least obsession with thin-
ness, and often limit their intake of nutrients, which is particularly detrimental in 
advanced age. It is important, therefore, to obtain dietary history from elderly 
patients, both in term of quantity of food and its composition. Protein-energy 
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malnutrition is a risk factor for sarcopenia and frailty [ 47 ,  48 ]. This effect is at least 
in part due to low IGF-I, a hormone with anabolic effects on multiple organs, includ-
ing bone and muscle [ 49 ]. Nutritional assessment through dietary history or use of 
a validated instrument [ 46 ,  50 ] should form the basis for appropriate changes to the 
diet and consideration of protein supplementation [ 47 ,  51 – 53 ]. 

 Even in the absence of nutritional defi ciency, risk of osteoporotic fractures is higher 
in thin individuals – they have smaller bone size, lower BMD, often lower postmeno-
pausal estrogen level, and possibly less “cushioning” that could prevent fractures 
when falling. More recently however, it has become clear that while being moderately 
overweight might be benefi cial to bone, extreme obesity does not protect from osteo-
porosis and may actually have negative effects on bone, possibly through increased 
infl ammation [ 54 – 57 ]. When controlled for BMD, obese subjects actually have a 
higher fracture risk compared to lean controls. Furthermore, the positive association 
between BMD and weight is due to lean body mass, whereas most reports indicate no 
association between BMD and fat mass [ 58 ]. All of these new fi ndings about the rela-
tionship of bone to body weight and composition suggest that for bone strength, as 
well as for many other aspects of health, there may be an optimal weight that provides 
adequate skeletal loading but prevents the negative effects of excessive fat mass. 

 Calcium intake from food sources and supplements should also be assessed as 
this information may reveal the reasons for bone loss and fractures and also forms 
the basis for prescribing the amount and type of calcium supplements that are 
appropriate for each patient. Dairy products are recommended because they provide 
highly bioavailable calcium, as well as protein. If diet alone is not a suffi cient source 
of calcium (1000–1200 mg/day), supplements should be used to make up the differ-
ence [ 3 ]. There has been a recent controversy regarding the association of increased 
cardiovascular risk with calcium supplementation [ 59 ,  60 ]. Although this debate 
cannot be easily resolved, it should be remembered that, from the bone health per-
spective, defi cient calcium intake, particularly if coupled with low vitamin D is 
harmful as it leads to secondary hyperparathyroidism [ 61 ] and increased bone 
resorption, which is particularly detrimental in the elderly. Proper counseling 
regarding the importance of suffi cient calcium intake is therefore an essential com-
ponent of osteoporosis management in the geriatric clinic. 

 Vitamin D suffi ciency is also essential in the management of osteoporosis and 
fall prevention because vitamin D plays an important role in both bone strength and 
muscle function. Because vitamin D is not generally suffi cient from natural foods 
(other than the liver of cold water fi sh), most people need to get it from sun expo-
sure, food fortifi cation, or supplements. Sun exposure is frequently limited in the 
elderly, particularly those who are ill, homebound, or institutionalized [ 62 ]. 
Furthermore, the effi ciency of cutaneous synthesis of vitamin D 3  from 
7- dehydrocholesterol due to sunlight exposure declines markedly with age, particu-
larly in those greater than 70 y, and this appears to be the primary reason for vitamin 
D insuffi ciency in the elderly. Thus, most elderly and particularly those living in 
northern latitudes need to use vitamin D supplements to achieve adequate vitamin 
D levels. Although there is a controversy regarding the target level for 25-hydroxy- 
vitamin D in the serum, most agree that it should be between 20 and 30 ng/ml [ 3 ]. 
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The required dose of vitamin D depends on the starting blood level and on body 
weight. Because vitamin D is a fat-soluble vitamin it is distributed throughout fat 
tissue. Consequently, individuals with larger fat mass will require higher doses and 
longer duration of vitamin D replacement to reach the target blood levels.  

1.4.2     Physical Activity 

 Evaluating physical activity, including both activities of daily living and formal 
exercise, is essential for assessing the patients’ fall risk as well as developing an 
individualized program of strengthening exercise and fall prevention. Frailty is 
strongly associated with fractures [ 44 ,  45 ], likely through an association with low 
bone mass as well as an increased fall risk due to loss of muscle strength and poor 
balance. Tools that have been proposed for assessment of frailty [ 63 ] are useful, 
particularly in research studies. It should be remembered, however, that careful 
observation of the patient while getting up from a chair, climbing onto an exam 
table, and walking in the hallway will reveal a lot of information about frailty, 
strength, vitality, and fall risk that can be used for developing the “activity prescrip-
tion” for each patient. Additionally, examining for kyphosis is very informative 
because kyphosis may point to the presence of vertebral fractures which signify 
high bone fragility. In addition, kyphosis per se is associated with frailty, increased 
fall and fracture risk, and increased mortality [ 9 ,  10 ,  64 ,  65 ] and may be targeted by 
appropriate exercise programs [ 66 ]. 

 A proper activity regimen will increase overall strength and fi tness while at the 
same time decrease the risk of falling [ 67 – 71 ]. Walking, and in fi t elderly individu-
als even jogging, are activities that provide gravity stimulus to the bone and also 
increase the overall fi tness. A tailored exercise intervention should improve muscle 
strength and core strength. Muscle contraction also has an anabolic effect on the 
bone. Proximal muscle strength and core strength improve balance and decrease the 
fall risk. Strength and balance interventions should be aligned with the fi tness and 
personal preferences of each individual and can include physical therapy, working 
with a personal trainer, strength training classes, yoga, Pilates, or Thai Chi. Thai Chi 
has been shown to improve balance and prevent falls in frail elderly [ 72 ,  73 ]. 
Multimodality approaches such as the go4life program from the NIA (  www.go4life.
nia.nih.gov    ) are particularly helpful as they combine endurance, strength and bal-
ance training. In addition to a proper exercise regimen, fall prevention should also 
include modifi cation of the home environment, treatment of other medical condi-
tions and elimination of medications that may increase fall risk.  

1.4.3     Pharmacologic Therapy 

 According to the National Osteoporosis Foundation (NOF) guidelines, medications 
for osteoporosis should be considered for those who have a T-score at or below −2.5 
or have sustained hip or vertebral fractures. For subjects with osteopenia, NOF 
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recommends pharmacotherapy if their FRAX-derived 10-year probability of major 
osteoporotic fractures exceeds 20 % or hip fracture probability exceeds 3 %. All the 
available agents have shown a reduction in vertebral fractures in clinical trials but 
only some have documented effi cacy in preventing non-vertebral fractures. Due to 
a lack of direct comparison trials, however, and the fact that registration trials 
recruited somewhat dissimilar populations, direct comparison of effi cacy of differ-
ent agents is not possible. As all fracture trials enrolled postmenopausal women, 
generally with a mean age between 68 and 75 years, pharmacotherapy seems to be 
effi cacious among the elderly. Yet in most trials, there were relatively few subjects 
older than 80. Nevertheless,  post hoc  analysis of the existing trials have documented 
good anti-fracture effi cacy of pharmacotherapy in those over 75 years of age 
[ 74 – 79 ]. 

 In general, pharmacologic agents for osteoporosis are classifi ed into anti- 
resorptive and anabolic agents. In fact, however, bone resorption and formation 
remain coupled so that use of an antiresorptive drug (bisphosphonates, denosumab) 
results in suppression of both bone resorption and bone formation. Similarly, the 
only currently available anabolic agent, teriparatide stimulates bone formation but 
bone resorption appears to increase as well. 

 Bisphosphonates have been shown to be effi cacious in older populations. 
Information regarding effi cacy of alendronate in older women comes from  post hoc  
analysis of FIT1 which showed a 38 % reduction in the risk of new vertebral frac-
tures relative to placebo in patients over 75 years of age [ 74 ], and from a pooled 
analysis of FIT1 and FIT2 which showed similar risk reduction in new fractures 
across the ages 55–85 years [ 80 ]. A  post hoc  analysis of risedronate trials (HIP, 
VERN-NA and VERT-MN) showed a 44 % reduction in vertebral fractures in 
women 80–98 years of age [ 77 ]. Finally, a  post hoc  subgroup analysis of the two 
zoledronic acid trials (HORIZON and HORIZON Recurrent Fracture Trial) showed 
anti-fracture effi cacy for women age 75 and older [ 75 ]. 

 Other classes of therapeutic agents used for osteoporosis are also effective in the 
geriatric population. Subgroup analysis of women ≥75 years from the teripartide 
trial demonstrated a reduction in vertebral fractures (by 65 %) as well as non- 
vertebral fractures (by 25 %) compared with placebo [ 76 ].  Post hoc  analysis docu-
mented fracture benefi t of denosumab in women over 75 [ 81 ], and an analysis of 
pooled data from two strontium trials showed a signifi cant reduction of both verte-
bral and non-vertebral fractures in women between 80 and 100 years [ 79 ]. 

 Despite the evidence of its effi cacy, pharmacologic therapy is underutilized in the 
elderly, although they have the highest fracture risk and need this therapy the most. 
The reasons for that are not completely clear but include poly-pharmacy, erroneous 
belief that fractures are a natural consequence of aging rather than disease, fear of 
medication side effects and perhaps, an assumption that pharmacologic agents will 
not have enough time to exert a benefi t due to limited life expectancy in the old. 
However, several trials have clearly documented that fracture benefi t is demonstra-
ble in 1 year or less [ 77 ,  82 – 88 ] suggesting that even those with life expectancy of 
just 1–2 years would benefi t from therapy. Some of the novel agents or combina-
tions being considered may be particularly useful in geriatric populations [ 92 ]. 
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 It would seem logical that a choice between an antiresorptive and anabolic agent 
would be based on baseline bone turnover. In practice, however, bone turnover is 
not routinely assessed or used in making the therapeutic decisions. Although several 
biochemical markers of bone turnover have been developed and approved by the 
FDA, current practice guidelines do not support using turnover markers for select-
ing the appropriate therapy [ 89 – 91 ]. This is due to analytic and biological variabil-
ity in the levels of these markers as well as lack of data regarding the ability of the 
baseline marker levels to predict the response to therapy. There is no consistent 
effect of aging on bone turnover markers – they increase signifi cantly with meno-
pause but decline thereafter. Furthermore, the increase in bone turnover markers 
observed in the elderly in some studies may be due to decreased renal function 
which increases levels of the markers that are cleared by a healthy kidney [ 89 – 91 ].    

2     Age-Related Changes in Bone Tissue 

2.1     Age-Related Changes in Bone 

 Studies of  in vitro  mechanical properties of bone show an age-related loss in yield 
strength and in peak strength, increasing the risk of fracture [ 93 ]. The mechanical 
properties of milled samples of cortical bone decrease by 7–12 % per decade in 
fracture toughness [ 94 ]. Bone mass as measured by DXA declines with age and 
contributes to mechanical instability [ 18 ]. Other factors contribute to the fragility of 
bone, however, independent of bone mass or volume [ 95 ]. The aging of human bone 
can be described at multiple hierarchical levels, from the molecular to microarchi-
tectural to gross changes in shape and form, each of which is detrimental to fracture 
resistance [ 96 ]. Bone extracellular matrix is composed of approximately 35 % 
organic matrix, or osteoid, by dry weight and 65 % inorganic mineral, a highly sub-
stituted carbonato-calcium phosphate. As a biphasic material, bone has tensile prop-
erties attributable to the organic collagen fi bers and has compressive strength and 
rigidity attributable to the inorganic crystals. Each component is affected differently 
by aging. 

2.1.1     Bone Organic Matrix 

 Collagen is a protein that accounts for 90 % of the organic matrix of bone tissue. 
The self-assembly of the linear collagen molecules into fi brils provides tensile 
strength to bone tissue; therefore the mechanical properties of bone are infl uenced 
by collagen biochemistry. Post-translational modifi cations and divalent and triva-
lent intermolecular crosslinks (pyridinoline and deoxypyridinoline) are important 
aspects of collagen synthesis in bone. Abnormalities of collagen structure can arise 
from genetic mutations or can be induced by lathyrogenic agents [ 97 ]. In osteogen-
esis imperfecta, for example, mutations in collagen’s amino acids can result in the 
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formation of branched fi bers that result in brittle bone. When the enzymatic forma-
tion of intermolecular crosslinks is inhibited by a lathyrogen, such as 
β-aminopropionitrile, found in sweet peas, bone strength and mechanical perfor-
mance decrease. 

 It is known that aging bone is characterized by modifi cations in collagen by 
denaturation [ 98 ] or non-enzymatic glycation [ 99 ]. In contrast to the benefi cial 
effects of enzymatic crosslinks on collagen structure and bone’s material properties, 
the non-enzymatic crosslinking of collagen that occurs with aging and some dis-
eases leads to bone’s mechanical deterioration. The predominant source of glyca-
tion end products (AGEs) is endogenous, but there are also exogenous sources, such 
as foods and tobacco smoke. A study with healthy twins established that a genetic 
effect accounts for 74 % of normal variance in serum levels of a major AGE, 
 N  ε - carboxymethyl  lysine (CML) [ 100 ]. 

 AGEs in bone are of two types, with and without protein-protein crosslinking, 
and are formed spontaneously by glycation or oxidation. In spite of tissue turn-
over, there is an age-related increase in AGEs in most skeletal sites in humans 
[ 101 ]. Moreover, patients with osteoporotic fractures show signifi cantly lower 
content of enzymatic cross-links and higher content of AGEs than non-fractured 
controls; the increase in AGEs occurs particularly in more highly mineralized, 
older regions of bone. In addition, AGEs are elevated in the serum of patients with 
osteoporosis [ 102 ].  

2.1.2     Bone Mineral 

 The mineral phase of bone is best described as a highly substituted, poorly crystal-
line, carbonate-containing analogue of hydroxyapatite. Compared with pure min-
eral hydroxyapatite, chemical substitutions of its anions and cations in bone mineral 
result in a disarrayed lattice structure and a Ca/P ratio of less than 1.67. The most 
common ionic substitutions in bone mineral are carbonate, fl uoride, citrate, pyro-
phosphate, chloride, magnesium, sodium, and potassium. Bone mineral is deposited 
as poorly crystalline carbonatoapatite and, with increasing age, there is an increase 
in its Ca/P ratio, an increase in crystal size, and a loss of substituting ions [ 103 ]. In 
ingenious studies, Boskey’s team used Fourier transformed infrared microspectros-
copy (FTIRM) to assess mineral composition and crystallinity within osteons of a 
diameter of approximately 150 μm in human cortical bone [ 104 ]. This approach 
provided powerful evidence of crystal maturation from the area of most recent min-
eral deposition adjacent to the Haversian canal to the oldest mineral on the periph-
ery of the osteon. The data show a decrease in the Ca/P ratio and an increase in 
crystal size and order from the center to the periphery of an osteon. This conversion 
decreases the solubility of the mineral phase, a phenomenon that could have untow-
ard consequences for mineral homeostasis if it were to continue unabated. Cement- 
like mineral is avoided under ordinary circumstances because of the normal turnover 
of bone’s organic and mineral matrix that is achieved by the coordination of osteo-
clastic resorption and osteoblastic bone formation. Thus, bone remodeling can be 

J. Glowacki and T. Vokes



289

viewed, in part, as a process of matrix rejuvenation that is central for mineral 
exchange and homeostasis. Bone from older individuals is more mineralized than is 
younger bone, attributable to the incomplete remodeling of matrix and accumula-
tion of larger, denser crystals of mineral [ 105 ]. Thus, changes in the nature of bone 
mineralization with age contribute to decreased fracture toughness [ 106 ]. This 
means that the bone becomes more brittle and less able to absorb impact.  

2.1.3     Bone Microarchitecture 

 Human cortical bone tissue is organized as longitudinal osteons of concentric lamel-
lae around Haversian vascular canals. Volkmann’s canals connect Haversian canals 
and the bone surfaces. The process of internal remodeling removes portions of the 
matrix and lays down new generations of osteons while maintaining structural 
integrity, vascularization, and cellular viability within the tissue. With advancing 
age, there is an imbalance between the amount of bone resorbed and deposited. 
Thus, porosity increases as canals grow large and coalesce [ 107 ]. Mechanical 
strength decreases exponentially as porosity increases [ 108 ]. 

 The age-related loss of bone mass results in loss of strength, but microarchitec-
tural changes are additional critical determinants of bone quality and fracture risk. 
These changes occur in the trabecular or cancellous interior of bones and in the 
dense cortical shell. The fracture resistance of bone tissue depends on matrix com-
position and architecture, to a large degree at the levels of mineralized collagen 
fi brils, interconnecting trabecular plates, and cortical porosity. Histomorphometric 
analyses quantify parameters of skeletal architecture, such as trabecular thickness 
and separation of trabecular plates in cancellous bone. Investigations of bone qual-
ity in fracture and non-fracture subjects with equivalent BMD show the relative 
importance of microarchitecture on fracture risk. An important study of histological 
specimens from subjects with or without fracture but with equivalent BMD showed 
signifi cantly poorer markers of trabecular connectivity in those with fractures [ 109 ]; 
that study also showed age-related declines in trabecular connectivity for both frac-
ture and non-fracture groups. Non-invasive tools such as peripheral quantitative 
computed tomography (pQCT) have been developed to provide three-dimensional 
modeling of bone  in vivo . They show sexual dimorphism in the effects of age on 
trabecular microarchitecture [ 110 ]. In BMD-matched women there are signifi cant 
age-related reductions in trabecular connectivity; in men, there are reductions in 
trabecular number, spacing, and connectivity; and in both, those reductions were 
correlated to increased fracture risk.  

2.1.4     Microcracks 

 Tissue fatigue is the progressive loss of strength and stiffness that results from 
repeated cycles of loading. It manifests as sharp-edge microcracks in Haversian 
bone, approximately 30–100 μm long. Microdamage accumulates in human bone 
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with age [ 111 ,  112 ]. Accumulation of even small amounts of microscopic tissue 
damage in human bone may have large effects on biomechanical performance 
[ 113 ]. There are several mechanisms that prevent microdamage from resulting in 
catastrophic failure; these entail crack arrest and bone turnover. The fi rst is an 
advantageous feature of Haversian bone, in which crack propagation is attenuated 
by ultrastructural discontinuities in resorption spaces, at margins of osteons, and at 
lamellae. Thus, osteonal bone’s microstructural features can act as barriers to arrest 
microcrack extension by blunting the crack tip or defl ecting crack growth. The sec-
ond mechanism is that bone remodeling repairs microdamage, but with aging, lower 
levels of turnover can retard repair and permit accumulation of microcracks [ 114 ]. 
Evidence indicates that microcracks in cortical bone occur in proximity to osteocyte 
apoptosis [ 115 ] and to sites of remodeling [ 116 ]. Although apoptosis of osteocytes 
is required for targeted remodeling, nearby non-apoptotic osteocytes provide 
RANKL to stimulate osteoclasts to initiate a resorption tunnel [ 117 ]. 

 It is clear that linear microcracks stimulate local bone remodeling and repair by 
a mechanism that involves osteocytes even in rodents where cortical remodeling is 
typically not present. On the other hand, diffuse damage at smaller size scales, 
around 1 μm and less, may be repaired by a different mechanism and may not be an 
inevitable precursor of microcracks. With an  in vivo  rat ulnar model that introduces 
diffuse damage in tensile cortices without linear microcracks, Seref-Ferlenguez 
et al. provide convincing evidence of direct repair without remodeling [ 118 ]. This 
may occur by physico-chemical bridging with calcium deposition within the small 
gaps or with products of nearby osteocytes. The relative importance of remodeling 
and direct repair mechanisms in humans is uncertain in light of the fact that cortical 
remodeling occurs constitutively throughout the human skeleton.  

2.1.5     Age-Related Changes in Bone Metabolism 

 Adult human bone tissue undergoes continuous renewal by a process of remodeling, 
in which bone-resorbing cells, the osteoclasts, degrade a quantum of mineralized 
matrix, after which bone-forming cells, the osteoblasts, invade and fi ll the voids 
with new organic and mineral components. This remodeling process occurs in foci 
and ensures the overall mechanical integrity of the skeleton while renewing the tis-
sue, adjusting the bone architecture to mechanical forces, and repairing microdam-
age. These intrinsic cellular activities endow bone with the capacities of fracture 
healing, distraction osteogenesis (a surgical procedure to elongate bone with a 
device that slowly expands a healing callus), graft incorporation, implant fi xation, 
and mineral homeostasis. By replacing mature mineralized matrix, remodeling pro-
vides new mineral that is less crystalline and more readily soluble to contribute to 
calcium homeostasis. 

 Histomorphometric evidence shows that the balance between bone resorption 
and formation is inadequate to conserve skeletal mass throughout the lifespan. One 
of the best established age-related changes in cancellous bone is the reduction in 
wall width [ 119 ]. The reduction is approximately one-third from young adulthood 
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to seniority and is the result of a reduction in bone formation rate. Changes in corti-
cal bone are less well documented. It would be anticipated that age infl uences bone 
turnover markers, but many other factors such as immobility, fractures, renal and 
liver impairments, medications, and circadian and seasonal variations contribute to 
inconsistent observations in aging studies, especially for resorption markers [ 89 ]. In 
addition, those confounders challenge clinical decision-making; a better biomarker 
for status of bone metabolism is needed. 

 Nevertheless, there is evidence linking histomorphometric parameters of bone 
turnover to serum AGEs. In one study, dynamic parameters of bone formation and 
static parameters of bone resorption were determined for osteoporotic and control 
women and men. Multiple regression analyses revealed striking correlations 
between serum AGEs and osteoporosis subgroups having increased bone resorption 
and, more specifi cally, with indices of osteoclast activity [ 102 ]. This is consistent 
with  in vitro  and animal studies showing that AGEs enhance osteoclastic bone 
resorption [ 120 ].   

2.2     Age-related Changes in Skeletal Stem Cells 

 There is a growing body of information available about the effects of age on human 
skeletal stem cells. Distinctions can be made between those age-related changes that 
are caused by intrinsic cellular factors and those induced by the extrinsic somatic 
environment, e.g. by declines in circulating hormones or local cytokines. Marrow 
cells include osteoclast progenitors in the hematopoietic fraction and osteoblast pro-
genitors called marrow stromal cells (MSCs) or mesenchymal stem cells in the 
adherent fraction. With marrow cells from subjects 27–82 years old, we reported 
age-related increases in  in vitro  osteoclast differentiation, in expression of receptors 
 c-fms  and  RANK  in osteoclast progenitor cells, in constitutive expression of  RANKL  
with a decrease in  OPG  by MSCs, and a resulting increase in the  RANKL/OPG  ratio 
in elderly subjects [ 121 ]. There is also an age-related increase in pro-osteolytic IL-6 
and IL-11 secretion by MSCs [ 122 ]. All of these can mediate age-related increases 
in bone resorption. It is notable that marrow samples from women being treated 
with an anti-resorptive bisphosphonate generated only 20 % the number of osteo-
clasts  in vitro , as compared with marrow obtained from age-matched controls and 
showed a rejuvenated  RANKL/OPG  ratio [ 123 ]. 

 Regarding osteoblast differentiation potential in human MSCs, we [ 124 ,  125 ] 
and others [ 126 ] showed an age-related decline in their differentiation to osteoblasts 
 in vitro . Other important intrinsic properties of MSCs include age-related increases 
in senescence-associated β-galactosidase (SA β-gal), cell doubling time, apoptosis, 
as well as  p53  and its target genes,  p21  and  BAX  [ 125 ]. Upregulation of the  p53  
pathway with age may have a critical role in mediating the reduction in both prolif-
eration and osteoblastogenesis of MSCs. Thus, unlike pluripotent stem cells, as 
multipotent MSCs from bone marrow age, their intrinsic properties gradually 
become compromised. Effects of age on expression of WNT genes in MSCs show 
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gender differences - fi ndings that resolved some of the discrepancies in the literature 
concerning constitutive expression of WNTs: we found age-related decreases in 
expression of WNT5A and WNT13 for women and in expression of WNT7B and 
WNT14 for men [ 127 ]. Both marrow-derived and adipose-derived MSCs show 
 age- related differences in microRNA profi les, especially those involved in cell pro-
liferation and infl ammation [ 128 ]. MicroRNA analysis of MSCs from children and 
adults revealed miR-196a upregulation in adults that was inversely correlated with 
MSC proliferation through HOXB7 targeting [ 129 ]. Rejuvenation of proliferation 
and differentiation was achieved by forced overexpression of HOXB7 [ 129 ]. Other 
striking effects of age relate to deteriorating MSC responsiveness to osteotropic 
hormones. The age-related decline in parathyroid hormone (PTH) receptors and 
PTH signaling may contribute to cellular and tissue aging and suggests receptor- 
based approaches to restore sensitivity to osteoanabolic PTH [ 130 ]. The age-related 
decline in vitamin D-1α-hydroxylase/CYP27B1 in MSCs accounts for an age- 
related decrease in stimulation of osteoblastogenesis by 25-hydroxyvitamin D 
(25OHD) [ 131 ]. Both of those adverse effects of age were corrected by treatment 
with PTH, which upregulated CYP27B1 [ 131 ]. In fact, in MSCs from elders, PTH 
upregulated the vitamin D receptor and 25(OH)D upregulated the PTH receptor 
[ 132 ]. The synergistic effects of PTH and 25(OH)D to rejuvenate osteoblastogene-
sis in MSCs from elders has been shown to entail an epigenetic mechanism [ 132 ]. 
These fi ndings support the hypotheses that vitamin D metabolism in MSCs serves 
an autocrine/paracrine role in osteoblastogenesis and that vitamin D suffi ciency is 
important for skeletal health throughout the lifespan. Further, they suggest that dif-
ferent clinical regimens of combined PTH and vitamin D for osteoporosis may be 
needed to optimize their synergy to stimulate bone formation in elders and in those 
with chronic kidney disease [ 133 ]. Similar age-related losses in response to bone- 
active agents, such as IGF-I, have been detected in human osteoblasts [ 134 ].  

2.3     Signifi cance of Age-Related Declines in Osteotropic 
Hormones 

 With aging and decreased ovarian, testicular, and adrenal production of estradiol 
(E2), testosterone (T), and dehydroepiandrosterone (DHEA), subsequent changes 
in anabolic mediators such as IGF-I, and osteolytic factors like Interleukin (IL-6) 
may contribute to changes in bone metabolism. These are examples of extrinsic fac-
tors that change with age and affect skeletal cells. The unfavorable skeletal effects 
of the menopause and of male hypogonadism are well known, but the effects of 
age-related declines in serum T on bone mass are unclear and may be related to 
conversion of T to E2. We reported that with age, serum DHEA sulfate and IGF-I 
decline and serum IL-6 increases (Fig.  3 ); we further found that serum DHEA sul-
fate and IGF-I were correlated with bone density and that serum IL-6 was inversely 
correlated with femoral neck bone density [ 135 ]. A unifying hypothesis on the pos-
sible mechanisms of bone loss associated with age-related declines in sex steroids 
(Fig.  4 ) holds that their declines lead to a decrease in IGF-I and other factors that 
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may contribute to decreased osteoblastic bone formation, as well as to increased 
cytokine mediators such as IL-6 and subsequent increased osteoclast formation and 
bone resorption. Each of these elements can be rejuvenated by sex steroids. For 
example, E2, T, and DHEA decreased secretion of IL-6 by MSCs from post- 
menopausal women to levels comparable to cells from young women [ 136 ].

3          Molecular and Cellular Underpinnings of Skeletal Aging – 
The Hallmarks of Aging 

 Lifespan and aging research with  C. elegans, Drosophila , mice, and other species 
reveals major themes of interconnected aging processes that are common across 
species and organ systems and that help to establish potential interventions [ 137 ]. 
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The themes also draw attention to mechanistic relationships between aging and cer-
tain chronic diseases. Some of these have been investigated in human MSCs in light 
of age-related bone loss, as discussed above, but others have received little or no 
attention regarding skeletal aging. The hallmarks of aging include genomic instabil-
ity, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutri-
ent sensing, mitochondrial dysfunction, infl ammation, cellular senescence, and 
stem cell exhaustion [ 138 ]. A common theme emerges from examining these pro-
cesses; they may be benefi cial mechanisms that optimize normal tissue homeosta-
sis, but under chronic circumstances may become harmful to the cells or environment. 
Understanding the relative roles of these mechanisms in skeletal aging may point to 
potential therapeutic targets [ 139 ]. 

3.1     Hallmarks of Aging: Genetic Mechanisms 

 Aging is associated with accumulation of DNA damage, as are numerous premature 
aging diseases, for example Werner syndrome. Because the premature osteoporosis 
in Werner syndrome has features that are different from osteoporosis in the general 
population, such as higher incidence of fractures in men than women, and earlier 
loss of cortical than trabecular bone [ 140 ], it may not provide a relevant model for 
natural skeletal aging. Progeroid syndromes are also characterized by mutations and 
deletions in nuclear and mitochondrial DNA; affl icted individuals tend to succumb 
to cancer. 

 Chromosomal regions called telomeres are not completely replicated by DNA 
polymerase and progressively become shorter because mammalian somatic cells 
lack the specialized enzyme DNA telomerase. Telomere attrition is linked to cellu-
lar senescence and aging of the organism. Overexpression of the human telomerase 
gene in human MSCs led to elongation of telomeres, extension of cellular prolifera-
tion, maintenance of stemness, and enhanced bone formation [ 141 ]. It was sug-
gested that intermittent or transient telomerase activation may be a feasible clinical 
intervention.  

3.2     Hallmarks of Aging: Epigenetic Alterations 

 Epigeneic alterations include DNA methylation, histone modifi cations, and chro-
matin remodeling. Methylation generally inactivates respective promoter regions 
and is maintained upon replication. Highly signifi cant differences in methylation of 
specifi c CpG sites in homeobox genes, including  DLX5  which is involved in osteo-
blast differentiation, were found for MSCs from young and old donors. Both hyper-
methylation and hypomethylation sites were detected, fi ndings that may explain 
why demethylating agents do not categorically control replicative senescence [ 142 ]. 
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Changes in histones and chromatin occur during aging and senescence of human 
MSCs as well, notably in acetylation of H3, H4, and a set of miRNA regions, and in 
decreased HMGA2, a non-histone chromosomal structural protein that regulates 
cell cycle arrest proteins, p16 INK4A  and p21 CIP1/WAF1  [ 143 ]. There is rising interest 
in ways to reverse these changes in order to use MSCs for cell-based therapies 
[ 143 ,  144 ].  

3.3     Hallmarks of Aging: Loss of Proteostasis 

 Many studies have demonstrated that aging is associated with disordered protein 
homeostasis and impaired degradation of damaged proteins by either the 
autophagy- lysosomal system or the ubiquitin-proteasome system [ 138 ]. 
Proteasome inhibitors have been shown to increase osteogenesis in mouse models 
[ 145 ]. There is some information about autophagy during MSC differentiation. 
Undifferentiated human MSCs show an abundance of undegraded autophagic vac-
uoles, but autophagic turnover occurs upon induction of osteogenic differentiation 
[ 146 ]. The relationship between senescence and autophagy is complex, with dif-
ferent models showing that autophagy either protects from senescence or triggers 
senescence. Although there is no literature on the effects of age on autophagy in 
human MSCs, there is some indirect information. Low dose irradiation of cultured 
human MSCs reduced their proliferation and upregulated SA β-gal while impair-
ing autophagy-driven apoptosis [ 147 ]. In those cells, low dose irradiation led to 
only a transient rise in apoptosis, followed by senescence of the surviving cells. 
Because senescent cells can secrete infl ammatory cytokines and other detrimental 
factors (the so-called Senescence Associated Secretory Phenotype, or SASP), the 
accumulation of senescent cells is likely to be more damaging to the tissue than 
their removal by apoptosis. It is not known whether similar events occur in MSCs 
with aging or irradiation  in vivo . A growing body of information about the func-
tions of autophagy in various mouse bone cells provides a basis for future aging 
research [ 148 ].  

3.4     Hallmarks of Aging: Nutrient Signaling Pathways 

 Research on calorie restriction to extend the lifespan of model organisms showed 
the pivotal roles of energy-sensing pathways that are regulated by insulin/IGF-I, 
sirtuins, TOR, and AMPK signaling [ 138 ]. Those mediators also interact in com-
plex ways and have different effects at different set points, but are likely to contrib-
ute to skeletal aging [ 149 ,  150 ]. The growing understanding of cross-talk between 
bone and fat [ 151 ] and between bone and muscle [ 152 ] may provide new approaches 
to improve health of the aging population.  

Osteoporosis and Mechanisms of Skeletal Aging



296

3.5     Hallmarks of Aging: Accumulation of Oxidative Stress 
Damage 

 The mitochondrial free radical theory of aging holds that progressive mitochondrial 
dysfunction results in increased production of reactive oxygen species (ROS), 
which further damage mitochondria and tissues. Recent research challenges the role 
of antioxidant defenses in longevity, but highlights the positive, negative, or neutral 
effects of ROS, depending on context. [ 138 ] Nevertheless, considerable evidence 
indicates a deleterious role of ROS in skeletal aging [ 153 ]. This is likely mediated 
by several pathways, including activation of p53, FOXOs, and NF-κB, and down-
stream decreases in osteoblastogenesis with increases in bone resorption [ 139 ]. 
Agents as diverse as estrogens, androgens, and intermittently administered PTH 
exert direct antioxidant effects on bone cells, shown to contribute to their bone- 
protective actions [ 154 ]. In contrast, common antioxidants have not been shown to 
have enduring benefi cial effects on aging bones, but newer agents such as 
mitochondria- targeting compounds may have potential [ 155 ,  156 ].  

3.6     Hallmarks of Aging: Infl ammation 

 “Infl ammaging” is the term used to describe the chronic pro-infl ammatory pheno-
type that accompanies aging in mammals and is responsible for altered tissue activi-
ties [ 138 ]. It has been recognized that infl ammation exists as an underlying feature 
of aging as well as many common chronic age-related diseases such as diabetes, 
cardiovascular disease, obesity, and osteoporosis - disorders that are generally asso-
ciated with infl ammatory biomarkers like serum C-reactive protein and IL-6 [ 157 ]. 
Persistence of the DNA damage response contributes to systemic infl ammation and 
activation of NF-κB. It has been shown that when AGEs, which accumulate in aging 
bone, bind to their receptors, RAGEs, in osteoblasts, they activate NF-κB and 
increase production of cytokines that inhibit osteoblast proliferation and matrix syn-
thesis [ 158 ]. Likewise, repeated stimulation of cultured human MSCs with lipo-
polysaccharide induces markers of senescence, reduced somewhat by silencing 
p16 INK4A  [ 159 ]. Thus, when present chronically, the damage response networks that 
normally facilitate repair and survival can compromise tissue homeostasis and lead 
to cellular apoptosis and senescence. 

 The theme of “osteoimmunology” developed to focus on the link between bone 
disease and immune cell activity and concerns infl ammatory cytokines such as 
TNFα and interleukins that stimulate osteoclastogenesis through both RANKL/
RANK-dependent and -independent mechanisms. [ 160 ] Tissue macrophages, T 
cells, and other cells in the stem cell niche are involved in these events. With aging, 
the relative activities of pro-infl ammatory M1 macrophages and anti-infl ammatory 
M2 macrophages favor M1 and subsequent decrease in osteoblast differentiation 
and increased osteoclast differentiation [ 160 ]. This information helps to explain 
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how age-associated bone loss is linked to uncoupling of osteoblastic and osteoclas-
tic activities in favor of bone resorption. 

 Cellular senescence is a benefi cial response to damage and stress and prevents 
dysplasia and cancer by suppressing proliferation of compromised cells. With their 
persistence, however, damage and stress can alter the microenvironment by induc-
ing the secretion of pro-infl ammatory cytokines, a feature called the senescence- 
associated secretory phenotype (SASP) [ 157 ]. There is signifi cant evidence that 
infl ammation plays a key role in MSC senescence. Human MSCs display cell- 
intrinsic age-associated increases in pro-osteoclastogenic interleukins (IL-6, IL-11), 
p53, and phosphorylated NF-κB subunits p65 and p50 [ 122 ,  124 ,  125 ,  128 ]. In 
transwell experiments testing for paracrine interactions between human hematopo-
etic progenitor cells (HPCs) and MSCs, we found an age-related increase in gene 
expression of TNF-α in HPCs with no expression in MSCs [ 161 ]. In vitro treatment 
with exogenous TNF-α induced markers of senescence in MSCs from a 17-year-old 
donor, including increased SA-β-gal and reduced proliferation and osteoblast dif-
ferentiation. Thus, these paracrine, or extrinsic effects of HPCs may contribute to 
skeletal aging by altering the environment for MSC differentiation to osteoblasts. 
There are no data about the SASP in MSCs except for a study with conditioned 
medium (CM) from early versus late passage MSCs. It was reported that tenth pas-
sage CM induced the full senescence response in early passage cells, that tenth 
passage CM contained more insulin-like growth factor binding proteins (IGFBP) 4 
and 7, and that exogenous IGFBP4 and −7 each induced senescence and apoptosis 
in early passage MSCs [ 162 ].   

4     Research Models for Human Skeletal Aging 

 Most of the information about mechanisms of skeletal aging summarized herein 
was obtained from human MSCs obtained from individuals representing a wide age 
range. Some of the research with those cells is motivated by their possible therapeu-
tic use for age-related and other disorders [ 65 ]. To that end, ways to increase  ex vivo  
proliferative and differentiation capacity of cells derived from the elderly become a 
paramount challenge. As anticipated from the Hayfl ick principle of replicative 
senescence,  in vitro  expansion of human MSCs activates markers of cellular senes-
cence [ 144 ,  163 ,  164 ]. Furthermore, passaging  in vitro  is not the only way to induce 
cellular senescence; for example, treatment with TNF-α [ 161 ] or low dose gamma 
radiation [ 165 ] induces senescence in human MSCs. Although these are convenient 
ways to study cellular senescence, their fi ndings need to be confi rmed with cells 
from subjects across the lifespan. 

 Mouse models provide insights into lifespan research and the genetics of aging. 
There are several Senescence Accelerated Mouse (SAM) strains with shortened 
lifespan and acceleration of different age-associated disorders, including early 
development of osteopenia [ 166 ]. The klotho mouse displays a phenotype similar to 
human progeria and osteopenia, regulated by a gene called α-klotho [ 167 ]. There 
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are more than 700 mouse strains available for research [ 168 ], with documentation 
of great differences in skeletal physiology, metabolism, gender dimorphism [ 169 ], 
and bone healing [ 156 ]. Specifi c differences in skeletal metabolism between mice 
and human are known, including growth, architecture, regulation and, for example, 
the role of bone-derived undercarboxylated osteocalcin in glucose metabolism in 
the former [ 170 ]. It is striking that C3H/HeJ mice are characterized by the highest 
values for all bone parameters, like bone mineral density, while C57BL/6 J mice 
have the lowest. [ 169 ] Nevertheless the C57BL/6 strain is routinely used for research 
on skeletal physiology and aging [ 170 ]; this raises concerns about the generaliz-
ability of fi ndings observed in this extreme case. Other concerns about the general 
relevance of mouse models arise from strain differences noted in calorie restriction 
(CR) experiments to extend lifespan. CR does not have benefi cial effects on longev-
ity in all strains of mice and, in fact, decreases lifespan in many [ 171 – 173 ]. A 
recently recognized example of species dissimilarity is the infl ammatory response 
of mice and human to sepsis [ 174 ]. The absence of osteonal remodeling in rodent 
bone may limit applicability of some fi ndings to human pathology [ 175 ]. 
Nevertheless, the ovariectomized rat is an often used model to screen drugs for 
potential effi cacy for post-menopausal osteoporosis [ 176 ]. 

 As shown for the hallmarks of aging derived from research with diverse species, 
it remains an advantage to use different models to develop and test approaches for 
reducing the disabilities associated with human aging.  

5     Future Prospects 

 Skeletal aging has devastating consequences due to the resulting decreased mobil-
ity and increased fracture risk. Approaches to prevent osteoporosis would have sig-
nifi cant public health benefi ts. A major challenge in pharmacotherapy of 
osteoporosis has been the inability to uncouple bone formation and resorption. 
Accordingly, antiresorptive agents, which are aimed at inhibiting bone resorption, 
eventually also suppress bone formation while teriparatide, the only anabolic agent 
currently in use, stimulates not just bone formation but resorption as well. 
Fortunately, some of the novel agents that are currently in clinical trials hold a 
promise of having overcome this limitation [ 92 ], and may be particularly useful in 
the geriatric population. Although these advances in target-specifi c therapy for 
osteoporosis are very encouraging, it should be remembered that on a societal level 
the reduction in fractures in the elderly require attention to skeletal health and fi t-
ness through the entire lifetime, including improved awareness, detection, and 
treatment of osteoporosis in the aging population, and more wide-spread interven-
tions for fall prevention. The growing understanding of cross-talk between bone 
and fat [ 151 ] and between bone and muscle [ 152 ] may provide new approaches to 
improve health of the aging population. 

 As described in this chapter, there are many voids in our knowledge about the 
relative roles of the hallmarks of aging as they apply to age-related loss of bone 
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mass and increased risk of fracture in humans. It is not known how approaches 
designed to mitigate other chronic diseases will affect skeletal aging. It is not known 
how interventions designed to extend lifespan will infl uence skeletal aging. It is not 
known whether simple, inexpensive interventions like vitamin D and anti-oxidant- 
rich diets can diminish the rate of skeletal aging in large populations. It is not known 
whether or to what degree agents successful in mice are transferable to humans 
[ 141 ,  149 ,  155 ,  156 ,  177 ]. Several lines of evidence indicate that the decline in stem 
cell function during aging can involve both cell intrinsic and extrinsic mechanisms. 
It is not known, however, whether models of induced  in vitro  senescence or  in vivo  
aging correspond with natural processes. As discoveries made from research in cell 
regulatory mechanisms translate to aging research, as with long noncoding RNAs 
for example [ 178 ], new approaches for extending the skeletal healthspan may 
emerge. 

 Research to understand the mechanistic basis for the infl uence of genetics on 
skeletal aging may yield approaches to promote healthy skeletal aging in those 
without the genetic advantage. Continued progress in understanding hallmarks of 
aging in model organisms can be tested in vertebrate species. Broader development 
of animal models to maximize their value for human skeletal aging research will 
enhance understanding and potential interventions for age-associated diseases. Use 
of discarded human tissue can be effective to assess clinical relevance of informa-
tion gained from model species. Merging of geroscience with osteoporosis research 
has the potential to allow for early intervention to maximize skeletal health through-
out the lifespan.     
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1            Introduction 

 Osteoarthritis (OA) is a quintessential condition of aging. It is a slowly progressive 
disease of synovial joints characterized pathologically by focal destruction of the 
articular cartilage, a hypertrophic response in neighboring bone that results in osteo-
phyte formation and subchondral sclerosis, variable degrees of synovial infl amma-
tion, a thickening of the joint capsule, and damage to soft tissue structures including 
ligaments and, in the knee, the meniscus [ 1 ]. Gross pathological changes seen in the 
femoral condyles of the knee joint are shown in Fig.  1 . The joint tissue changes 
result in failure of normal joint function that is accompanied by pain and disability. 
OA most commonly affects the distal joints of the hands, the knees, hips, and the 
spine. Often called degenerative joint disease and referred to by certain practitioners 
and the lay public as “wear and tear arthritis”, it has been considered by some to be 
an inevitable consequence of aging of the articular joints. However, as with many of 
the other chronic conditions associated with aging, this is an oversimplifi cation of 
what turns out to be a multifaceted condition that cannot be explained by simple 
age-related degeneration of the joints.

   Recent work has determined that the pathophysiology of OA is much more 
complex than what might be construed by the term degenerative joint disease. 

  Fig. 1    OA and aging related changes in human knees. Images of the femoral condyles showing 
the white glass-like surface of normal cartilage in a knee from a 17 year-old. The cartilage from a 
macroscopically normal 76 year-old joint shows a change in cartilage color ( browning ), mainly 
due to advanced glycation of cartilage matrix proteins. Joint from a 68 year old shows characteris-
tic OA-related changes, including erosions of original cartilage ( asterisks ) and formation of osteo-
phytes at the joint margin ( arrow )       
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There is evidence for the activation of a number of infl ammatory pathways within 
the tissues affected by OA that appear to be the mediators responsible for driving 
joint tissue destruction [ 1 ,  2 ]. The fi nding that infl ammatory factors play a major 
role in OA and that it is not simply a mechanical failure of the joint suggest that 
osteoarthr itis , which implies infl ammation, is indeed the proper name for the con-
dition rather than degenerative joint disease or “osteoarthr osis ”. It is also becoming 
clear that the multiple risk factors for OA likely follow different pathways to cause 
disease despite fi ndings that end-stage OA appears to be pathologically similar in 
most joints. 

 Arthritis is a common cause of disability in older adults. Data collected from the 
Centers for Disease Control and Prevention indicates that arthritis and related con-
ditions are the number one cause of disability in U.S. adults [ 3 ]. With the aging of 
our population, the prevalence of arthritis (of any type) in the United States is 
expected to rise from 47.8 million in 2005 to 67 million by 2030 with greater than 
50 % of the cases of arthritis being in the 65 and older age group [ 4 ]. OA is by far 
the most common form of arthritis in adults affecting over 27 million Americans [ 5 ] 
and was recently ranked in the top ten of the diseases contributing to years lived 
with disability in the US [ 6 ]. OA is similarly prevalent worldwide where it is also a 
leading and rising cause of chronic disability [ 7 ]. Decreasing the prevalence of 
arthritis, including OA, was calculated to lead to a greater reduction in disability 
than similar reductions in coronary artery disease, stroke, cancer, diabetes, or 
dementia combined [ 8 ]. 

 The prevalence of OA and its negative effects on physical function renders 
OA as an important co-morbidity in older adults, particularly in those who also 
suffer from cardiovascular disease [ 9 ]. In fact, having symptomatic OA has been 
associated with an increased risk of all-cause mortality with a standardized mor-
tality ratio of 1.55 [ 10 ]. In that study, the strongest associations of OA with con-
dition-specifi c mortality were with cardiovascular and dementia-associated 
mortality. The association with cardiovascular mortality can be attributed to the 
limitations in physical activity due to pain in weight bearing joints affected by 
OA which has been shown to contribute to reduced exercise capacity accompa-
nied by all of the negative effects of physical inactivity [ 11 ,  12 ]. In addition, 
there is evidence that musculoskeletal pain from conditions including OA, 
increases the risk for falls [ 13 ] which may explain the association with dementia-
associated mortality. Finally, knee OA has been associated with a greater risk for 
frailty in older adults [ 14 ]. 

 These studies suggest that the development of interventions targeting common 
mechanisms underlying the chronic conditions of aging should include pain and 
disability from OA as important outcome measures. This chapter will briefl y review 
the key risk factors and clinical features of OA, focused on the associations with 
age, as well as review the current management of OA, which is limited by the lack 
of interventions targeting the disease process. This will be followed by a more in 
depth discussion of the pathophysiology of OA and how it relates to the major hall-
marks of aging. Future research directions and prospects for therapies will also be 
presented.  
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2     Clinical Presentation and Risk Factors for OA 

 The vast majority of people seeking medical care for OA do so due to joint pain. The 
pain most often begins insidiously and is chronic but with periods of waxing and 
waning. Other signs and symptoms include morning stiffness of less than an hour, 
impairment in function, joint crepitus with movement, and with more advanced 
disease, bony enlargement of the affected joints. When these signs and symptoms 
are present in the knee joint, close to 100 % of individuals will exhibit radiographic 
evidence of knee OA [ 15 ]. 

 It is important to note that the pain associated with OA does not always correlate 
with the severity of disease noted by plain radiographs. Recent studies suggest that 
the poor correlation may be due to individual differences in central sensitization 
[ 16 ]. Also, standard radiographs can only detect structural changes in radiodense 
tissue, which is mainly the bone. The typical radiographic changes therefore include 
osteophytes, which are bony protuberances at the joint margins, joint space narrow-
ing, which occurs due to cartilage loss, sclerosis, which is due to thickening of the 
subchondral bone, and sometimes bone cysts. Some older adults may also exhibit 
chondrocalcinosis which is calcifi cation in the cartilage and, in the knee, the menis-
cus. Magnetic resonance imaging (MRI) is able to detect changes in soft tissues not 
seen by radiographs, including focal cartilage loss, synovitis, meniscal tears or 
degeneration, ligamentous disruption, and bone marrow lesions. Involvement of the 
tissues seen on MRI other than cartilage, which lacks nociceptive nerve fi bers, can 
be an important source of pain, which also explains why standard radiographic 
changes do not always correlate well with symptoms. 

 OA occurs most commonly in the hands, feet, knees, hips or spine and may be 
present in a single joint (monoarticular), several joints (oligoarticular) or in multiple 
joints (polyarticular). Monoarticular OA is most commonly associated with a prior 
joint injury. Although OA of the ankle is uncommon, very severe OA can occur in 
ankles that have experienced signifi cant trauma such as an ankle fracture [ 17 ]. This 
is also true for joints less commonly affected by OA such as the elbow and shoulder. 
Polyarticular OA is sometimes called generalized OA and most commonly affects 
the hands along with involvement of the knees and/or hips. This form of OA has 
been thought to have a stronger genetic component [ 18 ]. Although the genetic con-
tribution to the overall risk of OA is estimated to be about 40 %, large genome wide 
association studies have found that any individual gene associated with OA has a 
very small relative risk in the 1.1–1.4 range [ 19 ,  20 ]. These studies suggest that OA 
may be polygenetic and that environmental factors likely interact with genetic fac-
tors to increase the risk for OA. 

 Clinical risk factors for OA have been well characterized (Fig.  2 ) with age being 
the strongest risk factor. Numerous studies have documented an increase in radio-
graphic and symptomatic hand, hip, spine, and knee OA with increasing age 
(reviewed in [ 21 ]). The incidence of symptomatic knee OA is highest between the 
ages of 55–64 years where it has been calculated to range from 0.37 % per year for 
non-obese males to 1.02 % per year for obese females [ 22 ]. In a community-based 

R.F. Loeser and M. Lotz



313

longitudinal study in the UK, the prevalence of radiographic knee OA increased 
from 13.7 % at baseline, when the median age of participants was 53 years, to 
47.8 % when the cohort was evaluated 14 years later [ 23 ]. Likewise, a large com-
munity based study based in the US found that about half of the participants devel-
oped symptomatic knee OA by age 85 [ 24 ]. Age is also a risk factor for a more 
accelerated course of OA, particularly in older adults suffering a new injury, where 
advancement to severe OA was seen within a year [ 25 ].

   Despite the strong correlation between age and the incidence and prevalence of 
OA, not all older adults develop OA and not all joints are equally affected [ 21 ]. In 
addition to age, there are a number of other OA risk factors including obesity, prior 
joint injury, gender (hand and knee OA are more common in women), genetics, 
and anatomical factors that include joint shape and for knee OA, lower extremity 
alignment [ 26 ] (Fig.  2 ). In a meta-analysis of risk factors for knee OA in adults 50 
years of age and older, the most consistent risk factors and their pooled odds ratios 
were obesity (OR 2.6), previous knee trauma (OR 3.86), hand OA (OR 1.49), and 
female gender (OR 1.84) [ 27 ]. Older age was also a risk factor but it was not pos-
sible to calculate a pooled odds ratio due to the heterogeneity in how ages were 
reported. 

 Obesity is a risk factor not only for knee OA [ 24 ,  28 ] but also for OA of the hips 
[ 29 ] and hands [ 30 ,  31 ]. The association of obesity with hand OA, which is not a 
weight bearing joint, suggests that systemic factors related to obesity and excess 
adipose tissue contribute to the development of OA. Adipose tissue is a source of 
numerous cytokines and adipokines, including IL-1, IL-6, TNFα, and leptin that 
have been purported to have a role in OA [ 32 ,  33 ]. The systemic metabolic changes 
associated with obesity may also contribute to OA and there is some evidence of 
links between OA and other obesity-related metabolic conditions including hyper-
tension and diabetes [ 34 – 36 ]. 
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 In addition to the systemic alterations in infl ammation and metabolism that result 
from an age-related increase in subcutaneous and visceral adipose tissue, local changes 
in adipose tissue could also contribute to the development of OA in older adults 
(Fig.  3 ). An age-related increase in intramuscular fat in the quadriceps muscle has 
been noted [ 37 ] and increased intramuscular fat in the quadriceps has been associated 
with knee OA [ 38 ]. This fat could contribute not only to weakness that would increase 
the risk of knee OA but also production of local infl ammatory mediators such as IL-6 
[ 39 ]. There is also evidence that the volume of the infrapatellar fat pad, which com-
municates with the knee joint, may increase with age [ 40 ] and could represent a local 
source of the adipokines, adiponectin and leptin, as well as the cytokine IL-6 [ 41 ].

   Given that OA is so common in the older adult population, it is also of interest to 
examine factors associated with absence of OA. In a community-based study of 90 
year olds living in the city of Leiden in the Netherlands, the absence of radiographic 
OA in the hands, hips, and knees was seen in 16 % of the 82 participants and was 
most strongly associated with lower BMI [ 42 ]. In addition, none of the participants 
who were free of OA had a family history of nodal OA of the hand, suggesting 
favorable genetics, and absence of knee OA was also associated with being male. 
Surprisingly, a history of heavy occupational work had a 7.2 odds ratio of being free 
from OA. The reason for this association is not clear and differs from previous stud-
ies in younger cohorts that demonstrated heavy physical labor, in particular 
 occupations that required knee bending while lifting heavy loads, was associated 
with increased prevalence of knee OA [ 43 ].  
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  Fig. 3    Systemic aging changes that may relate to the development of OA. There are a number of 
changes that occur with aging, shown on the  left , which could contribute to the development of 
OA. Decreased physical activity and sarcopenia resulting in muscle weakness can result in 
increased joint loading since muscles are important shock absorbers for the joint. The age-related 
increase in infl ammatory fat can produce adipokines, such as leptin, and cytokines, such as IL-6, 
that are thought to contribute to OA. The age-related decrease in growth hormone, accompanied by 
a decrease in IGF-1 as well as a decrease in sex steroids, contributes to reduced anabolic activity 
in joint tissues. Changes in bone mass and quality can promote development of microfractures in 
the subchondral bone accompanied by excessive remodeling and development of bone marrow 
lesions seen in OA. A decrease in proprioception and balance contributes to excessive or abnormal 
joint loading that increases tissue microdamage (Adapted from Loeser [ 309 ])       
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3     Current Therapies 

 The current management of individuals with OA is mainly symptomatic and 
includes non-pharmacologic interventions, such as exercise and weight loss, 
medications to reduce pain, and, in more advanced cases, joint replacement sur-
gery [ 44 ]. A major limitation in the management of OA is the lack of any treat-
ment proven to slow or stop the structural progression of the disease. This is a 
goal of current research efforts and an area where a better understanding of the 
contributions of aging to OA could be of benefi t, assuming the aging aspects 
promoting disease progression are modifi able, as proposed by the Geroscience 
Hypothesis. 

 Numerous organizations have developed OA treatment guidelines, which have 
recently been reviewed [ 45 ]. The guidelines stress that the management of OA 
needs to be individualized to each patient’s needs and should utilize multiple modal-
ities. It is generally recommended that all patients should receive non- pharmacologic 
modalities that include exercise, weight loss, education and self-management, and, 
when necessary, assistive devices such as walking aids. Pharmacologic manage-
ment most often begins with the use of simple analgesics such as acetaminophen. In 
those that fail a trial of acetaminophen, nonsteroidal anti-infl ammatory drugs 
(NSAIDs) can be used, although it is important to recognize individuals at risk for 
side-effects such as gastrointestinal bleeding. The American College of 
Rheumatology has recommended that since older adults are at higher risk of GI 
bleeding, adults 75 years and older should use topical rather than oral NSAIDs [ 44 ]. 
Flare-ups of joint pain can be treated with intra-articular steroids while the use of 
intra-articular hyaluronans has been controversial because many studies have not 
shown signifi cant benefi t when compared to placebo injections [ 44 ,  45 ]. In patients 
with OA of the hip or knee, joint replacement surgery (arthroplasty) is recom-
mended when other treatments have failed and the patient continues experiencing 
pain and disability that interferes with their desired activities [ 44 ,  45 ]. 

 Treatments that would impact the OA disease process have been referred to as 
disease-modifying or structure-modifying therapies. There have been several clini-
cal trials of agents thought to have the potential for disease-modifi cation that have 
failed (reviewed in [ 46 ]). Among others, these have included various inhibitors of 
extracellular matrix degrading enzymes, bisphosphonates used to target bone, an 
inhibitor of inducible nitric oxide synthase to target infl ammation, and glucosamine 
plus chondroitin sulfate thought to target cartilage breakdown [ 46 ,  47 ]. A major 
limitation to testing potential disease-modifying drugs is that the outcome measure 
considered to be the “gold-standard” for effi cacy is the change in joint space width 
on standardized radiographs as a surrogate for cartilage loss. Research is ongoing to 
fi nd more sensitive outcome measures with acceptable levels of reliability, such as 
newer modalities of magnetic resonance imaging, which could be used to better 
demonstrate disease or structure-modifying effects. However, some investigators 
have argued that if the biomechanical aspects of OA are not addressed, such as the 
misalignment discussed above, then potential disease-modifying therapies will 
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 continue to fail [ 48 ]. The advanced stage of disease and heterogeneity of patient 
populations in regard to risk factor profi le and disease mechanisms are also poten-
tial causes for failures of prior clinical trials.  

4     Age-Related Alterations in Joint Tissues Relevant to OA 

 In established or radiographically detectable OA, all joint tissues are affected. The 
earliest changes appear to occur in the articular cartilage with a very close associa-
tion to changes in subchondral bone. Aging-related changes in cartilage (Table  1 ) 
thus appear to be a key event in initiation of the disease process that subsequently 
involves the other tissues. In trying to understand mechanisms of aging that confer 
OA risk, cartilage has been the focus of research on joint aging.

4.1        Cartilage 

 Aging-associated changes in articular cartilage include reduced cartilage thickness, 
reduced cell density, cellular senescence with abnormal secretory profi les, impaired 
cellular defense mechanisms and anabolic responses [ 49 ]. The earliest changes in 
cartilage are enzymatic degradation of glycosaminoglycans and cartilage proteins, 
and loss of cartilage cells. These changes fi rst occur in the cartilage superfi cial zone 
[ 50 ], which is exposed to shear and compressive forces during movement [ 51 ]. 
Cartilage cells respond to this early tissue damage with proliferation and transcrip-
tional activation of genes involved in extracellular matrix remodeling and infl am-
mation. Changes in extracellular matrix and cells clearly differ between aged and 
OA-affected cartilage. The major differences are cell depletion, reduced biosyn-
thetic activity and senescence in aging cartilage versus cell activation and prolifera-
tion in OA cartilage [ 49 ]. 

   Table 1    Aging-related changes in articular cartilage   

 Chondrocytes  Extracellular matrix 

 Telomere shortening  Glycation, glycoxidation 
 ↑SA-βgal, p53, p21, p16  Carbonylation 
 ↑Cytokine and MMP production  ↓Hydration 
 Mitochondrial damage  GAG depletion 
 Oxidative stress/damage  Aggrecan size reduced 
 ↓Growth factor response  Collagen cleavage 
 ↓Growth factor production  Growth factor levels reduced 
 Autophagy defects  Calcifi cation 
 Cell death  Amyloid 
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 OA is associated with increased proteolytic activity in cartilage and synovial 
fl uid [ 52 ], and increased degradation of collagen molecules [ 53 ,  54 ]. This degrada-
tion is accompanied by the loss of intrinsic cartilage fl uorescence [ 55 ], especially 
around cells in the superfi cial zone. In OA, there is also a decrease in fi xed charge 
density, due to degradation and loss of aggrecan [ 56 ]. 

 With normal aging, there is a marked increase in the formation of advanced 
glycation end-products (AGEs) (Fig.  1 ), including pentosidine cross-links [ 57 ]. In 
addition to altering the biomechanical properties of cartilage, AGEs may interact 
with cell surface receptors including the Receptor for Advanced Glycation 
Endproducts (RAGE). RAGE has been detected on articular chondrocytes and 
there is evidence for an increase in RAGE levels in aging and OA [ 58 ]. Activation 
of chondrocyte RAGE has been shown to stimulate catabolic signaling pathways 
that result in upregulation of MMP expression and chondrocyte hypertrophy 
[ 59 – 61 ]. 

 A highly prevalent change in aging cartilage is deposition of calcium-containing 
crystals, mainly calcium pyrophosphate dihydrate (CPPD) and basic calcium phos-
phate (BCP) [ 62 ]. In the human knee this cartilage calcifi cation is primarily an 
effect of aging rather than OA and represents a precursor to increased fi brillation 
and OA rather than a result of OA [ 62 ]. In cartilage from patients with end-stage 
OA, calcifi cation correlated with increased disease severity [ 63 ,  64 ]. CPPD deposi-
tion is due to increased pyrophosphate production by chondrocytes from aged carti-
lage [ 64 ]. The presence of calcium crystals produced by chondrocytes or released 
into the joint space from other tissues such as the meniscus and synovium may 
stimulate chondrocyte production of infl ammatory mediators and extracellular 
matrix (ECM)-degrading enzymes and thus contribute to onset and progression of 
OA [ 65 ]. 

 Amyloid deposition is a prevalent and as yet underappreciated aging-related phe-
nomenon in cartilage even in the absence of generalized systemic amyloidosis. 
Almost all cartilage tissues that are removed during joint replacement surgery have 
Congo red positive deposits [ 66 ]. In a study of autopsy cases, there was a correlation 
between amyloid deposition and osteoarthritic changes [ 67 ]. The protein aggregates 
that are present in aging cartilage and their potential effects on cells and extracel-
lular matrix remain to be elucidated. 

 Aging in human and mouse joints is also associated with a reduction in cartilage 
cellularity (reviewed in [ 68 ]). Diverse inducers of cell death have been proposed, 
including acute or chronic excessive mechanical loading, certain proinfl ammatory 
cytokines, ligands for death receptors and oxygen radicals. Consequences of cell 
death are immediate damage to the extracellular matrix through release of matrix 
degrading enzymes and infl ammatory mediators. The reduced cell density may also 
impair the tissues’ ability to maintain extracellular matrix integrity. Reduced cell 
density is most profound in the cartilage superfi cial zone, which contains the high-
est concentration of progenitor cells. The function of these cells in tissue homeosta-
sis, consequences of their depletion and their role in the disease process are 
important topics for further research.  
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4.2     Bone 

 Articular cartilage and subchondral bone function biomechanically together as the 
osteochondral unit and under normal conditions transmit load pressure through the 
joints [ 69 ]. The morphology of the cartilage–bone interface or osteochondral junc-
tion is similar between different joints and includes the deeper non-calcifi ed carti-
lage, the tidemark, calcifi ed cartilage, the cement line, and the subchondral bone 
plate [ 70 ,  71 ]. Beneath the subchondral plate is the trabecular bone of the epiphysis, 
containing blood vessels, sensory nerves, endothelium and bone marrow [ 72 ]. 

 In OA-affected joints, subchondral bone turnover is increased [ 73 ,  74 ] and this is 
related to abnormal activation and differentiation of subchondral osteoblasts [ 75 , 
 76 ] together with increased osteoclast activity [ 77 ,  78 ]. The consequence of the 
increased subchondral bone remodeling process appears to be an increase in bone 
volume density. However, contrary to earlier assumptions, this altered bone is not 
harder or stiffer but rather, it is undermineralized [ 79 ,  80 ]. Changes in subchondral 
bone may be related to the stage of the disease process. In early-stage OA, the 
increased remodeling may lead to bone loss whereas in late-stage OA, remodeling 
decreases and subchondral bone density increases [ 81 ]. Bone from severe OA 
patients shows an increase of bone volume density and a reduction of its mineraliza-
tion content [ 82 ,  83 ]. 

 In addition to the bone remodeling in OA, there is also increased angiogenesis 
and vascular channels and sensory nerves invade from the subchondral bone into the 
calcifi ed and non-calcifi ed cartilage [ 84 ]. Increasing numbers of vascular channels 
or marrow cavities break the osteochondral interface and advance towards the tide-
mark in the OA joints [ 85 ]. Blood fl ow disturbances have also been documented in 
OA subchondral bone 

 The subchondral bone remodeling process is thought to lead to changes in sig-
naling from bone to cartilage. Even in normal joints there is a measurable transport 
of solutes across the calcifi ed cartilage, suggesting a potential cross-talk between 
subchondral bone and cartilage [ 85 ]. The increased subchondral bone remodeling in 
OA is associated with production of cytokines by bone cells and, together with 
changes in the barrier between bone and cartilage, supports the hypothesis that cyto-
kines and growth factors released during subchondral bone turnover diffuse into the 
articular cartilage and change chondrocyte functions, contributing to disease pro-
gression [ 86 ]. 

 While OA-associated changes in subchondral bone are well characterized, 
changes that are associated with aging in the absence of OA are diffi cult to ascertain 
as few studies of human OA pathology included controls without arthritis that were 
age matched. A comparison of knee joints from aged mice with mice that had surgi-
cally induced OA revealed that aged mice had a higher prevalence of blood vessels 
invading the calcifi ed cartilage, and thinning of the subchondral bone and calcifi ed 
cartilage layers, which was not seen in the joints subjected to surgical OA [ 85 ]. 

 The temporal and mechanistic relationship of bone and cartilage change is of 
great interest. Changes in cartilage and subchondral bone during OA pathogenesis 
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are closely linked [ 71 ,  87 ]. There is evidence at multiple scales that this is the key 
region in the development or progression of OA, even though the disease onset 
might have been triggered by an entirely different phenomenon such as by ligament 
or meniscus trauma or abnormal joint shape [ 88 ]. Already during early stages of OA 
development, morphological and functional changes in the subchondral bone occur 
that affect articular cartilage. It has been suggested that changes in histomorphomet-
ric parameters of subchondral bone are secondary to cartilage damage and proceed 
deeper into subchondral bone with increasing cartilage degeneration. However, it 
has also been shown that cartilage loss or further degeneration could be predicted 
with, or related to, increased activity within the subchondral bone [ 89 – 91 ]. Thus, 
there is substantial evidence for interactions of the two tissues in disease initiation 
and progression. 

 The relationship between OA and systemic bone mineral density (BMD), as 
measured at sites distant from the affected joints, has been examined in epidemio-
logical studies which consistently demonstrated that a higher BMD is associated 
with a greater risk of developing subsequent radiographic OA in large joints such as 
knee and hip and there is also a correlation between prevalent OA and BMD [ 73 ,  92 , 
 93 ]. Despite the association with incident and prevalent OA, a consistent relation-
ship between systemic BMD and OA progression has not been found [ 94 ,  95 ]. 

 The abnormal subchondral bone metabolism in OA has been targeted in animal 
models and clinical trials through pharmacological approaches to prevent resorption 
and/or to increase mineralization. Anti-resorptive drugs such osteoprotegerin, 
bisphosphonates, strontium ranelate, calcitonin, cathepsin K inhibitors, and estro-
gen were successfully tested in animal models where modulation of bone changes 
was associated with a reduction in cartilage damage [ 78 ,  96 ]. Clinical trials have 
been performed on a subset of these drugs including bisphosphonates, vitamin D 
and calcitonin and they all failed to show signifi cant disease or structure modifying 
activity [ 78 ,  97 ]. Encouraging results from a recent clinical trial in patients with 
knee OA of strontium ranelate, an osteoporosis drug that inhibits subchondral bone 
remodeling [ 98 ] await confi rmation in additional studies.  

4.3     Synovium 

 Synovium is a membrane-like tissue that lines the inside of the joint capsule and 
also covers tendons and ligaments as a synovial sheath. The outer layer, also termed 
subintima or stroma, contains adipose and fi brous tissue that is innervated and con-
tains blood and lymphatic vessels. The inner layer, also termed intima or synovial 
lining, contains a higher density of macrophages, fi broblast-like cells termed syn-
oviocytes, as well mesenchymal progenitor or stem cells [ 99 ]. Through synovial 
blood vessels the joint receives oxygen and nutrients. Lymphatic vessels are respon-
sible for fl uid clearance and the transport of macromolecules to lymph nodes [ 100 , 
 101 ]. Synovial fi broblasts are a main producer of lubricants that are secreted into the 
synovial fl uid and mainly provide protection against shear forces [ 102 ]. 
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 Aging-related changes in the synovium that occur in the absence of diagnosed 
OA are poorly characterized. Amyloid deposition, which is in most cases an aging- 
related phenomenon, was observed in OA synovium [ 103 ] and at least some amy-
loid proteins can activate synoviocytes [ 104 ]. An overall increase in the thickness of 
the synovial membrane is typically seen in patients with diagnosed OA (reviewed in 
[ 105 ]). This hyperplasia is due to increased ECM formation as well as increased cell 
numbers. Whether this is due to proliferation of resident cells or recruitment of cells 
from the blood is unknown. This is also accompanied by formation of new blood 
vessels [ 70 ]. Predominantly perivascular leukocyte infi ltrations are observed. They 
are usually much less intense than in rheumatoid arthritis and contain macrophages, 
T and B lymphocytes and plasma cells [ 106 – 108 ]. The signifi cance of these syno-
vial changes is underscored by long-term observational studies that identifi ed the 
extent of synovial infl ammation as a risk factor for more rapid progression of struc-
tural damage, as well as joint pain [ 109 – 111 ]. 

 It is thought that these synovial changes are secondary to cartilage damage, 
which results in the generation of cartilage fragments, including cleavage products 
of extracellular matrix components such as collagen, fi bronectin or cartilage oligo-
meric protein (COMP), which activate synoviocytes and macrophages via damage- 
associated molecular pattern molecule recognition receptors or Toll-like receptors 
[ 105 ]. Chondrocytes also produce proinfl ammatory cytokines and growth factors 
that can activate synoviocytes and recruit infl ammatory cells. Calcium containing 
crystals, which are primarily formed in cartilage and menisci but are also produced 
by OA synoviocytes [ 112 ], are also potent activators of synovial fi broblasts, likely 
through Toll-like receptors [ 113 ].  

4.4     Menisci 

 The menisci play an important role in both tibiofemoral compartments through load 
distribution and shock absorption [ 114 – 118 ]. Macroscopic and histopathologic analy-
ses demonstrated a strong association between meniscus damage and OA-like changes 
in cartilage. Normal appearing menisci are rarely found in knees with OA [ 114 – 118 ]. 

 Human meniscal degeneration in OA-affected joints has been described in detail 
[ 119 – 124 ]. However, several characteristics appear to be specifi c to meniscus aging 
in the absence of signifi cant OA. With aging, the meniscal surface often remains 
intact while distinct changes in matrix stain and cellularity are observed within the 
meniscal substance. Tissue fi brillation and disruption is fi rst seen at the inner rim, 
which spreads to the articular surfaces of the meniscus over time, and progresses to 
total disruption or loss of meniscus tissue, mainly in the avascular zone [ 125 ]. This 
is in direct contrast to degeneration in articular cartilage, which almost invariably 
progresses from the surface inward. 

 Increased Safranin O staining is observed with meniscus aging and could repre-
sent a shift from a fi broblastic to chondrocytic phenotype during early degeneration. 
Biochemical data [ 126 ,  127 ] as well as gene expression studies [ 128 ] suggest an 

R.F. Loeser and M. Lotz



321

accumulation of water-binding proteoglycans in aging and degenerating human 
menisci and these changes refl ect an attempt at adaption or regeneration of the 
menisci [ 129 ,  130 ].  

4.5     Ligaments/Tendons 

 Histological abnormalities in the anterior cruciate ligament (ACL) are highly preva-
lent in OA-affected knees and include cystic changes, disorientation of collagen fi bers 
and mucoid degeneration [ 131 ]. Histological changes are much more severe in the 
ACL as compared to the posterior cruciate ligament in the same knees [ 132 ] and such 
age-related deterioration was not observed in the patellar tendon [ 133 ,  134 ]. However, 
histological changes in ligaments can precede cartilage histopathology [ 135 ]. 
Degenerated ACL were found in knees without cartilage degeneration. Also, knees 
with minimal cartilage degeneration can have moderate to severe ACL damage. These 
fi ndings suggest that ACL degeneration can be initiated before or progresses more 
rapidly than cartilage degeneration, at least in a subpopulation of individuals [ 135 ].  

4.6     Common Changes and Mechanisms in All Tissues 

 The concept that all joint tissues are affected in OA has been fi rmly established based 
on several different types of evidence [ 1 ]. There are several mechanistic changes that 
appear to be involved across the different tissues. Abnormal differentiation status of 
mesenchymal lineage cells is seen in cartilage where chondrocytes undergo hyper-
trophic differentiation and also show features of immature chondrocytes. In menis-
cus and ligaments, cells that are normally fi broblast-like express chondrogenic 
genes. Abnormal cell activation is also seen across joint tissues with increased 
expression of proinfl ammatory mediators, oxygen radicals and ECM degrading 
enzymes. There is also cell proliferation, even in cartilage, which normally has 
barely detectable levels of cell division. The stem cell-like populations that are pres-
ent in all joint tissues also appear to be activated but instead of contributing to a suc-
cessful repair response, they appear to participate in abnormal tissue remodeling and 
destruction. Elucidation of signaling mechanisms that mediate changes in all tissues 
has the potential to deliver more promising therapeutic targets.   

5     Role of Major Hallmarks of Aging in OA Biology 

 Seven pillars or hallmarks of aging have been proposed [ 136 ], each of which has 
been identifi ed to occur to some degree in joint tissues, with most work focused on 
the articular cartilage. These changes are summarized in Fig.  4  and will be dis-
cussed in detail below.
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5.1       Infl ammation 

 A link between infl ammation and OA has been made at both a systemic and a local 
level within joint tissues. The levels of proinfl ammatory cytokines, most consistently 
of IL-6 and TNF-α are increased in OA serum and synovial fl uid and have been 
proposed as OA biomarkers [ 137 ,  138 ]. Epidemiologic studies have shown an asso-
ciation between serum levels of IL-6 as well as C-reactive protein (CRP) with knee 
OA, where higher levels correlated to risk of disease progression [ 139 ,  140 ]. In the 
Leiden cohort of 90-year-olds mentioned above, there was an association between 
the absence of knee OA and lower production of IL-1β and IL-6 when whole-blood 
samples were stimulated with lipopolysaccharide [ 141 ]. Levels of systemic markers 
of infl ammation have also been shown to correlate with pain and function in older 
adults with knee OA. An increase in serum TNF-α and C-reactive protein (CRP) was 
associated with increased knee pain over a 5-year study [ 137 ]. Likewise, high levels 
of the soluble receptors for TNF-α as a surrogate for TNF activity were correlated 
with decreased physical ability in older adults with knee OA [ 142 ]. 

5.1.1     Cytokines 

 Cytokines are important signaling molecules that regulate cell function within and 
between joint tissues. Cytokines, both pro- and anti-infl ammatory, anabolic and 
catabolic, as well as angiogenic and chemotactic have been studied for their role in 
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OA [ 143 ,  144 ]. OA-associated joint pain is at least in part mediated by cytokines 
such as IL-1, IL-6, TNF-α, FGF-2, NGF and certain chemokines [ 145 ,  146 ]. 

 The production of cytokines by joint tissue cells is regulated by diverse extracel-
lular stimuli, including other cytokines, enzymatic cleavage products of the extra-
cellular matrix, and mechanical stress. Aging-related stimuli of cytokine expression 
in chondrocytes include advanced glycation end products [ 147 ] and amyloidogenic 
proteins [ 148 ]. Although some senescence markers are detectable in chondrocytes 
from older humans and increased expression of proinfl ammatory cytokines is a fea-
ture of the senescence-associated phenotype, a correlation between these phenom-
ena in chondrocytes has not been established. 

 The group of cytokines that has been studied in detail for their role in OA is those 
that induce OA-like changes in chondrocytes. IL-1 is the prototypic catabolic and 
proinfl ammatory cytokine (reviewed [ 143 ,  144 ]). It affects extracellular matrix 
remodeling by suppressing the synthesis of cartilage-specifi c ECM components and 
by inducing the production of matrix-degrading enzymes. IL-1 also stimulates the 
production of other proinfl ammatory cytokines, prostaglandins, nitric oxide and 
other oxidants in chondrocytes and other joint tissue cells. Other members of the 
IL-1 family have similar effects, including IL-18 and members of the TNF family. 
Cytokines not only activate but also regulate the differentiation status of joint tissue 
cells. For example in chondrocytes, IL-1 suppresses Sox9, a main chondrogenic 
transcription factor [ 149 ]. 

 Many proinfl ammatory cytokines have been implicated in causing changes in 
cartilage, bone and synovial tissue in spontaneous or surgically induced animal 
models of OA, and inhibition of these cytokines attenuated cartilage damage in 
animal models [ 144 ,  146 ]. However, attempts to modify the progression of human 
OA or joint pain in clinical trials with an IL-1 receptor antagonist protein (IRAP) or 
reduce pain with a monoclonal antibody directed against TNF-α have not been suc-
cessful [ 150 ]. 

 Anabolic cytokines, or growth factors, such as members of the bone morphoge-
netic proteins, transforming growth factors, insulin-like growth factors, fi broblast 
growth factors, platelet-derived growth factors, and connective tissue growth factor 
(CTGF) are produced in joint tissue cells and most are increased in OA cartilage. 
The function of some of these factors, such as BMP-7 or FGF-18 has been uniformly 
shown to promote ECM synthesis in chondrocytes and reduce the severity of OA in 
animal models. BMP-7 and FGF-18 have advanced to testing in clinical trials [ 151 ]. 

 Members of the TGFβ family are important pro-chondrogenic factors. They stim-
ulate chondrogenesis in mesenchymal stem cells, maintain the differentiation status 
of cultured chondrocytes and stimulate the production of ECM [ 152 ]. The chondro-
cyte response to TGFβ is altered in aging [ 153 ]. The abnormal TGFβ response of 
chondrocytes from older donors is due to changes in the ratio of TGFβ signaling 
components Alk1 and Alk5, which leads to a hypertrophic or pro-fi brotic phenotype 
and to degradation of the cartilage extracellular matrix [ 154 ,  155 ]. In mouse models 
of OA, TGFβ has been implicated in the formation of osteophytes [ 154 ]. 

 In bone, active TGFβ1 is released during osteoclast bone resorption and recruits 
MSCs to form new bone at resorption sites [ 156 ]. TGFβ was elevated in OA sub-
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chondral bone in human samples and various animal models [ 157 ] and was associ-
ated with early signs of OA including bone-marrow lesions [ 158 ]. High levels of 
active TGFβ1 induce clustering of MSCs/osteoprogenitors in the subchondral bone 
marrow and formation of marrow osteoid islets. Transgenic mice with expression of 
active TGFβ1 in osteoblastic cells developed OA, whereas knockout of the TGFβ 
type II receptor in MSCs reduced OA severity in a surgical model. Neutralizing 
antibody to TGFβ has thus been proposed as a possible therapeutic approach in 
human OA [ 158 ].   

5.2     Oxidative Stress 

 Reactive oxygen species (ROS) are produced by most cell types in the body, not 
merely as a consequence of mitochondrial respiratory activity, but rather as a physi-
ologic mechanism for the regulation of specifi c cell signaling pathways [ 159 ,  160 ]. 
The modern concept of oxidative stress emphasizes that it represents an imbalance 
in the production and removal of ROS that results in the disruption of normal redox 
signaling [ 161 ]. Chondrocytes have been shown to produce the expected reactive 
oxygen species (ROS) made by most cells that include superoxide, hydroxyl radi-
cal, and hydrogen peroxide, as well as reactive nitrogen species, including nitric 
oxide [ 162 – 164 ]. In the growth plate, ROS serve a physiologic function to promote 
chondrocyte hypertrophy [ 165 ], which may be relevant to a pathologic role in OA 
where chondrocytes exhibiting a hypertrophic phenotype have been noted [ 166 ]. 

 There is evidence that oxidative stress can contribute to the development of OA, 
although much of the evidence to date is indirect [ 167 ]. Immunohistochemical stud-
ies of human, non-human primates, and mouse articular cartilage, have shown an 
increase with age and with OA in the oxidative damage marker nitrotyrosine [ 168 , 
 169 ]. Nitrotyrosine forms when nitric oxide (NO) reacts with superoxide (O 2 -) to 
form peroxynitrite (ONOO-), which in turn reacts with protein tyrosines to form 
nitrotyrosine. Increased levels of intracellular ROS have also been detected in carti-
lage from old when compared to young adult rats using the fl uorescent probe 
 dihydrorhodamine 123 [ 170 ]. There is  in vitro  evidence that increased production of 
mitochondrial ROS by chondrocytes, suffi cient to promote cell death, can occur in 
response to excessive mechanical loading [ 171 – 173 ]. Given that ROS are key regu-
lators of MMP production [ 174 ], an age-related increase in the levels of ROS may 
contribute to the increase in MMP activity seen in aging and OA. Indeed, ROS- 
mediated signaling that regulates catabolic pathways that include MMP expression 
has been noted in response to cytokines including IL-1β and TNFα [ 175 – 178 ] and 
to stimulation of chondrocytes by fi bronectin fragments [ 179 ]. Potential mecha-
nisms by which ROS can contribute to OA are summarized in Fig.  5 .

   Normally, the cellular levels of ROS are controlled by the balance of ROS pro-
duction and the activity of various anti-oxidants. Glutathione is a major intracellular 
anti-oxidant and an age-related increase in the amount of oxidized relative to 
reduced glutathione was detected in chondrocytes isolated from normal human 
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ankle tissue, consistent with an age-related increase in ROS [ 180 ]. The increased 
levels of ROS seen in aged and OA cartilage may also be due to reduced levels of 
anti-oxidant enzymes. Catalase and superoxide dismutase (SOD) were found to be 
present at lower levels with aging [ 170 ,  181 ] and in OA cartilage [ 182 ,  183 ]. Scott 
et al. also provided evidence for increased DNA methylation of the SOD2 promoter 
in human OA chondrocytes that might explain the reduced SOD2 levels [ 183 ]. 
SOD2 is primarily found in the mitochondria and SOD2 depletion in chondrocytes 
was associated with mitochondrial dysfunction [ 184 ]. 

 Increased levels of ROS can result in DNA damage which has been noted in OA 
cartilage [ 185 ] including damage to mitochondrial DNA [ 186 ]. This can reduce cell 
viability [ 180 ] and matrix production [ 187 ] (Fig.  5 ). Oxidative stress can also con-
tribute to the senescent phenotype of chondrocytes through damage to telomeres 
[ 188 ,  189 ]. Chondrocyte senescence has also been associated with increased pro-
duction of oxidized low-density lipoproteins in cartilage [ 190 ]. As mentioned 
above, oxidative stress is associated with a disruption of normal redox signaling. 
Low levels of ROS are physiologic regulators of IGF-1 signaling but excessive lev-
els may cause resistance to IGF-1, which has been noted in chondrocytes from older 
adults and in OA chondrocytes [ 191 ,  192 ]. There is growing evidence that excessive 
levels of ROS inhibit IGF-1 activation of the IRS-1-PI-3kinase-Akt pathway that 
promotes chondrocyte survival and matrix production [ 187 ,  193 ]. 
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  Fig. 5    Factors related to aging and oxidative stress in chondrocytes that may contribute to the 
development of OA. Oxidative stress is the result of an imbalance in ROS production, such as from 
mitochondrial dysfunction, and antioxidant enzyme function which disrupts normal cell signaling. 
This can contribute to reduced response to the growth factors IGF-1 and OP-1. Elevated ROS, 
particularly from the mitochondria, can also result in decreased Sirt1 and AMPK activity. These 
changes may promote the catabolic pathways associated with the senescence-associated secretory 
phenotype (SASP). Increased ROS can also cause nuclear DNA damage including telomere short-
ening as well as promote epigenetic changes. As a result of the various changes induced by ele-
vated ROS, cells exhibit reduced autophagy and matrix synthesis and an increase in matrix 
degradation and cell death which all contribute to cartilage loss and OA       
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 As additional support of a role for ROS in the development of OA, a low intake 
of anti-oxidant vitamins has been associated with OA progression in humans [ 194 ] 
and the use of several anti-oxidant vitamins along with selenium (a co-factor for the 
anti-oxidant enzyme glutathione peroxidase) was shown to reduce the development 
of OA in a mouse model [ 195 ]. The anti-oxidant N-acetylcysteine reduced cartilage 
destruction and chondrocyte apoptosis in a rat OA model [ 196 ] and in impact- 
loaded osteochondral explants [ 172 ] while the free-radical scavenger C60 fullerene 
was shown to reduce cartilage destruction in a rabbit model [ 197 ]. These studies 
suggest that further research into the mechanisms by which oxidative stress contrib-
utes to OA could result in the discovery of new approaches to modulate oxidative 
stress and slow the development of OA in older adults.  

5.3     Epigenetics 

 Epigenetic regulation involves non-coding RNAs (ncRNAs), DNA methylation and 
histone modifi cations. As epigenetic changes are dynamic and responsive to envi-
ronmental stimuli, their potential reversibility holds promise in understanding and 
therapeutically targeting disease mechanisms. 

5.3.1     Non-coding RNAs 

 Among the ncRNAs, miRNAs are the most extensively studied in OA. Candidate 
miRs were selected based on differential expression in disease or during develop-
ment for studies on cell function  in vitro  and in a limited number of cases using 
transgenic or knock out mice [ 198 ]. One study used a custom miR array to show that 
7 of 723 miRs analyzed were differentially expressed in OA [ 199 ]. MiR-140 is the 
most abundant miR in cartilage [ 200 ] and its expression is reduced in OA [ 201 ]. 
miR-140 knock out mice showed age-related OA-like changes. Conversely, trans-
genic mice overexpressing miR-140 in cartilage were resistant to antigen-induced 
arthritis. Other miRNAs that regulate gene expression in chondrocytes are miR-125, 
miR-127b, miR-21, miR-148a and miR125 [ 202 ]. Upregulated miRs are potential 
drug targets that can be pursued by an increased availability of novel platforms to 
inhibit their expression or function [ 203 ].  

5.3.2     DNA Methylation 

 OA-related methylation analyses examined a limited set of candidate genes. SOX9 
expression is reduced in OA and subject to increased promoter methylation with 
associated repressive histone modifi cations [ 204 ]. A number of metalloproteinase 
genes including MMP3, MMP9, MMP13 and ADAMTS4 are upregulated in OA, 
and the promoters revealed single CpG demethylation events, possibly accounting 
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for the observed disease-related expression changes [ 205 – 207 ]. Similarly, demeth-
ylation of an NF-κB-responsive enhancer facilitates transcription of inducible nitric 
oxide synthase (iNOS/NOS2) in chondrocytes, a gene, which is dysregulated in OA 
cartilage [ 208 ]. Previously, IL-1β promoter methylation was found to inversely cor-
relate with gene expression in chondrocytes, while leptin expression was also regu-
lated by methylation [ 209 ,  210 ]. GDF5, which has a SNP associated with OA, 
exhibits altered methylation and reduced expression [ 211 ]. 

 Several recent studies used methylation array technology to discover differences 
between normal and OA cartilage [ 212 – 214 ]. A large variation in differentially 
methylated regions was observed in these various studies and this is at least in part 
due to comparing OA articular cartilage from different joints without including 
proper control groups. Large differences were observed in methylation profi les in 
OA cartilage from hips compared to knees [ 215 ]. In addition, the functional conse-
quences of differentially methylated genomes were assessed by transcriptional anal-
ysis of only a small group of genes of interest, and the resulting link between DNA 
methylation and transcription was not further validated.  

5.3.3     Histone Modifi cations 

 Posttranslational modifi cation of nucleosomal histones, including acetylation, 
methylation, phosphorylation and sumoylation, play important roles in the regula-
tion of gene transcription through remodeling of chromatin structure [ 216 ,  217 ]. 
Histone acetylation and methylation are among the best-characterized modifi ca-
tions. Histone methylation occurs on both lysine (K) and arginine residues. In his-
tone H3, different lysine residues (K4, K9, K27, K36 and K79) can be methylated. 
Histone lysine methylation is associated with either gene activation or repression, 
depending on the specifi c residue modifi ed [ 218 – 220 ]. Methylation of histone H3 
lysine 4 (H3K4), H3K36 and H3K79 is generally associated with transcriptional 
activation, whereas methylation of H3K9 and H3K27 is associated with transcrip-
tional repression [ 218 – 220 ]. 

 Lysine methylation is controlled by the opposing activities of lysine methyltrans-
ferases (KMTs) and lysine demethylases (LSD). The level of LSD1 expression was 
elevated in the superfi cial and middle zones of OA cartilage [ 221 ]. In cultured chon-
drocytes, the induction of mPGES-1 expression by IL-1β was associated with 
decreased H3K9 methylation at the mPGES-1 promoter. Inhibition of LSD1 pre-
vented IL-1β -induced H3K9 demethylation at the mPGES-1 promoter and 
mPGES-1 protein expression [ 221 ]. 

 Histone acetylation, which is generally associated with transcriptional activa-
tion, is dynamically regulated by histone acetyl transferases (HAT) and histone 
deacetylases (HDAC) which are classifi ed into four classes; class I (HDACs 1, 2, 3 
& 8), class II (HDACs 4, 5, 6, 7, 9 & 10), Class III which are also referred to as 
sirtuins (SirT1-7), and Class IV (HDAC11) [ 222 ]. There is some evidence of altered 
expression of HDACs in OA cartilage. HDAC1 and HDAC2 are increased in OA 
chondrocytes [ 223 ]. HDAC4 mRNA was lower in cartilage from OA patients when 
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compared with cartilage from healthy donors [ 224 ,  225 ]. HDAC4 was also lower in 
40- to 60-year-old donors compared with specimens from 20- to 40-year-old healthy 
donors [ 225 ]. The reduction in HDAC4 was associated with increased Runx2 and 
other OA-related and chondrocyte hypertrophy-related genes in human OA carti-
lage, including MMP-13, Ihh and type X collagen [ 225 ]. One study found that 
HDAC4 expression was low in normal cartilage but increased in OA, most strongly 
in the chondrocyte clusters [ 226 ], which could explain the differences with the two 
prior studies. 

  In vitro  studies using chondrocytes or cartilage explants generally showed pro-
tective effects of global inhibitors of class I/II HDACS such as trichostatin A (TSA) 
or sodium butyrate. These compounds inhibited metalloproteinase expression and 
protected against cartilage degradation [ 227 ]. Studies on individual HDACs showed 
that HDAC1 and HDAC2 overexpression suppressed transcription of cartilage ana-
bolic genes such as ACAN and COL2A1 [ 223 ]. 

 HDAC3 regulates chondrocyte hypertrophy and matrix content by inhibiting 
protein phosphatase Phlpp1 expression and promoting Akt activity. Chondrocytes 
lacking HDAC3 entered the hypertrophy stage sooner. Moreover, HDAC3 defi cient 
chondrocytes had lower extracellular matrix production and smaller sizes than nor-
mal chondrocytes [ 228 ]. Inhibition of class I HDACs (HDAC-1, HDAC-2, HDAC- 
3) by the small molecule MS-275 or by specifi c siRNAs repressed cytokine-induced 
metalloproteinase expression in cartilage cells and cartilage explants [ 229 ]. 

 HDAC4 has been extensively studied in OA, as it is a key regulator of chondro-
cyte differentiation during skeletogenesis, where it prevents chondrocyte hypertro-
phy by inhibiting the activity of Runx2 [ 230 ,  231 ]. HDAC4 overexpression in 
chondrocytes decreased the mRNA levels of Runx2, MMP1, MMP3, MMP-13, 
type X collagen, Ihh, ADAMTS-4 and -5, and increased type II collagen. 
Overexpression of HDAC4 also decreased IL-1β, Cox2 and iNOS and increased the 
expression of aggrecan, but also partially blocked the catabolic effect of IL-1β in 
human OA chondrocytes. Inhibition of HDAC4 by TSA had the opposite effect 
[ 225 ]. A challenge in using HDAC inhibitors is that their effects are qualitatively 
rather different as a function of duration of application. Short-term treatment of 
cells with HDAC inhibitors increased expression of cartilage ECM genes but pro-
longed treatment reduced expression of most of these genes [ 223 ,  232 ,  233 ]. 
Furthermore, toxicity of global HDAC inhibitors poses a major risk for use in 
chronic diseases such as OA. Specifi c inhibitors such as of class I HDACs may be a 
feasible OA treatment strategy. 

 In animal models, intra-articular injection of TSA in rabbits with experimental 
OA alleviated the extent of cartilage erosion, concomitant with reduced expression 
of IL-1 and matrix-degrading enzymes [ 234 ]. Systemically administered TSA also 
protected cartilage in the destabilized medial meniscus (DMM) model of surgically- 
induced OA [ 229 ]. 

 Among the Class III HDACs, SIRT1 has been linked to aging and caloric 
intake, and also to various age-associated diseases such as type II diabetes, 
Alzheimer’s disease and osteoporosis. SIRT1 activity or levels were altered in OA 
cartilage [ 235 ]. SIRT1 expression was clearly detected in the non-OA cartilage 
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while MMP- 13 and ADAMTS-5 were undetectable. In contrast, in the OA carti-
lage, SIRT1 expression was decreased while MMP-13 and ADAMTS-5 were 
increased [ 236 ]. In human chondrocytes, SIRT1 plays a role in cartilage ECM 
synthesis and promotes cell survival, even under proinfl ammatory stress. 
Overexpression of SIRT1 signifi cantly inhibited the up-regulation of those genes 
caused by IL-1β, while the inhibition of SIRT1 further increased them [ 237 ]. 

 SIRT1 KO mice up to 3 weeks of age exhibited low levels of type 2 collagen, 
aggrecan, and glycosaminoglycan while protein levels of MMP-13 were elevated, 
leading to increased cartilage breakdown, that was evident even in heterozygous 
mice [ 236 ]. Additional results showed elevated chondrocyte apoptosis in SIRT1 KO 
mice [ 238 ]. The histological OA score was signifi cantly higher in 1-year-old 
SIRT1-KO mice compared to control mice. In the surgical OA model, SIRT1-KO 
mice showed accelerated OA progression compared with control mice and this was 
associated with increases in type X collagen, MMP-13, ADAMTS-5, apoptotic 
markers, and acetylated NF-κB p65 {Matsuzaki, 2014 #244}. These observations 
indicate that SIRT1 is involved in cartilage biology and sirtuin activation could 
potentially serve as a drug target in treating OA even at its early stages [ 235 ]. 
Resveratrol, which among other effects increases the activity of sirtuins, was tested 
by intraarticular injection in a rabbit knee OA model. It reduced cartilage destruc-
tion, the apoptosis rate of chondrocytes and the level of NO in synovial fl uid [ 239 ].   

5.4     Autophagy 

 Autophagy is a cellular response to various types of stress and a central homeostasis 
mechanism to eliminate damaged organelles, long-lived or aberrant proteins, pro-
tein aggregates and superfl uous portions of the cytoplasm [ 240 ]. Substrates are 
enclosed in a double membrane, the autophagosome, which fuses with lysosomes, 
allowing enzymatic substrate degradation. Cleavage products are recycled for use in 
biosynthesis or as energy sources [ 240 ]. Autophagy is required for lifespan exten-
sion in various organisms, and many autophagy-related proteins are directly regu-
lated by longevity pathways [ 241 ]. 

 Conceptually, autophagy in normal adult articular cartilage is an important 
mechanism for cellular homeostasis, in particular as chondrocytes in normal carti-
lage are undergoing very low levels of proliferation. Thus, cells in the superfi cial 
zone display a robust expression of autophagy proteins BECN1, ATG5, and 
MAP1LC3 [ 242 ]. When MAP1LC3 is tagged with GFP, the highest GFP signal is 
observed in cells present in the superfi cial and middle zones of the knee articular 
cartilage [ 242 ]. Few cells in the deep cartilage zone exhibit detectable levels of 
GFP-MAP1LC3 signal [ 242 ]. As with other tissues, starvation increases the number 
of autophagosomes in chondrocytes [ 243 ]. 

 Cartilage aging in humans and mice is associated with reduced expression of 
autophagy regulators ULK1 (unc-51 like autophagy activating kinase 1), MAP1LC3, 
and BECN1, which is most profound in the superfi cial zone in the weight bearing 
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areas of cartilage [ 242 ]. Cartilage that is defi cient in autophagy has reduced cellu-
larity and extracellular matrix damage [ 242 ]. In the GFP-LC3 autophagy reporter 
mouse, basal autophagy activity was detected in young (6 months) liver and knee 
articular cartilage, with higher levels in cartilage than in liver in the same animals. 
In mice aged 28 months there was a reduction in the total number of autophagic 
vesicles. With increasing age, the expression of Atg5 and LC3 decreased, followed 
by a reduction in cartilage cellularity and an increase in the apoptosis marker PARP 
p85. Cartilage structural damage progressed in an age-dependent manner, subse-
quent to autophagy changes [ 244 ]. In contrast to the reduction in autophagic pro-
teins in nonproliferating chondrocytes, the cell clusters in OA cartilage express high 
levels of these proteins [ 245 ], consistent with observations that certain chondrocytes 
in OA cartilage display numerous autophagic MAP1LC3 puncta [ 246 ,  247 ]. 

 The reduction in autophagy protein levels and activity lends strong support to the 
hypothesis that basal autophagic activity decreases with age, thus contributing to 
the accumulation of damaged organelles and macromolecules and susceptibility to 
OA as an aging-related disease. Indeed, prior studies demonstrated mitochondrial 
dysfunction in various animal models and in human OA [ 248 ]. In addition, mito-
chondrial DNA mutations increase in OA chondrocytes [ 249 ]. Damaged mitochon-
dria, producing high levels of ROS, promote pro-infl ammatory signaling as they 
initiate formation of infl ammasomes and activation of other infl ammatory pathways 
[ 250 ]. In knee chondrocytes, IL1- or nitric oxide-dependent increase in expression 
of MAP1LC3 and BECN1 activates autophagy [ 251 ]. Furthermore, autophagy acti-
vation prevents IL1-mediated suppression of cartilage matrix degradation while 
reducing the levels of MMP13, ADAMTS5, and ROS. Given that one of the cyto-
protective functions of autophagy is removal of damaged mitochondria, the IL1– 
induced OA-like gene expression changes might possibly occur through reduction 
in the intracellular ROS level via elimination of damaged mitochondria. Inhibition 
of autophagy caused OA-like gene expression changes, while the induction of 
autophagy by rapamycin reduced the MMP13 and ADAMTS5 expression induced 
by IL-1β [ 252 ]. 

 These observations on autophagy defects in aging and OA-affected cartilage led 
to studies to test autophagy activators in OA models. A major focus of these studies 
was the protein kinase mammalian target of rapamycin (mTOR), which as part of 
the complex mTORC1, a key regulator and suppressor of autophagy. Excess mTOR 
activation has been linked to aging on the basis of results from genetic and pharma-
cological studies [ 253 ]. Major effects of mTOR are the inhibition of autophagy and 
the stimulation of protein synthesis. Chronic mTOR activation thus can potentially 
lead to increased accumulation of aggregation-prone proteins [ 254 ]. Senescent cells 
are enlarged or hypertrophic and these phenotypes as well as the abnormal gene 
expression can be reversed by the mTOR inhibitor rapamycin [ 255 ]. Abnormal 
mTOR signaling has been associated with autophagy to promote the secretory phe-
notype of senescent cells and the release of factors known to contribute to defective 
renewal and dysfunction of aging tissue [ 256 ]. 

 The expression of mTOR mRNA and protein was increased in OA-affected 
human and mouse articular cartilage [ 257 ] (Fig.  6 ). The cartilage-specifi c mTOR 
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knock-out mouse showed reduced severity of OA induced by destabilization of the 
medial meniscus. This was associated with increased autophagy and decreased 
chondrocyte death [ 257 ]. Pharmacologic inhibition of mTORC-1 by rapamycin 
activates autophagy in chondrocytes and has protective effects against mechanical 
injury-induced ECM damage and cell death in cartilage explants [ 258 ]. In experi-
mental OA in mice, rapamycin also reduced the severity of cartilage degradation 
and this was associated with a preservation of cartilage cellularity and a reduction 
in infl ammatory mediators [ 259 ]. Intraarticular injection of rapamycin also reduced 
the severity of experimental OA in mice [ 236 ].

5.5        Damage to Macromolecules and Proteostasis 

 As detailed above, a hallmark of OA is degradation of extracellular matrix proteins 
that results in impaired joint tissue function. The most common age-related change 
in cartilage matrix proteins that may contribute to the development of OA is the 
accumulation of advanced glycation end products (AGEs) that are produced by the 
spontaneous nonenzymatic glycation of long-lived proteins such as collagen [ 57 ]. 
The role of AGEs in OA was discussed above in Sect.  4.1  on cartilage aging changes 
in OA. 

 Because articular chondrocytes are the only cell type present in cartilage and are 
therefore responsible for production and maintenance of the articular cartilage, they 
are required to synthesize large amounts of extracellular matrix proteins such as the 
collagens, proteoglycans, and cartilage oligomeric protein that may make chondro-
cytes susceptible to disruptions in proteostasis. For example, chondrocyte expres-
sion of mutant type X collagen was shown to induce the unfolded protein response 

Autophagy/proteostasis
defects

Procatabolic
responses

Deficient antioxidant
defenses

LKB1 

AMPK 

FoxO

CHOP 

mTORC1 

SESTRINS

  Fig. 6    Impaired nutrient and energy sensing in OA cartilage. Several recent fi ndings on abnormal 
signaling mechanisms in OA appear to converge on AMPK and mTOR (mTORC1), which are 
central regulators of the cellular response to changes in energy and nutrient supply. Key abnormali-
ties in OA are reduced AMPK activation and increased mTOR activation. Potential mechanisms 
involved in mTOR hyperactivation include defi cient sestrin expression. Decreased AMPK expres-
sion and activation is related to reduced LKB1 expression and increased CHOP expression as a 
feature of the unfolded protein response (UPR) to endoplasmic reticulum (ER) stress. Dysregulation 
of these signaling mechanisms contributes to key changes in OA-affected cartilage, including 
defective autophagy and proteostasis, pro-catabolic (ECM-degrading and proinfl ammatory) 
responses and defi cient anti-oxidant defenses       
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(UPR) and endoplasmic reticulum (ER) stress, resulting in pathologic changes in 
the growth plate including chondrodysplasia [ 260 ]. Protection from the deleterious 
effects of ER stress during chondrogenesis has been found to be, at least in part, due 
to activation of the basic leucine zipper transcription factor Bbf2h7 which up regu-
lates Sec23a, a gene which encodes a protein that promotes protein transport from 
the ER to the Golgi [ 261 ]. Interestingly, the Bbf2h-Sec23a pathway was found to be 
under the control of Sox9, which is a master regulator of chondrogenesis [ 262 ]. 
Whether this pathway also may regulate ER stress responses in articular cartilage 
relevant to OA has not been studied. 

 There is growing evidence that disrupted bioenergy sensing and proteostasis may 
contribute to OA [ 263 ] (Fig.  6 ). The serine/threonine protein kinase AMP activated 
protein kinase (AMPK) is a master regulator of energy homeostasis. AMPK activity 
is constitutively present in normal articular chondrocytes, but is decreased in human 
knee OA chondrocytes [ 264 ]. Both IL-1β and TNFα induce a marked loss of AMPK 
activity in normal articular chondrocytes. Conversely, AMPK pharmacological acti-
vators attenuate cartilage explant and monolayer cultured chondrocyte procatabolic 
responses to IL-1β and TNFα [ 264 ]. These compounds also increased the NAD + /
NADH ratio and the expression of SIRT1, SOD2 and catalase. Peroxisome 
proliferator- activated receptor γ coactivator 1α (PGC-1α) and FoxO3A, major 
AMPK downstream targets, mediate the chondroprotective effect of AMPK activa-
tion [ 265 ]. Decreased AMPK activity in articular chondrocytes has the potential to 
disrupt cartilage homeostasis by promoting matrix catabolism, thereby contributing 
to progression of OA. 

 The presence of ER stress markers in association with altered production of type 
VI collagen has been noted in human OA cartilage [ 266 ] and the ER stress-induced 
protein C/EBP homologous protein (CHOP) has been shown to mediate chondro-
cyte apoptosis in a mouse OA model [ 267 ]. Increased levels of CHOP and other ER 
stress markers were noted in human OA cartilage [ 268 ,  269 ] and CHOP expression 
was associated with increased chondrocyte catabolic activity [ 269 ]. Chondrocyte 
death in response to ER stress induced by thapsigargin was found to be inhibited by 
the pro-survival protein Akt1 [ 270 ]. Excess CHOP activity is limited by AMPK 
activity in chondrocytes [ 269 ]. An inhibitor of Akt1 that is induced by ER stress, 
tribbles homolog 3 (TRB3), was found to be increased in OA cartilage, while over-
expression of TRB3 in chondrocytes reduced matrix synthesis and promoted cell 
death through inhibition of chondrocyte Akt phosphorylation [ 271 ]. Thus further 
studies on mechanisms relevant to proteostasis in cartilage may discover important 
links to OA.  

5.6     Stem Cells 

 Stem cell depletion is recognized as a hallmark of aging [ 272 ] and it has been sug-
gested that the regenerative activity of bone marrow-derived stem cells (BMSC) 
declines after the age of 30 [ 273 ]. A large number of studies examined whether 
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aging or OA is associated with changes in BMSC [ 274 ]. The frequency of BMSC in 
the mononuclear cell fraction of bone marrow aspirates was reported not to corre-
late with the diagnosis of OA or osteoporosis [ 275 – 280 ] or to decline in older 
donors [ 281 ,  282 ]. The proliferation rate of BMSC during culture expansion 
decreased with age in some studies [ 277 ,  282 – 285 ] but not in others [ 286 ,  287 ]. 
There is also a substantial variability in proliferation rates of BMSCs in older 
donors, which does not appear to be related to the presence of diabetes or OA [ 288 ]. 

 Similar to most other tissues, joint tissues in adult humans are thought to contain 
cell populations with certain phenotypic and functional properties of mesenchymal 
stem cells (MSC) or progenitor cells. Articular cartilage, synovium, menisci, liga-
ments, tendons [ 289 ], infrapatellar fat pad, synovial fl uid [ 290 ] and periosteum 
[ 291 ] contain cells that express MSC surface markers and upon isolation and culture 
under specifi c conditions, they have multilineage differentiation potential towards 
chondrocytes, osteoblasts and adipocytes. In human articular cartilage, the highest 
concentration of cells expressing progenitor cell markers, including Stro-1, Notch- 1, 
CD105, CD166 is in the superfi cial zone and this is reduced with donor age [ 292 , 
 293 ]. 

 The function of these cells in the maintenance of articular cartilage and other 
joint tissues under normal conditions is currently unclear. Interestingly, there is a 
high level of expression of these stem cell markers in the cell clusters in OA carti-
lage [ 292 ], a histological hallmark of OA [ 294 ]. Cells in these clusters produce a 
large number of mediators involved in joint infl ammation and tissue remodeling. 
The abnormal activation and differentiation pattern of cluster cells in OA cartilage 
has been interpreted as chondrocyte de-dedifferentiation [ 295 ] where the differenti-
ated articular chondrocytes change gene expression patterns in response to the dif-
ferent extracellular signaling environment. An alternative hypothesis is that cluster 
formation is the result of progenitor cell proliferation. A systematic analysis of the 
fate of cells expressing progenitor markers during the development of OA is required 
to address this hypothesis. 

 Surgical injury to articular cartilage is also associated with proliferation of pro-
genitor cells that produce new extracellular matrix [ 293 ]. In addition, migratory 
chondrogenic progenitor cells, apparently originating from subchondral bone or 
bone marrow were also described in areas of OA joints where the original cartilage 
had been degraded [ 296 ]. It thus appears that traumatic or OA-related injury to 
articular cartilage activates proliferation of these mesenchymal progenitor cells. 

 Osteophytes are new bone tissues that are formed in OA affected joints and rep-
resent radiographic hallmarks of OA. While osteophytes most commonly form at 
the joint margins and originate from the periosteum, a tissue rich in stem cells, simi-
lar structures can also develop in areas of exposed subchondral bone, in ligaments 
and tendons [ 297 ]. The formation of osteophytes appears to be initiated by MSCs 
that undergo condensation, chondrogenic differentiation, and proliferation [ 298 ]. 
The chondrocytes then undergo hypertrophic differentiation, promoting the forma-
tion of blood vessels that allow recruitment of osteoblasts and osteoclasts that 
remodel the cartilaginous tissue into bone in a process similar to endochondral ossi-
fi cation [ 299 ]. 
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 Bone marrow-derived mesenchymal stem cells (BMSCs) have been studied 
extensively as a cell source for engineering of cartilage and other tissues [ 273 ]. 
Direct injection of MSCs into the joint can slow the degradation of articular carti-
lage or even regenerate it in OA animal models [ 300 ,  301 ]. A proof of concept study 
in humans who received injections of autologous adipose tissue-derived MSCs into 
OA-affected knees showed encouraging results [ 302 ]. 

 For differentiation potential towards single lineages, an unaltered differentiation 
capacity with age was reported for adipogenesis [ 276 ,  277 ,  282 ,  303 ] and chondro-
genesis [ 278 ,  282 ,  303 ]. For osteogenesis, reports on maintained differentiation 
capacity [ 275 – 277 ,  285 ,  303 ,  304 ] contrasted others showing a decline in osteogen-
esis with age [ 281 ,  282 ,  284 ]. 

 Since there is no specifi c marker to identify MSC in bone marrow [ 274 ] and the 
cells are analyzed after culture, the question whether there is a change in MSC num-
bers and/or function with age is, therefore, an important question which still remains 
open. Despite these aging-related changes that were observed in some studies, bone 
marrow stem cells from older donors still appear to be a suitable cell source for tis-
sue engineering, as proliferating and differentiating MSC were isolated even from 
very old donors, so that the ability to isolate MSC is per se not a limitation for thera-
peutic use [ 288 ].   

6     Research Needs in Aging and OA to Meet the Goal 
of Developing Disease-Modifying Therapies 

 A major long-term goal of research in OA is to delay onset and develop disease 
modifying therapies that would slow or stop structural progression while also reduc-
ing pain and improving physical function. We are getting closer to that goal. When 
compared to the previous century of work, rapid progress in the understanding of 
the biology of OA has been made over the past two decades with the recognition 
that OA is not simply due to “wear and tear” of the articular cartilage. As detailed 
in the sections above, the biology of OA and the contribution of aging are much 
more complex than ever imagined. It includes pathological changes in all of the tis-
sues that make up the affected joint(s) driven not only by abnormal joint mechanics 
that result in excessive or abnormal loading of the joint but also by the activity of a 
host of infl ammatory mediators as well as by aging changes that promote catabolic 
over anabolic activity and reduced cell survival. This improved understanding of 
OA within the context of aging provides hope that new disease-modifying therapies 
can be developed but there is still much work to be done fi rst. 

 A summary of the research needs in OA most relevant to aging includes:

•    Determining the key pathways which lead to OA downstream from specifi c risk 
factors  

•   Understanding the role of systemic vs. local infl ammation and determine which 
of the many infl ammatory factors are key drivers of OA  
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•   Determining if targeting a specifi c hallmark of aging will decrease the progres-
sion of OA  

•   Developing better age appropriate pre-clinical models of OA  
•   Developing clinical, biochemical, and imaging biomarkers that can accurately 

phenotype individuals with various forms of OA to predict those at greatest risk 
of progression and target therapy to a specifi c phenotype    

 A major challenge moving forward is determining which of the many pathways 
recently found to contribute to OA are critical to promoting disease progression. It 
is likely that the pathway to OA will vary for each individual based on specifi c risk 
factors in conjunction with age. For example, preventing the development of post- 
traumatic knee OA in a 20 year-old with an acute ACL tear will require a different 
strategy than for slowing the progression of knee OA in an obese 60 year-old. The 
former would likely require targeting an infl ammatory pathway initiated at the time 
of ACL tear while the latter would require targeting a key metabolic aspect of obe-
sity that contributes to OA. It is not known which infl ammatory mediators are key 
drivers of OA and the relative role of local versus systemic infl ammation associated 
with aging or “infl amm-aging” in the OA process is also not clear. Likewise more 
work is needed to determine if targeting one of the major hallmarks of aging, such 
as oxidative stress, epigenetic alterations, metabolism and autophagy, or ER stress 
will be of benefi t in reducing the progression of OA. Finally, there is a need to know 
if protecting chondrocytes from dying and/or inducing endogenous stem cells to 
promote repair is feasible. 

 Another need to advance the fi eld is the development of pre-clinical models of 
OA that better predict effi cacy in humans. A number of the treatments mentioned 
above, such as bisphosphonates, calcitonin, and iNOS inhibitors, worked great in 
the pre-clinical models in which they were tested but failed in large (and expensive) 
clinical trials in humans [ 46 ]. A major issue is that pre-clinical studies are routinely 
performed in young animals in which OA is induced surgically. Using microarrays 
to evaluate changes in gene expression after the induction of OA in young and older 
adult mice, we noted signifi cant age-related differences that suggest the genes and 
pathways activated as OA develops in older animals may be very different from 
those in younger animals [ 305 ]. Surgical induction of OA in young animals might 
only be a good model system for predicting effi cacy in preventing post-traumatic 
OA in young humans, while predicting effi cacy in older adult humans will require 
use of animals that more closely match the age of the human population for which 
an intervention is being developed. 

 There is a movement to think of OA as a condition with multiple phenotypes that 
might be segregated by clinical fi ndings, including risk factor assessment, along 
with biochemical and imaging biomarkers to evaluate specifi c joint tissue involve-
ment and disease activity [ 306 – 308 ]. However, we currently lack biochemical 
markers sensitive and specifi c enough to phenotype patients and although advances 
are being made quite rapidly in imaging, there is a lack of agreement on the most 
useful modalities. Clinical, imaging and biochemical biomarker data from the 
Osteoarthritis Initiative (OAI), an ongoing longitudinal multicenter study of close to 
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5000 men and women aged 45–79 years with knee OA or at risk for knee OA, is 
expected to provide results that can be used to better phenotype people with knee 
OA and predict who is at greatest risk of progression. This work and the many other 
ongoing studies in aging and OA provide confi dence that progress in the fi eld will 
continue to be made that should lead to new therapies for OA.     
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1            Introduction 

 Age is a major risk factor for type 2 diabetes mellitus (T2DM), similarly to what is 
known about the etiology of most chronic diseases. Indeed, before the recent “epi-
demic” of childhood and adolescent obesity, T2DM was called “adult onset diabe-
tes.” The importance of chronological age as a risk factor for T2DM is only one of 
many links between diabetes and aging. The genetic and environmental control of 
the biological process of aging is intertwined with the development and conse-
quences of T2DM in a highly complex network of interactions that are probably 
unique to diabetes. 

 Symptoms and diagnosis of T2DM refl ect failure of insulin-secreting pancreatic 
β cells on the background of progressive increase in insulin resistance in target tis-
sues. Insulin resistance commonly accompanies aging, although it is not clear 
whether insulin resistance is primarily a cause or a consequence of aging and 
whether it represents a protective/compensatory response to hyperinsulinemia [ 9 ]. 
While controversy persists about the role of aging in insulin resistance, and vice 
versa, it is widely accepted that maintaining insulin sensitivity through physical 
activity or pharmacological agents can prevent/delay the development of T2DM in 
high-risk young and older adults [ 84 ]. 

 There is considerable evidence that insulin and homologous hormones in inver-
tebrate species are intricately involved in the control of aging and lifespan [ 62 ,  124 ]. 
In experimental organisms ranging from yeast to mice, reducing (but not eliminat-
ing) insulin/insulin-like growth factor (IGF) signaling by genetic or dietary means 
can lead to slower aging, reduced susceptibility to age-related disease and signifi -
cant, often remarkably large, extension of longevity. The increase in longevity can 
be quite impressive – more than twofold increase in  C. elegans  and more than 1.5- 
fold increase in mice. Importantly, a role of insulin/IGF signaling in the control of 
aging and longevity also applies to primates, including humans [ 106 ,  133 ]. The 
benefi cial effects of reduced insulin/IGF signaling on longevity could be viewed as 
the fi rst paradox in the relationship between insulin and aging. A severe reduction 
of the capacity to produce insulin leads to diabetes, a serious, life-threatening dis-
ease. In contrast, chronic hypoinsulinemia induced by calorie restriction or muta-
tions related to growth hormone (GH) signaling are associated, most likely causally, 
with delayed aging and long, healthy life. 

 The complex interplay between insulin action, diabetes and aging does not end 
here. Progression of T2DM, with its practically unavoidable deterioration of glu-
cose homeostasis, is associated with the emergence of functional defi cits and patho-
logical alterations that typically accompany aging [ 35 ]. Indeed, many diabetologists 
view accelerated aging as a result of T2DM (as well as type 1 diabetes) and believe 
that patients with T2DM are physiologically older than their chronological age. 
This difference may be as great as 10 years or, for new patients, approximately 1 
year for each year since the diagnosis of their disease. This relationship between 
T2DM and aging at times has been emphasized by the simple but powerful state-
ment that “diabetes is accelerated aging” [DeFronzo, RA, personal communica-
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tion]. Although a disease (diabetes) cannot be equated with a physiological process 
(aging), it is indeed striking that some of their consequences are very similar. 
Regarding accelerated aging as one of the consequences of diabetes is consistent 
with many clinical and epidemiological fi ndings. It is also important to remember 
that diabetes disturbs insulin secretion and its intracellular actions, which are medi-
ated by signaling pathways known to be involved in the control of aging. 

 In terms of broader relationships between aging and disease as embodied in the 
concept of geroscience and explored throughout this volume, the suggestion that 
diabetes may lead to accelerated aging is extremely important. It provides a mecha-
nistic explanation of why diabetes, similarly to chronological age, increases the risk 
for cardiovascular disease, cancer, frailty and dementia. Uncovering cause:effect 
relationships between insulin signaling, aging and diabetes is greatly complicated 
by the fact that circulating insulin concentration and insulin sensitivity are mutually 
dependent and both are altered in pre-diabetic conditions such as glucose intoler-
ance and the metabolic syndrome, and in patients with T2DM. Although chronic 
insulin exposure promotes insulin resistance by well-known mechanisms, insulin 
resistance coexists with insulin defi ciency in T2DM; meanwhile long-lived mice 
with GH-related mutations and offspring of exceptionally long-lived people exhibit 
reductions in both insulin levels and insulin resistance [ 8 ,  133 ]. These relationships 
are further complicated by differential alterations in insulin sensitivity and various 
steps of insulin signaling in different organs of the same individual [ 19 ], as well as 
by the emerging evidence that insulin resistance can be either detrimental or protec-
tive [ 10 ]. Is this another paradox related to diabetes? 

 Discussion of the interplay between aging and diabetes would not be complete 
without a reference to obesity. Aging is associated with progressive changes in the 
distribution and secretory activity of adipose tissue, as well as adipogenesis and 
adipocyte senescence, and most often also with a gradual, often very striking 
increase in adiposity [ 125 ]. Obesity is one of the important features of metabolic 
syndrome and a key risk factor for T2DM. It is also independently associated with 
an increased risk of cancer and cardiovascular disease, thus resembling the effects 
of both aging and diabetes. In turn, regulation of lipid metabolism, food intake and 
adiposity are disturbed in T2DM.  

2     Studies in Experimental Animals Link Glucose 
Homeostasis and Insulin Signaling with Healthy Aging 
and Longevity 

2.1     Animals with Reduced Longevity 

 Much of the evidence for causal links between glucose homeostasis and aging is 
derived from mice with genetic or dietary interventions that alter insulin signaling. 
In this species, obesity induced either by mutations or high-fat diet (HFD) leads to 
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a reduced lifespan, as well as insulin resistance, diabetes and functional defi cits 
resembling those that normally occur during aging [ 95 ,  96 ,  121 ]. Mice with morbid 
obesity due to hereditary defi ciency of leptin or leptin receptors provide a particu-
larly striking example of these associations [ 67 ,  89 ,  102 ]. Animals heterozygous for 
the lethal yellow (A Y ) mutation at the agouti locus (often referred to as “agouti 
mice”) are obese, hyperinsulinemic and hyperglycemic and more likely to develop 
cancer, an aging-related disease [ 134 ]. 

 Interestingly, some genetic interventions allow dissociating abnormal glucose 
homeostasis and accelerated aging from obesity. Transgenic mice overexpressing 
growth hormone (GH) have reduced adiposity (percent of body fat) during most of 
their adult life [ 103 ], are insulin resistant and hyperinsulinemic, live much shorter 
than their genetically normal siblings, and exhibit numerous characteristics resem-
bling aging that develop at an inappropriately early chronological age [ 6 ]. Pertinent 
to the subject of this chapter, these “giant mice” are more susceptible to age-related 
diseases including kidney infl ammatory disease, glomerulosclerosis and cancer 
[ 129 ]. Moreover, blood pressure is elevated in these insulin-resistant transgenic 
mice [ 78 ].  

2.2     Animals with Extended Longevity 

 Causal relationships between insulin signaling, glucose homeostasis, age- associated 
disease and longevity are strongly supported by studies in mice in which somato-
tropic signaling is suppressed by spontaneous mutations or targeted gene disrup-
tions. Remarkable extension of average and maximal longevity of mice of both 
sexes lacking GH or GH receptors is associated with enhanced insulin sensitivity, 
reduced or “low-normal” levels of blood glucose, and resistance to the detrimental 
impact of high-fat diet on insulin signaling [ 8 ,  22 ,  90 ]. These characteristics, 
together with reduced blood pressure [ 57 ], could be described as a phenotype oppo-
site to metabolic syndrome or “prediabetes.” Importantly, these animals exhibit 
numerous features of delayed aging, including improved maintenance of cognitive, 
immune and neuromuscular function, collagen properties and glucose homeostasis 
at the age when these parameters exhibit decline in their normal (wild type) siblings 
[ 8 ,  22 ]. Incidence of cancer and various pathological changes associated with aging 
are delayed and/or reduced in these insulin-sensitive, long-lived mutants [ 73 ,  74 ]. 

 Our hypothesis that improved insulin signaling/action is one of the key mecha-
nisms responsible for extension of longevity in GH-related mutants was supported 
by experiments exposing these animals to calorie restriction (CR) throughout most 
of their post-natal lives. In most strains of mice, CR increases insulin sensitivity, 
slows aging and extends longevity. In Ames dwarf mice, which lack GH, CR led to 
a further increase in insulin sensitivity and further extension of their already remark-
ably long lifespan [ 7 ]. In contrast, in GH-resistant GHRKO (a.k.a. “Laron dwarf”) 
mice, CR did not further increase insulin action (Fig.  1 ), had no effect on longevity 
in males and caused a small increase in maximal (but not average) longevity in 
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females [ 18 ]. Additional evidence for a cause:effect relationship between insulin 
signaling and aging was obtained in a recent study in which experimental suppres-
sion of insulin sensitivity in long-lived GHRKO mice attenuated phenotypic mark-
ers of delayed aging [ 4 ]. In contrast to these observations, mice with deletion of 
insulin receptor substrate 1 (IRS1 −/−) and transgenic mice overexpressing klotho 
are long-lived in spite of enhanced rather than reduced insulin resistance [ 86 ,  116 ]. 
It was suggested that insulin resistance may act to reduce the strength of the insulin 
signals [ 86 ] or protect target organs from excessive insulin exposure [ 9 ]. Similarly, 
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fat tissue-specifi c insulin receptor knockout (FIRKO) mice are long-lived in spite of 
insulin resistance of adipocytes and perhaps also macrophages [ 16 ], and rapamycin 
treatment extends longevity in mice even though it can reduce insulin sensitivity 
[ 68 ]. However, rapamycin’s effects on insulin signaling depend on the dose and 
duration of treatment [ 49 ]. From the data available to date, it is possible to conclude 
that a combination of reduced insulin levels and enhanced insulin sensitivity might 
emerge as one of the key mechanisms leading to delayed and healthy aging in mice 
with GH-related mutations as well as in various species of animals subjected to CR.

3         Role of Adiposity 

 Interestingly, studies in long-lived mutant mice allowed dissociation of the effects of 
insulin signaling on aging from the effects of obesity. In contrast to animals sub-
jected to CR, long-lived GH-related mutants have increased rather than reduced adi-
posity [ 13 ]. Examination of the adipose tissue expression of pro- and anti- infl ammatory 
cytokines and their circulating levels along with the effects of surgical removal of 
most of the intra-abdominal (visceral) fat in these animals provided evidence sug-
gesting that insulin resistance is not determined by the amount of adipose tissue but 
by its secretory profi le [ 94 ]. Long-lived mice with GH-related mutations have unex-
pectedly increased levels of adiponectin and reduced expression of IL-6 and TNFα 
in spite of their increased adiposity [ 91 ,  94 ]. It is well documented that in addition to 
its anti-infl ammatory and anti-atherogenic effects, adiponectin increases insulin sen-
sitivity [ 12 ,  127 ,  137 ]. It is possible that increased adiponectin levels, together with 
reduced levels of pro-infl ammatory cytokines and suppressed mechanistic target of 
rapamycin (mTOR) signaling, provide a likely explanation for increased insulin sen-
sitivity in corpulent or obese GH-defi cient and GH-resistant mice.  

4     Pathophysiology and Natural History of Type 2 Diabetes 

 In young and middle-aged individuals, T2DM occurs as a consequence of two 
pathophysiologic alterations, insulin resistance and β-cell failure. Both genetic and 
environmental factors (obesity, physical inactivity) contribute to the development of 
insulin resistance. Resistance to the actions of insulin in skeletal muscle, liver, and 
adipose tissue appears early in the natural history of the disease. In muscle, insulin 
resistance is manifested as decreased insulin-mediated glucose disposal; in the liver 
it is manifested as impaired suppression of hepatic glucose output; and in adipose 
tissue insulin resistance manifests as increased lipolysis rates, resulting in increased 
plasma free fatty acid concentration that further impairs insulin action in muscle and 
liver (i.e. lipotoxicity). During the early stages of insulin resistance, β-cells can 
compensate by augmenting insulin secretion to maintain normal glucose tolerance. 
However, in subjects destined to develop diabetes (~10–20 % of all insulin-resistant 
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individuals), the β-cells eventually will fail, leading to the onset of overt diabetes. 
The resultant hyperglycemia causes a further decline in insulin sensitivity (i.e. glu-
cotoxicity), but it is the progressive β-cell failure that determines the rate of disease 
progression [ 44 ].  

5     Aging as a Risk Factor for Type 2 Diabetes 

 Substantial evidence has demonstrated that increasing age is associated with 
impaired glucose homeostasis [ 2 ,  43 ,  107 ]. The Baltimore Longitudinal Study of 
Aging showed a progressive decline in glucose tolerance from the third through the 
ninth decade of life [ 118 ]. During an oral glucose tolerance test, the mean fasting 
plasma glucose increased ~1 mg/dl per decade, and the 2 h glucose increased ~5 
mg/dl per decade. This decline in glucose tolerance was also evident in the National 
Health and Nutrition Examination Survey (NHANES) III, which showed that the 
percentage of physician-diagnosed diabetes (fasting glucose ≥126 mg/dl) is 3.9 % 
in subjects aged 40–49 years, whereas prevalence increases to 13.2 % in subjects 
≥75 years of age [ 66 ]. The percentage of subjects with undiagnosed diabetes also 
increases from 7.1 to 14.1 % within these age groups. Approximately 50–60 % of 
subjects aged ≥65 have diabetes or impaired glucose tolerance (IGT), and ~25–50 
% (depending upon the population) of subjects with IGT will ultimately convert to 
type 2 diabetes [ 47 ], Other than chronological age, the factors responsible for such 
high prevalence of IGT and T2DM in the aging population are not clear. However, 
age-dependent decreases in (i) insulin sensitivity and (ii) β cell function are thought 
to play important roles in the deterioration of glucose homeostasis that occurs with 
advancing age. 

5.1     Molecular Basis for Peripheral Insulin Resistance 

 As mentioned above, insulin resistance is characteristic of peripheral tissues (i.e. 
muscle, adipose) from obese and T2DM subjects [ 43 ]. The fi rst step in the insulin 
signaling transduction pathway is binding of insulin to the α subunits of the insulin 
receptor in the cell surface. The activated insulin receptor then tyrosine phosphory-
lates and activates downstream insulin receptor substrate (IRS) proteins, such as 
IRS-1 (IRS-1). Tyrosine phosphorylation of IRS-1 leads to its association with the 
p85 subunit of phosphatidylinositol 3-kinase (PI-3 kinase) [ 132 ]. Activation of PI-3 
kinase leads to the phosphorylation/activation of a series of enzymes and proteins, 
such as phosphoinositide-dependent kinase (PDK)-1, protein kinase C (PKC) λ/ζ, 
Akt, and the RabGAP protein AS160 [ 50 ,  142 ,  143 ]. The phosphorylation/activation 
of these signaling intermediaries results in the translocation of GLUT4 glucose trans-
porters to the cell membrane and the uptake of glucose [ 50 ,  142 ,  143 ]. A wide array 
of abnormalities distinguish insulin-resistant muscle from normal muscle, including 
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decreased insulin receptor tyrosine kinase activity, decreased IRS-1- associated tyro-
sine phosphorylation, and decreased insulin-stimulated PI 3-kinase activation [ 28 , 
 41 ,  145 ]. Other defects reported in insulin-resistant muscle include decreases in insu-
lin-stimulated PKC activity [ 50 ], and AS160 phosphorylation [ 80 ]. Insulin-mediated 
GLUT4 translocation also is reduced in insulin resistant subjects [ 54 ], due in part to 
impairments in insulin signaling described above. These molecular abnormalities are 
strongly correlated with decreased insulin-stimulated glucose disposal in muscle [ 41 , 
 145 ]. Some of these cellular processes will be further discussed in Sect.  5.2  

 Insulin-stimulated glucose transport in muscles from nondiabetic rodents 
decreases with age [ 58 ,  61 ]. The majority of reports that have examined the effect 
of age on insulin sensitivity in humans also have demonstrated reduced insulin sen-
sitivity [ 48 ]. Some studies have reported that decreased insulin sensitivity with 
aging is not apparent when results are expressed by lean body mass. However, when 
glucose disposal is measured using the hyperinsulinemic euglycemic clamp tech-
nique over a range of insulin doses, the plasma insulin concentration required to 
achieve half-maximal glucose disposal is considerably lower in younger compared 
with older subjects (shift to the right) [ 112 ]. This decrease in insulin-stimulated 
glucose disposal is evident whether glucose disposal rates are plotted per kg of 
whole body weight or lean body mass. Other dose-response studies using the eug-
lycemic clamp also have shown impaired insulin sensitivity in older subjects [ 51 , 
 105 ]. Petersen et al. demonstrated that, in response to physiologic hyperinsulinemia 
(20 mU/kg.min insulin clamp), older subjects have a ~40 % reduction in peripheral 
glucose disposal compared to younger subjects who were matched for body mass 
index (BMI) and lean body mass [ 105 ]. Importantly, the impairment in insulin sen-
sitivity in older subjects was still evident when glucose disposal was expressed per 
lean mass [ 77 ]. In addition, peripheral insulin resistance in aging has been demon-
strated using other techniques, such as forearm glucose uptake and the frequently 
sampled intravenous glucose tolerance test (minimal model) [ 32 ]. Studies in rodents 
and human subjects from various groups also have shown that skeletal muscle from 
aging animals has defects in the insulin transduction pathway as described above 
[ 55 ,  75 ,  85 ,  87 ]. 

 The underlying pathogenic mechanism responsible for the reduction in insulin 
action that occurs with aging is unclear. Probable factors contributing to age- 
associated insulin resistance include adiposity/lipotoxicity, infl ammation, and mito-
chondrial dysfunction. These are discussed below and illustrated in Fig.  2 .

5.2         Role of Adiposity/Lipotoxicity on Insulin Resistance 

 Approximately 30–40 % of older U.S. adults are obese (CDC/NHANES). The high 
prevalence of obesity in this population is multifactorial, including decreased physi-
cal activity, lower oxidative capacity, and muscle wasting. Obesity is associated 
with impaired glucose metabolism, although the mechanism by which excess adi-
pose tissue alters glucose homeostasis is unclear. Plasma concentration of free fatty 
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acids (FFA) is commonly elevated in older subjects, and several lines of evidence 
implicate a deleterious effect of elevated plasma FFA level on muscle insulin sensi-
tivity. For example, an experimental elevation of FFA induces muscle insulin resis-
tance in normal glucose-tolerant subjects [ 17 ], whereas a reduction in plasma FFA 
concentrations rapidly ameliorates insulin resistance in insulin-resistant individuals 
[ 113 ]. In addition to the circulation, a variety of approaches has confi rmed the exis-
tence of increased lipid content in insulin-resistant skeletal muscle [ 5 ,  60 ,  128 ]. 
Triglycerides account for most intramyocellular lipids. While triglycerides proba-
bly do not impair insulin action per se, metabolites of triglycerides/FFA, particu-
larly diacylglycerol and ceramides, have been shown to have a deleterious effect on 
insulin action [ 63 ,  141 ]. The cause for the accumulation of intracellular lipids in 
insulin-resistant muscle is unknown, although one possibility is a reduction in mito-
chondrial oxidative capacity [ 105 ], which appears as a major hallmark of aging (see 
below). This elevation in intramyocellular lipids is thought to initiate a reverberat-
ing negative feedback cycle by decreasing insulin signaling and aggravating the 
insulin resistance that is already present. Specifi cally, these intracellular lipid 
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  Fig. 2    Model of pathogenesis of muscle insulin resistance with aging. During aging, there is a 
pro-infl ammatory state evidenced by increased expression and activity of mediators such as NFκB 
and MAP-kinases, caused by elevated levels of infl ammatory stimuli, including plasma free fatty 
acids and endotoxin (which signal via TLR4), intracellular lipids (e.g. ceramides, diacylglycerol), 
cytokines (e.g. TNFα) and ROS. Decreases in mitochondrial function also contribute by promoting 
accumulation of intracellular lipids and increased ROS production. The activation of NFκB and 
MAP-kinases impair insulin action at the Akt and IRS levels, which eventually result in decreased 
insulin-mediated glucose disposal       
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metabolites activate kinases, such as inhibitor κB kinase, protein kinase C, and c-jun 
N-terminal kinase (JNK), which in turn serine phosphorylate IRS-1, resulting in 
decreased activation of PI-3 kinase [ 1 ,  26 ,  76 ]. 

 Numerous studies have examined whether intracellular lipid content varies with 
normal age. A study in rats found elevated intramyocellular lipid content in aging 
animals [ 126 ]. In humans, studies employing magnetic resonance spectroscopy 
(MRS) have shown that older subjects also have higher intracellular lipid levels in 
muscle and liver than younger individuals, and that intramyocellular lipid content 
correlates closely with peripheral insulin resistance [ 40 ,  105 ]. As in the case for 
insulin-resistant muscle, the molecular basis for the age-dependent accumulation of 
intramyocellular fat is also yet to be determined; however, it likely results from an 
imbalance between the rate of uptake of fatty acids and fat oxidation. Indeed, stud-
ies performed in older, nondiabetic subjects have demonstrated that aging is associ-
ated with a reduction in basal fat oxidation rates [ 27 ,  122 ].  

5.3     Role of Decreased Mitochondrial Function 

 As mentioned above, aging is accompanied by alterations in various parameters of 
mitochondrial function and structure. In the context of metabolic diseases such as 
obesity and type 2 diabetes, particularly relevant are mitochondrial alterations 
described in skeletal muscle, which is a key tissue responsible for substrate (glu-
cose, FFA) uptake and oxidation. Mitochondrial alterations described in aging mus-
cle include reductions in mitochondrial number, ATP production, and respiration, 
abnormal structure, and, in some cases, elevated reactive oxygen species generation 
[reviewed in [ 79 ]. 

 The cause for the reduction in mitochondrial function observed with aging is not 
clear. According to the free radical and mitochondrial theories of aging the decreases 
in mitochondrial function are the result of cumulative oxidative damage to mito-
chondrial molecules (mtDNA, proteins, and lipids) [ 65 ,  97 ]. Consistent with this 
theory, studies performed in human muscle have shown that aging is associated with 
oxidative damage to mtDNA and proteins [reviewed in 79]. Some [ 130 ], albeit not 
all [ 55 ], studies also have found increased lipid peroxidation in muscle from older 
subjects. Concerning the age-related reductions in oxidative capacity, various stud-
ies [ 88 ,  100 ,  110 ] have reported that aging is accompanied by a reduction in the 
activity of the energy-sensing enzyme AMP-activated protein kinase (AMPK). 
AMPK works as a fuel gauge, being activated robustly by energy-consuming stim-
uli such as muscle contraction, hypoxia, and ischemia [ 70 ,  135 ]. Upon stimulation, 
AMPK functions to restore cellular ATP by modifying diverse metabolic and cel-
lular pathways, including increased fat oxidation and glucose transport. AMPK pro-
motes fat oxidation in tissues by phosphorylating and inactivating acetyl CoA 
carboxylase (ACC), resulting in decreased synthesis of malonyl-CoA, an inhibitor 
of carnitine palmitoyltransferase I (CPT-1). The reduction in malonyl CoA relieves 
the inhibition of CPT-1 and promotes CPT-1 mediated transport of fatty acids into 
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the mitochondria for oxidation. Because the end result of AMPK activation is an 
increase in fat oxidation, decreases in AMPK activity, as seen with aging, could lead 
to an excessive accumulation of intramyocelular lipids, which in turn would impair 
insulin action/sensitivity. Other key regulators of mitochondrial biogenesis and oxi-
dative capacity reported to be altered with aging are the transcriptional coactivator 
peroxisome proliferator-activated receptor γ coactivator (PGC)-1α and the NAD- 
dependent deacetylase sirtuin-1. PGC-1α controls mitochondrial biogenesis and 
cellular metabolism by regulating the expression of numerous proteins involved in 
the Krebs cycle, oxidative phosphorylation, and mtDNA replication/transcription 
[ 64 ]. AMPK increases PGC-1α gene expression, and sirtuin-1 enhances PGC-1α 
activity through deacetylation on lysine residues. Similar to AMPK, the expression 
of both PGC-1α [ 55 ] and sirtuin-1 [ 31 ] are reduced in aging tissues, suggesting that 
a coordinated downregulation of the AMPK-PGC-1α-sirtuin 1 axis may play a role 
in the reductions of mitochondrial number, oxidative capacity, and cellular meta-
bolic functions that occur with aging. 

 While, in general there is agreement with the notion that aging is associated with 
alterations in mitochondrial number, structure, and function, it is debated whether 
primary mitochondrial abnormalities (independent of aging) are suffi cient to induce 
insulin resistance [ 59 ,  72 ]. Confl icting results about the role of mitochondrial dys-
function on the pathogenesis of insulin resistance, obesity, and type diabetes are due 
in part to differences in animal species, tissues, and human populations studied, and 
in the conditions and methods employed to assess mitochondrial function [ 79 ,  104 ]. 
Despite the ongoing debate, it is probable that increasing mitochondrial oxidative 
capacity via lifestyle interventions (i.e. physical activity) or pharmacological agents 
would result in improved metabolic outcomes during aging.  

5.4     Role of Infl ammation 

 Aging may be considered a state of low-grade “sterile” infl ammation that could play 
a role in the high prevalence of glucose metabolism abnormalities in older subjects 
[ 24 ,  30 ,  37 ]. Increased low-grade infl ammatory activity in older subjects could 
either cause age-related diseases or be a marker of diseases that occur with aging. 
Bruunsgaard et al. determined that low-grade increases in the levels of pro- 
infl ammatory cytokines in older subjects were independent of the presence of medi-
cal disorders [ 23 ], although medical disorders can exacerbate this phenomenon. 

 The source for the elevated cytokine levels with aging is not clear. Cytokine lev-
els in the circulation refl ect production from many tissues including infl ammatory 
cells (monocytes/macrophages, T cells, etc.), senescent cells and adipose tissue. In 
the young, approximately 25 % of IL-6 is derived from fat tissue [ 98 ], and adipo-
cytes can secrete TNFα in addition to IL-6. Aging is associated with increases in 
abdominal fat mass and visceral obesity is associated with increased circulating 
levels of these cytokines [ 42 ,  52 ,  81 ]. There is some evidence suggesting that 
omental fat produces more cytokines than subcutaneous fat tissue [ 52 ], and this may 
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explain why visceral obesity has a greater detrimental effect on insulin sensitivity 
[ 53 ]. The production of cytokines by adipose tissue can also be modulated by the 
interaction between adipocytes and macrophages within the adipose tissue [ 82 ]. 
The number of macrophages in adipose tissue directly correlates with adiposity 
[ 131 ,  136 ] and insulin resistance [ 46 ], and adipose tissue expansion correlates with 
the accumulation of macrophages and the proinfl ammatory phenotype [ 20 ,  92 ]. 
Another potential source of infl ammation with aging is the accumulation of senes-
cent preadipocytes [ 125 ]. Senescent cells typically have a pro-infl ammatory secre-
tory profi le, termed the senescence-associated secretory phenotype (SASP), that 
may propagate the infl ammatory adipose tissue microenvironment as well as pro-
mote infl ammation throughout the whole body. 

 In addition to cytokines produced by adipose tissue and infl ammatory cells, 
another potential source of infl ammation during aging is the microbiome and its 
products. Studies in fl ies [ 109 ], rodents [ 21 ] and humans [ 56 ] have shown that aging 
is accompanied by alterations in intestinal microbiota composition and intestinal 
barrier integrity. In line with these fi ndings, our group recently showed that older 
subjects have increased plasma concentration of endotoxin (a marker of altered bar-
rier integrity) in association with insulin resistance, sarcopenia, and increased 
infl ammatory signaling (toll like-receptor 4, NFκB, MAPK) in muscle [ 56 ]. Thus, 
it is possible that endotoxin, and other yet unidentifi ed microbial products, could be 
involved in the infl ammatory state and consequent metabolic alterations of aging. 

 A potential mechanism linking aging, infl ammation, and metabolic disease is 
immune sensing through the NLRP3 infl ammasome [ 140 ]. The NLRP3 infl amma-
some is a multiprotein cytoplasmic complex composed of NLRP3, the adaptor mol-
ecule ASC, and the cysteine protease caspase-1. Stimulation of the infl ammasome 
by pathogen-associated molecular patterns (PAMPs) leads to the activation of cas-
pase- 1, which cleaves the pro-forms of the cytokines IL-1β, IL-18 and IL-33 to their 
active and secreted forms. A role of the infl ammasome in aging-related infl amma-
tion and associated pathologies is suggested by fi ndings that NLRP3 ablation pro-
tects against glucose intolerance, bone loss, and thymic involution in aged mice 
[ 140 ].   

6     Aging, Diabetes and Insulin Signaling in the Brain 

 The well-documented association of diabetes with chronic age-related disease and 
geriatric conditions [ 35 ] includes increased risk of cognitive impairment, dementia, 
brain atrophy and Alzheimer’s disease [ 35 ,  38 ,  99 ]. Potential mechanisms of these 
associations include several well-recognized hallmarks of aging, including increased 
accumulation of advanced glycation end-products (AGEs), oxidative stress, infl am-
mation, defective proteostasis and metabolic abnormalities, as well as altered insu-
lin signaling within the brain [ 38 ,  83 ]. 

 Insulin receptors, as well as various proteins involved in the intra-cellular trans-
mission of insulin signals, are expressed in various brain regions [ 83 ]. However, the 
role of insulin in the control of glucose metabolism in the central nervous system has 
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been questioned. The controversy surrounding this issue is likely related to the fact 
that, in healthy subjects, glucose uptake by the brain is already maximally stimulated 
by normal insulin levels and therefore does not respond to further insulin stimulation 
[ 71 ]. In the context of Alzheimer’s disease, some investigators refer to the brain insu-
lin resistance as “type III diabetes” [ 34 ,  123 ]. Recent studies in obese patients suggest 
that iron overload in the brain may be caused by local insulin resistance and could 
represent yet another potential mechanism of the detrimental infl uence of diabetes on 
cognitive performance [ 15 ] and risk for Alzheimer’s and Parkinson’s disease [ 115 ]. 

 Complex relationships between brain function and obesity, insulin resistance, 
diabetes and its complications also involve the role of hypothalamic function in the 
control of peripheral metabolism and aging. High-fat diet and obesity promote 
hypothalamic infl ammation and insulin resistance [ 96 ,  111 ], and the hypothalamus 
controls multiple facets of peripheral metabolism [ 11 ,  14 ,  101 ]. Insulin signaling 
within the hypothalamus infl uences hepatic gluconeogenesis [ 25 ], lipogenesis and 
lipolysis in the adipose tissue [ 117 ], as well as circulating levels of branch chain 
amino acids, which are known to be elevated in T2DM [ 119 ]. Recent elegant studies 
in the Cai laboratory [ 144 ] linked hypothalamic infl ammation with the control of 
aging. Interestingly, ongoing studies in our laboratory [ 69 , Bartke unpublished] 
indicate that expression of IL-1β and other pro-infl ammatory cytokines is reduced 
in the hypothalamus of long-lived mutant mice. Further studies will be necessary to 
elucidate the role of hypothalamic infl ammation and insulin resistance in the devel-
opment of whole-body metabolic abnormalities that lead to diabetes. 

 More work will also be needed to identify mechanisms responsible for the 
increased risk of cognitive decline and Alzheimer’s disease in patients with diabetes. 
Epidemiological studies provide evidence that the risk of dementia in diabetic patients 
is reduced by treatment with metformin [ 33 ]. Metformin and related drugs have also 
been shown to reduce the risk of cancer and to extend longevity of experimental ani-
mals [ 3 ,  93 ]. These fi ndings imply that drugs of this class can slow down and/or delay 
the aging process. The apparent “anti-aging” action of metformin could have contrib-
uted to its benefi cial effects on cognition in diabetes patients. However, regardless of 
the mechanisms involved, evidence for cognitive benefi ts of diabetes treatment 
strengthens the suggestion for etiological links between diabetes and dementia. These 
fi ndings also generate interest in the exciting possibility that diabetes drugs could be 
useful for prevention and/or treatment of Alzheimer’s disease [ 139 ]. Consistent with 
this notion, animal studies and early clinical trials suggest that intranasal administra-
tion of insulin in order to overcome insulin resistance and enhanced brain metabolism 
leads to reductions in β amyoloid and tauopathy, as well as improvements in brain 
function and cognition in Alzheimer’s disease [ 36 ,  108 ,  138 ].  

7     Prevention of Diabetes Versus Anti-aging Interventions 

 The prevalence of pre-diabetes (IGT) among older adults is increasing [ 29 ]. Because 
life expectancy is also increasing, the number of older individuals with diabetes 
and/or at risk of developing its complications (blindness, kidney failure, 
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amputations, neuropathic pain, cardiovascular disease, etc.) will be substantial. 
Therefore, strategies for diabetes prevention are urgently needed. Since physical 
inactivity and obesity are common in older subjects, lifestyle interventions are a 
logical diabetes preventative strategy. In addition, exercise improves mitochondrial 
and vascular function, which are reduced/impaired with aging [ 55 ,  114 ,  120 ]. 
Physical activity is effective in improving insulin action in older subjects [ 55 ]. In 
line with these fi ndings, the Diabetes Prevention Program (DPP) clinical trial, con-
ducted in pre- diabetic (IGT) subjects showed that lifestyle intervention proved 
exceptionally effective in preventing diabetes in older individuals [ 39 ]. 

 Pharmacological interventions with insulin-sensitizing agents also have been 
evaluated for diabetes prevention in older subjects. In parallel to lifestyle changes, 
the DPP also tested the effect of metformin on diabetes prevention. In contrast to 
lifestyle modifi cation, metformin seemed to be less effective in preventing conver-
sion to diabetes in older subjects versus middle-aged individuals [ 39 ]. Our group 
conducted a multi-center diabetes prevention trial in pre-diabetic subjects using pio-
glitazone [ 45 ], a potent insulin-sensitizer. Pioglitazone was highly effective in pre-
venting diabetes conversion (72 % overall reduction), and it was as effective in older 
(mean age = 66 years) as in middle-aged (mean age = 46 years) individuals in 
improving insulin sensitivity and in preventing diabetes (Espinoza S, Tripathy D, 
Defronzo RA, Musi N, unpublished, 2015). 

 Since the glucose metabolism alterations seen in older subjects may be caused by 
“primary” aging-mediated cellular changes (mitochondrial dysfunction, oxidative 
damage, cellular senescence, infl ammation), another strategy for diabetes preven-
tion is to target the aging process instead of “secondary” metabolic/endocrine per-
turbations (β cell dysfunction, insulin resistance). This approach would have the 
added benefi t of potentially preventing other aging-related diseases such as cardio-
vascular disease, cancer, neurodegeneration and arthritis at the same time. This is in 
fact the central tenet of the Geroscience Hypothesis, which is awaiting experimental 
testing. The apparent benefi cial effects of metformin and physical activity on many 
of these diseases, exemplifi es the possibility of preventing/treating them through 
modifying basic mechanisms of aging. As research in aging biology advances and 
novel molecular targets are identifi ed, trials using agents that modify these targets 
should be conducted for the testing of interventions to prevent diabetes and other 
diseases of aging in the elderly.  

8     Closing Remarks 

 Aging is accompanied by various changes in metabolic processes at the cellular, 
tissue and whole body levels, including decreases in oxidative capacity, intracellular 
lipid accumulation, insulin resistance, and β cell dysfunction. These metabolic 
changes contribute to the higher prevalence of obesity and T2DM that are important 
causes of disability and death in older people. A better understanding of the molecu-
lar basis for the age-induced metabolic alterations will help design strategies to 
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preserve metabolic homeostasis and prevent these diseases that affect millions of 
people around the world.     
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1            Introduction 

 The kidney plays an important role in human aging because it shows stereotyped 
changes in morphology and physiology beginning around age 50. Kidneys show 
clear changes in structure and morphology with age. Starting at about age 50, the 
weight and volume of the kidney shrinks by about one third [ 1 ]. The glomerulus is 
a network of capillaries that is located at the beginning of the nephron that fi lters 
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blood to form urine. The number of glomeruli declines by one third to one half in 
old age through obsolescence or glomerulosclerosis. The tubules associated with 
the sclerosed glomeruli cease to function and the fi ltration capacity of each kidney 
declines. As the tubules atrophy, the tubular epithelium shrinks, the tubules contract 
and the basement membranes of the tubules thicken. Interstitial fi brosis increases 
with age, and refers to an increase in connective tissue in the space between the 
tubules. With age, the walls of arterioles become thick, caused by a deposition of 
hyaline. Hyaline is composed of plasma protein (for example C3 and IgM) that has 
leaked across the endothelium and accumulated in the wall of the arterioles. In 
Fig.  1 , the kidney section on the right is from a 70 yo and shows many of the mor-
phological hallmarks of aging: atrophied tubules, glomerulosclerosis and interstitial 
fi brosis.

   The rate of fi ltration of the blood through the glomerulus (i.e. the glomerular 
fi ltration rate; GFR) is one of the primary indicators of renal function. On average, 
the glomerular fi ltration rate begins to decline at age 40, although the rate of decline 
is different in different individuals [ 1 – 3 ]. The loss of renal function due to advanc-
ing age may become clinically signifi cant over a normal human life span. In the 
elderly, glomerular fi ltration rate often reaches levels low enough to indicate chronic 
kidney disease. By age 70, 35 % of people have moderate chronic kidney disease 
(stage 3) according to the National Health and Nutrition Examination Survey [ 4 ]. A 
healthy GFR is ≥90 ml/min for an adult, but when the GFR falls to <15 ml/min the 
patient is considered to have end stage renal disease. Patients with end stage renal 
disease require dialysis in order to survive as the blood no longer receives adequate 

  Fig. 1    Physiological kidney aging. Shown are two kidneys from elderly donors with a similar chron-
ological age. The left kidney is physiologically younger than the right kidney. The kidney on the 
right shows classic signs of structural and morphological changes associated with renal aging, 
decreased kidney function, and poor renal transplant outcome. The glomeruli show signs of scarring 
(glomerulosclerosis). The cells in the interstitial space have thickened extracellular membranes 
indicative of fi brosis (interstitial fi brosis). The tubules are smaller, have thickened walls and have 
atrophied (tubular atrophy). Genetic and molecular biomarkers for physiological aging could be used 
to distinguish kidney donors based on physiological age. This could rescue renal organs such as the 
one on the left from exclusion, possibly making them eligible for renal transplant. The net effect 
would be to expand the pool of renal donors available for patients with end stage renal disease       
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renal fi ltration, but simply going on dialysis doubles the 5-year risk for mortality. 
Renal transplantation is preferable to dialysis for end stage renal disease because 
the donated kidney can function at a relatively normal level and restore glomerular 
fi ltration rate. Both quality of life and survival are greatly improved by transplanta-
tion compared to dialysis [ 6 ]. The decline in glomerular fi ltration rate is likely 
caused by structural changes to the glomerulus, the interstitium and the arterioles 
[ 3 ,  7 ]. 

 Understanding the genetic and molecular mechanisms that contribute to kidney 
aging will advance our basic understanding of the aging process in humans. 
Furthermore, aging research on the kidney could have important clinical applica-
tions. In the long run, a better understanding of renal aging could lead to strategies 
or treatments to delay the aging process. This could delay or prevent chronic kidney 
disease and reduce the number of people suffering from end stage renal disease. 

 In the short run, one promising opportunity is to use knowledge of aging to 
develop biomarkers in order to measure physiological age, as opposed to chrono-
logical age. For instance, from a cohort of elderly, it would be desirable to be able 
to identify those that have physiologically young kidneys. Figure  1  illustrates two 
kidneys from donors of similar chronological age of about 70 years. The kidney on 
the left retains a youthful morphological appearance, equivalent to the appearance 
of kidneys from middle-aged donors, suggesting that this kidney is physiologically 
young. The kidney on the right shows classic signs of aging. Figure  1  illustrates the 
concept that adding information from histopathological and molecular biomarkers 
to chronological age can improve our knowledge of the true age of an organ better 
than chronological age alone 

 Individuals with kidneys that are physiologically younger are likely to show a 
lower incidence of renal disease as they grow older. Furthermore, donor age is the 
major criterion for success of a kidney in renal transplantation [ 8 ,  9 ], which means 
that individuals with kidneys that are physiologically young are likely to be better 
renal transplantation donors than individuals with kidneys that are physiologically 
old irrespective of their chronological age. Instead of categorically discarding all of 
the organs from donors above a certain age, it may be possible to select a subset of 
organs that are physiologically young and suitable for transplantation (Fig.  2 ). 
Renal transplant outcome declines gradually with age, and the difference between 
youthful and elderly kidney donors is relative but not absolute. With elderly renal 
donors, the fraction of renal transplants that are successful (as measured by graft 
survival after 1 and 5 years) is lower than the fraction of successful transplants from 
youthful donors. Still, some of the transplants from elderly donors are successful. 
Figure  2  illustrates the concept of using physiological age to help increase the pool 
of renal transplant donors. Exclusion criteria based on chronological age alone 
become increasingly strong as the donor ages (gradient arrow). Aging biomarkers 
could be used to provide information about the physiological age of the tissue, 
which might permit certain prospective donors (dots shown in red) by expanding the 
criteria to include physiological in addition to chronological age. This strategy 
would expand the pool of kidney organs suitable for transplantation, and thereby 
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allow patients with end stage renal disease to receive a transplant and end their time 
on dialysis treatment.

2        Renal Transplantation 

 Renal transplantation is the best option for patients with end stage renal disease. 
The survival rates for kidneys in recipients following renal transplantation are 80 % 
after 1 year and about 60 % after 5 years [ 6 ,  10 ,  11 ]. Renal transplantation can pos-
sibly extend the lives of patients by 10–15 years compared to dialysis [ 6 ]. 

 However, there are many more patients with end stage renal disease than there 
are renal transplantation donors. In 2014, there were 101,513 people in the United 
States on the waiting list for kidney transplantations. At the same time, there were 
only about 13,125 donor kidneys available [ 12 ]. Some patients with end stage renal 
disease receive a kidney from a living donor. In the donation process, there is a large 
number of volunteers that offer to donate their kidney. Most of the volunteered kid-
neys are excluded from becoming a kidney donor for medical reasons, including old 
age. In a recent study of kidney donors at Stanford University from 2007 to 2009, it 
was found that 92 % of potential donor kidneys were excluded from consideration, 
exacerbating the shortage of kidneys available for transplantation [ 13 ]. As a result 
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  Fig. 2    Kidney aging and renal transplantation. Figure depicts how some kidneys from elderly 
donors may be suitable for renal transplantation. With increasing age of the donor, there is a steady 
decline in the percent of renal transplants that survive 1 and 5 years after transplantation. 
Nevertheless, there are many renal transplants from elderly donors that last for a suitable length of 
time. In principle, aging biomarkers could be used to identify kidneys that are physiologically 
young, and perhaps could be used to rescue organs that are currently discarded due to old age. The 
gradient  arrow  indicates how donor age becomes a stronger criterion for exclusion with increasing 
chronological age. The  red triangles  indicate kidney donors that may still be suitable for renal 
transplantation, even though their chronological age may have exceeded an exclusion criteria cut-
off that is currently used. The  black dots  indicate individual donor kidneys       
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of the shortage of donor kidneys, many patients with end stage renal disease do not 
have the opportunity to receive a donor kidney for renal transplantation, an opera-
tion that would extend their lives. In principle, improvements in the criteria for 
exclusion might allow one to rescue potential donor kidneys that might be suitable 
for renal transplantation even though they are currently excluded from renal 
transplantation. 

2.1     Predictors of Renal Transplant Outcome 

 Currently, there are three main criteria affecting the success of renal transplantation: 
ABO blood type and HLA histocompatibility matching, kidney preservation time 
and donor age. Donor kidneys that do not match the recipient for ABO blood type 
and HLA histocompatibility are at risk for graft rejection. Many kidneys are stored 
cold while awaiting the transplantation procedure, especially kidneys from deceased 
donors. 

 The third factor, age, is important for renal transplantation success as greater age 
of the donor diminishes the chance of success of the renal transplant. On the aver-
age, kidneys from older donors have a shorter graft survival time than those from 
younger donors. The short-term difference is relatively minor, but is amplifi ed with 
the passage of time: About 95 % of kidneys have a graft survival greater than 1 year 
when the donor was younger than age 50, and about 85 % of kidneys have a 1 year 
graft survival rate when the donor was over age 65 [ 14 ]. At 5 years after the trans-
plantation, there is about a 25 % increase in renal survival in kidneys from younger 
donors compared to those from elder donors [ 15 ]. Thus, while on average there is a 
drop off in graft survival from elder donors, there is also a signifi cant number of 
exceptions where a kidney from an elder donor has a long graft survival time 
[ 16 – 21 ]. 

 If we could better understand why old kidney age affects graft survival, it might 
be possible to identify kidneys from the elderly population that are still fi t for renal 
transplantation. One way to do this is to develop a set of biomarkers for physiologi-
cal age that could predict renal transplant outcome better than chronological age, or 
at least that could be used to improve transplant outcome in combination with 
chronological age. That is, among elderly donors of the same age, the kidney aging 
biomarker should be able to identify donors with a higher chance for long term graft 
survival. This might be one way to expand the pool of donor kidneys available for 
renal transplantation. Several molecular assays are being developed as biomarkers 
for renal graft survival. 

 Recent studies have begun to identify biomarkers of aging that can be used to 
help predict how well a kidney will perform in renal transplantation. Aging is a 
complex process dependent on many different mechanisms and pathways. One of 
the cellular pathways that may contribute to aging of the kidney is cell senescence 
[ 22 – 26 ]. Cell senescence could impact renal function if it prevented cell division 
necessary to replace lost or damaged cells. However, cell turnover in the kidney is 
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normally low compared to other tissues with high rates of cell turnover, such as the 
hematopoietic system or the lining of the gut [ 27 ]. Thus, it is unclear how strongly 
cell senescence would impact renal function under normal circumstances. However, 
disease or injury could result in loss of renal cells by apoptosis, and in this situation 
cell proliferation would be required in order to replace dead cells. 

 As kidneys grow old, there is an increased frequency of senescent cells. 
Senescence could contribute to renal aging in at least three ways. First, cell senes-
cence may prevent new cells from replenishing cells that are lost from disease or 
damage. Second, cell senescence could lead to an increase of macromolecular dam-
age. When a cell divides, there is a burst of new synthesis of all of the macromole-
cules needed to form the new cells (DNA, RNA, protein etc.). Conversely, in any 
post-mitotic cell such as a senescent cell, there is no net gain of RNA and protein, 
so new RNA and proteins are synthesized via transcription and translation at a much 
lower rate. Assuming that RNA and protein levels in senescent cells are at steady 
state, then the levels of transcription and translation are set to merely replace RNA 
as it is lost via RNA degradation and protein as it is lost by degradation via proteoly-
sis machinery such as autophagosomes or the proteasome. As a result, macromole-
cules in a non-dividing cell have a longer molecular half-life than those in a dividing 
cell. The increased molecular half-life exposes all of the molecules to increased 
susceptibility for damage accumulation; for instance, macromolecules in a non- 
dividing cell would be expected to have higher levels of damage from reactive oxy-
gen species. Third, senescent cells secrete a variety of signaling molecules and 
cytokines, a phenomenon referred to as the senescence-associated secretory pheno-
type [ 28 ]. The senescence-associated cytokines include factors such as interleukin-
 6 and interleukin-1β that can activate infl ammatory signaling pathways. One 
possibility is increased abundance of senescent cells during aging contributes to 
chronic infl ammation. 

 One marker of senescent cells is expression of the cell cycle regulator CDKN2A/
p16. CDKN2A/p16 plays an important role in cell cycle regulation by decelerating 
progression from the G1 to the S phase [ 29 ]. In the normal cell cycle, CDKN2A/p16 
acts to inhibit cell division by binding CDK4/6, which ultimately inhibits the activ-
ity of transcription factors such as E2F1 and arrests cell proliferation [ 30 ]. High 
levels of CDKN2A/p16 expression prevent cell division and are a hallmark of cell 
senescence [ 31 ]. Expression of CDKN2A/p16 increases with age in the kidney [ 32 , 
 33 ]. Several studies have shown that expression levels of CDKN2A/p16 can be used 
as a biomarker of aging in order to predict renal transplant outcome. At the time of 
the renal transplant, a kidney biopsy was obtained and CDKN2A/p16 levels were 
measured [ 22 ,  34 ,  35 ]. Age, CDKN2A/p16 levels, and a combination of Age/ 
CDKN2A/p16 levels were evaluated as predictors for renal transplant success. 
CDKN2A expression (biological age) was found to be better than donor age (chron-
ological age) in predicting organ function [ 35 ]. However, CDKN2A/p16 levels 
combined with chronological age was found to be the most powerful predictor for 
renal function following transplantation [ 22 ]. The key concept is that CDKN2A/p16 
levels may be measuring biological age, and that biological age may be better than 
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simple chronological age as a predictor of future renal function following 
transplantation. 

 Another strategy to develop biomarkers for renal transplantation is to identify 
gene expression signatures that can predict renal graft survival. In this approach, 
gene expression from the entire genome is measured from kidney biopsies at the 
time of transplantation using DNA chips. The renal transplants are then separated 
into two groups based on success of the graft, and the gene expression data are ana-
lyzed to identify differences in expression between kidneys that were or were not 
successful in the renal transplant. In one study, 31 renal allografts were separated 
into low and high GFR after 1 year following transplantation. Then, expression 
profi les taken at the time of transplantation were analyzed, resulting in the identifi -
cation of 52 genes that showed signifi cantly different expression profi les between 
the high- and low-functioning kidneys [ 36 ]. The gene expression profi le of these 52 
genes at the time of transplantation was able to predict the success of the renal trans-
plantation over a medium term. 

 In a second study, 92 renal allografts were separated based on whether or not 
patients required dialysis during the fi rst week (delayed graft function), and then 
gene expression data were analyzed to identify 206 genes whose expression showed 
a signifi cant difference. This study suggests that preimplant gene expression pro-
fi les may be able to identify kidneys of poor quality that perform poorly in trans-
plantation. This information may eventually improve organ allocation [ 37 ].   

3     Hallmarks of Renal Aging 

 To better understand renal aging, it is useful to consider mechanisms that are 
involved in aging in other tissues, and even other species such as mice, fl ies, worms 
and yeast. The human aging process can be thought of as a clock that spans about 
80 years. Aging mechanisms guide the rate at which this clock proceeds, and the 
most central pathways are part of the clock mechanism itself. As we grow old, aging 
affects many of the underlying networks in the kidney. There is accumulation of 
damage of diverse types to cellular components such as DNA, proteins and lipids. 
There are changes in gene expression and epigenetic networks with age. Cells lose 
their ability to divide and undergo senescence. There is a steady increase in the 
thickness of the extracellular matrix that is a major determinant of fi brosis. It is pos-
sible that changes in each of these networks serves as part of a molecular aging 
clock, that changes over time and dictates the rate of functional decline of the 
kidney. 

 A hallmark of aging not only changes as we grow old, but it also plays an impor-
tant functional role in the physiological decline of the kidney with old age. Genetic 
and pharmacological experiments that reset the clock in old cells or organs to the 
young state should have a benefi cial effect. By contrast, experiments in which the 
aging pathway has been reset in young cells to the old state should cause rapid aging 
to ensue. 
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 These hallmarks of kidney aging might collectively form a type of aging clock 
that dictate the functional and physiological state of the kidney over a lifetime. 
Although these pathways progress during aging in everyone, the rate of progression 
can vary between people. For people of the same chronological age, the aging clock 
might be slightly more advanced in one person than the other. With additional stud-
ies, hallmarks of aging could one day become very important because they could be 
used as biomarkers to report the true physiological age of a person or tissue, rather 
than mere chronological age. Not only would the aging biomarkers associate with 
the current functional state of the kidney better than chronological age, but the aging 
biomarkers would be better than chronological age at predicting the future trajec-
tory of renal decay. 

 A recent review describes nine hallmarks of aging that form the conceptual pil-
lars to understand changes as one grows old [ 38 ]. These hallmarks are: genomic 
instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregu-
lated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell 
exhaustion, and altered intercellular communication. In addition to the general hall-
marks, kidney aging is known to involve increased Klotho expression, chronic 
infl ammation, and fi brosis (Fig.  3 ). Below, we consider each of these hallmarks and 
summarize what is known about how that hallmark may contribute to human renal 
aging.

   One of the most important hallmarks of kidney aging is chronic infl ammation 
[ 39 ]. Chronic infl ammation occurs when there is an increased abundance of immune 
cells – B cells, T cells, neutrophils and macrophages. Low levels of activity of the 
immune cells lead to a low grade infl ammatory response that contributes to fi brosis 
and tissue damage with age. One of the causes of chronic infl ammation in the kid-
ney may be increased systemic levels of infl ammatory cytokines, such as IL1, IL6, 
and TNFα, in old age [ 40 ,  41 ]. The infl ammatory response leads to increased pro-
duction and accumulation of fi brinogen and C-reactive protein by the liver, leading 
to increased systemic levels of infl ammatory biomarkers. The level of chronic 
infl ammation is higher in patients with chronic kidney disease compared to healthy 
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  Fig. 3    Hallmarks of kidney aging. Shown are nine pathways that play important roles in renal 
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age-matched controls, suggesting that chronic infl ammation may play a role in the 
etiology of this disease [ 39 ]. However, the relationship between cause and effect 
between chronic infl ammation and renal aging is unclear; specifi cally, it is unclear 
whether chronic infl ammation causes renal damage to accumulate with age, whether 
age-related renal damage causes chronic infl ammation, or whether both act together 
in a complicated feedback loop with increasingly dire consequences. 

 The infl ammatory cytokines that are responsible for chronic infl ammation could 
arise from several sources. One source is from immune cells (B cells, T cells and 
macrophages) that become dysregulated in old age [ 42 ,  43 ]. A second source is 
from adipocytes, which are known to produce many infl ammatory cytokines, 
including TNFα and IL-6 [ 44 ]. Cytokines secreted from adipose tissue would enter 
the blood system and increase chronic infl ammation throughout the body, including 
the kidney. A third source is from senescent cells, which secrete many infl ammatory 
cytokines as part of the senescence phenotype [ 45 ]. Senescent cells increase in 
number in old age, leading to increased production of the infl ammatory cytokines, 
a phenomenon termed the senescent-associated secretory phenotype [ 28 ]. A fourth 
source is from cells within the kidney itself. DNA microarray analysis showed that 
aged human kidneys have increased expression of certain infl ammatory cytokines 
and chemokines [ 46 ]. One of the results of chronic infl ammation is the recruitment 
of immune cells that secrete infl ammatory cytokines, which may further increase 
chronic infl ammation in the kidney as part of a positive feedback loop. 

 The infl ammatory cytokine TNFα activates initiates a signaling cascade leading 
to activation of the transcription factor NFκB. The TNFα signaling pathway is 
induced when TNFα binds the TNF receptor (TNFR1), which leads to the degrada-
tion of IKB, a protein that normally keeps the NFκB complex inactive in the cyto-
plasm. Once IKB is degraded, the NFκB complex is no longer tethered in the 
cytoplasm and enters the nucleus where it activates expression of its target genes, 
which include many infl ammatory cytokines and chemokines. Activity of NFκB in 
the kidney has been found to increase with age in the rat [ 47 ]. One of the major 
functions of NFKB is to mediate infl ammatory and innate immune responses. 
Besides TNFα, the infl ammatory cytokine IL-1, lipopoysacharide, and reactive oxy-
gen species can activate NFκB. 

 Another hallmark of renal aging is fi brosis of the interstitium or scarring of the 
glomeruli [ 48 ]. The glomeruli are the functional unit of the kidney responsible for 
fi ltering the blood. The tubules and interstitium constitute 90 % of the volume of the 
kidney. Interstitial fi brosis and glomerulosclerosis increase with age, characterized 
by an increased thickening of the extracellular matrix. Extracellular matrix is com-
posed primarily of collagen. Matrix metalloproteases are zinc-dependent endopep-
tidases responsible for degrading collagen and proteoglycans, and may function to 
help remodel the extracellular matrix. Excess production of collagen or altered 
expression of matrix metalloproteases could play a role in thickening of the extra-
cellular matrix in old age. Mesenchymal cells (i.e. fi broblasts and myofi broblasts) 
produce extracellular matrix. Increased numbers or altered functions of these cells 
in old age could be responsible for increased collagen deposition and fi brosis. 
Activated interstitial mesenchymal cells are thought to contribute directly to renal 
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fi brosis by secreting fi brotic factors and extracellular matrix proteins that accumu-
late in the interstitial space and disrupt normal epithelial architecture [ 48 ]. 

 Changes in DNA methylation and DNA repair play a role in fi brosis. Bechtel 
et al. found that increased DNA methylation plays a key role in renal fi brosis. They 
performed a genome-wide screen to look for DNA methylation differences between 
fi broblasts from fi brotic and non-fi brotic kidneys, and found 12 genes that showed 
increased levels of DNA methylation in the fi brotic kidneys [ 49 ]. They then inhib-
ited DNA methylation using 5-azacytidine and found that fi brosis was lessened 
[ 49 ]. These results indicate that increased DNA methylation plays a causative role 
in causing renal fi brosis. 

 Another clue about the mechanisms responsible for renal fi brosis was obtained 
by studying a heriditary form of chronic kidney disease. Karyomegalic interstitial 
nephritis is a rare hereditary form of chronic kidney disease with only 12 known 
families worldwide [ 50 ]. Kidneys in patients with karyomegalic interstitial nephritis 
have enlarged hyperchromatic nuclei and develop chronic kidney disease in their 
third decade. The specifi c diagnostic traits associated with chronic kidney disease in 
these patients include interstitial fi brosis, tubular atrophy and microcyst formation. 
These symptoms are seen in normal elder subjects as part of kidney aging, suggest-
ing that karyomegalic interstitial nephritis involves an accelerated rate of fi brosis in 
the kidney. 

 The genetic cause for karyomegalic interstitial nephritis has recently been found 
to be due to mutations in the FAN1 gene. FAN1 plays a role in DNA repair. 
Specifi cally, FAN1 is required to repair interstrand DNA crosslinks, so that cova-
lently cross-linked DNA strands cannot separate during S-phase in patients with a 
non-functional form of FAN1 [ 51 ,  52 ]. In renal tissue from patients with karyome-
galic interstitial nephritis, there was an increased level of double strand breaks. 
These results show that DNA damage caused by reduced activity of FAN1 can 
potentiate renal fi brosis. 

 Nutrient sensing is a general hallmark of aging in all tissues and most species. 
Caloric restriction can extend lifespan of nearly every species tested, including 
yeast, worms, fl ies, mice and primates [ 53 ]. Recent work has begun to unravel the 
molecular mechanisms underlying lifespan extension due to caloric restriction [ 54 –
 56 ]. These molecular mechanisms involve key modulators of aging such as the sir-
tuins and mTOR. 

 Sirtuins are a family of protein deacetylases that are involved in a diverse array 
of cellular processes such as life span regulation, fat mobilization in human cells, 
insulin secretion and caloric restriction [ 57 ]. In mammals, there are seven sirtuin 
genes (SIRT1 to SIRT7). Activation of sirtuins has been shown to extend lifespan in 
diverse organisms including yeast, worms, fl ies and mice [ 58 ]. In the kidney, SIRT1 
is abundantly expressed in renal medullary interstitial cells, where it is cytoprotec-
tive and participates in the regulation of blood pressure and sodium balance [ 59 , 
 60 ]. Sirtuins require nicotinamide adenine dinucleotide (NAD+) as a cofactor, and 
hence could be responsive to changes in metabolic state of the cell. Levels of nico-
tinamide adenine dinucleotide show a marked decline in the kidney in old age, 
which may decrease activity of sirtuins thereby contributing to cellular dysfunction 
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in old age [ 59 ,  61 ]. Regulation of sodium balance by SIRT1 involves repression of 
expression of the α-subunit of the epithelial sodium channel, ENaC [ 59 ]. 

 Genetic experiments by He et al., 2010 have shown that Sirt1 activity plays an 
important role in kidney function [ 60 ]. On the one hand, lowering Sirt1 activity 
impairs renal function. For example, reduced Sirt1 expression in mouse renal cells 
 in vitro  leads to reduced resistance to oxidative stress. Genetically mutant mice with 
reduced Sirt1 activity (Sirt1 +/− ) show lower levels of cyclooxygenase-2 (COX2) 
expression and impaired kidney function under several conditions. Sirt1 +/−  mice 
show more renal apoptosis and fi brosis in mice that have suffered kidney injury by 
unilateral ureteral obstruction. On the other hand, increasing Sirt1 activity improves 
renal function. Sirt1 activity can be pharmacologically increased either by resvera-
trol or by the drug SRT2183. Pharmacologic activation of Sirt1 improves cell sur-
vival in response to oxidative stress, attenuates renal apoptosis and fi brosis, and 
increases expression of COX2 in the renal medulla. 

 mTOR is a conserved kinase that acts in a nutrient sensing pathway to regulate 
cell growth and longevity. In yeast, worms and fl ies, mutants with reduced TOR 
activity have longer lifespans [ 56 ]. In mice, inhibition of mTOR activity with the 
drug rapamycin results in extended lifespan [ 56 ]. During normal kidney aging, 
mTOR expression shows a marked increase in glomerular mesangial cells in old age 
[ 62 ]. This result suggests that increased levels of mTOR in the kidney may contrib-
ute to poor cell regulation and cell senescence in old age. 

 Klotho plays an important role in aging of the kidney [ 63 ]. Klotho is a transmem-
brane protein primarily expressed in the distal tubule cells of the kidney and the 
brain choroid plexus. Loss-of-function mutations in the Klotho gene in mice are 
associated with symptoms of premature aging, including hyperphosphatemia and a 
shorter lifespan [ 64 ]. Conversely, overexpression of Klotho extends lifespan [ 64 ]. In 
humans, serum levels of Klotho decrease with age after age 40 years and there are 
low levels of Klotho in patients with Chronic Kidney Disease [ 65 – 67 ]. One of the 
main functions of Klotho is to act as a co-receptor for Fibroblast Growth Factor 23 
[ 68 ]. However, there is also evidence that Klotho can also regulate the Insulin-like 
Growth Factor signaling pathway, can participate in Ca 2+  homeostasis, phosphate 
homeostasis and can relieve oxidative stress [ 69 ]. 

 Changes in gene expression occur with age, and can be used to predict the physi-
ological age of kidneys. DNA microarrays have been used to defi ne the changes in 
gene expression that accompany the renal aging process. One study analyzed RNA 
from 74 patients ranging in age from 27 to 92 years, and found 985 genes to change 
expression with age [ 46 ]. Among these 74 individuals, there was a good correlation 
between the gene expression signature and the biological age of the kidney. For 
example, for some kidney samples, the gene expression signatures did not resemble 
kidneys of their chronological age but rather kidneys from individuals that were 
younger. Subsequent histological examination of these renal samples showed that 
they had lower levels of interstitial fi brosis, arterial hyalinosis and glomerulosclero-
sis than typically found in kidneys of that chronological age. That is, the gene 
expression signatures were able to accurately predict that these renal samples had a 
biological age that was younger than their chronological age. Similarly, the gene 
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expression signatures were also able to predict renal samples with a biological age 
that is older than their chronological age. A second study analyzed RNA isolated 
from 20 kidney samples and identifi ed about 500 genes that changed expression 
with age [ 70 ]. The sets of kidney aging genes showed a large degree of overlap in 
the two DNA microarray studies. 

 What are the upstream transcription factors responsible for causing the changes 
in expression of the age-regulated kidney genes? In order to identify the upstream 
regulators, ChIP-seq data from the ENCODE consortium were examined. The 
ENCODE consortium has defi ned the in vivo binding sites for a large number of 
transcription factors (about 160) [ 71 ]. For each transcription factor, they used ChIP 
seq to fi rst immunoprecipitate the transcription factor from tissue culture cells, and 
then sequenced the bound DNA in the immunoprecipitate. Each experiment resulted 
in a list of target genes bound by that transcription factor in specifi c cell lines. To 
fi nd transcription factors that bind to the age-related kidney genes, a bioinformatics 
screen was performed to search for transcription factors that had ChIP seq datasets 
showing a large degree of overlap with the kidney age-related genes [ 72 ]. The top 
three transcription factors that showed enrichment to binding the aging-regulated 
genes were STAT1, STAT3 and NFκB. These three transcription factors are all 
known to be involved in mediating the infl ammatory response. 

 STAT1, STAT3 and NFκB appear to mediate transcriptional changes during the 
kidney aging process  in vivo  [ 72 ]. All three transcription factors show higher levels 
of activation in old age. When the transcription factors are activated by infl amma-
tory cytokines in human renal epithelial cells, the resulting changes in gene expres-
sion recapitulate the gene expression changes that occur during kidney aging to a 
large extent. These data indicate that activation of these three transcription factors 
during kidney aging may contribute to a large fraction of the aging transcriptional 
program. The fi nding that NFκB binds to and regulates genes during aging confi rms 
and extends previous work showing that increased NFκB activity contributes to 
aging phenotypes in many tissues [ 73 – 75 ].  

4     Genetic Differences May Explain Some of the Individual 
Variation in Kidney Aging 

 There is a great deal of variation in the rate of loss of kidney function with age 
between different individuals. In old age, many people have lost a considerable frac-
tion of kidney function, leading to chronic kidney disease or end stage renal disease. 
Other people have relatively mild loss of kidney function. Genetic variation accounts 
for some of the individual variation in kidney aging. Genome-wide association stud-
ies (GWAS) have begun to defi ne DNA polymorphisms that are associated with 
either reduced glomerular fi ltration rate or chronic kidney disease. In principle, 
genetic algorithms may one day be used in the young to help predict which indi-
viduals are at risk for a rapid loss of renal function as they grow old, and which 
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individuals are more likely to have a slower rate of loss of kidney function with age. 
These genetic risk scores would be able to look-up the information from each of the 
individual polymorphisms and create one combined score to be used to predict 
future renal rates of aging. 

 Genome wide association studies have recently been successful at identifying 
single nucleotide polymorphisms (SNPs) associated with a variety of renal pheno-
types associated with age. An example is glomerular fi ltration rate, which is an 
estimate of renal function based on levels of creatinine in the urine. The studies are 
controlled for age, so DNA variants associated with GFR in these studies would 
identify loci that predispose one to having higher or lower GFR for a given age. 
There are at least two ways in which a SNP could be associated with variation in 
GFR. First, the SNP could be associated with a different baseline of renal function 
(higher or lower GFR) but not with a difference in the rate of renal aging. In this 
case, GFR would decline similarly in individuals that vary at the SNP, but the GFR 
would have a different baseline so that those with a higher baseline would be less 
likely to have renal disease as they grow old. Second, the SNP could be associated 
with a different rate of renal aging. In this case, allelic variation at this SNP may 
have little effect on young adults as all might have a similar starting point for renal 
function. However, individuals with one allele could show more rapid rates of renal 
decline leading to larger and larger differences in GFR as one ages. 

 Another powerful phenotype used in kidney GWA studies is chronic kidney dis-
ease. Chronic kidney disease is diagnosed when an individual has glomerular fi ltra-
tion rate below 60 ml/min/1.73 m 2  for 3 or more months, or if the individual has 
other signs of kidney damage. The gene association studies using chronic kidney 
disease as a phenotype are similar to the GWAS using glomerular fi ltration rate as a 
trait because one of the main criteria for diagnosing chronic kidney disease is glo-
merular fi ltration rate. Chronic kidney disease splits up individuals based on GFR 
levels above or below the 60 ml/min/1.73 m 2  cutoff and GFR assigns a continuous 
variable to each individual. 

 Kidney GWA studies have also been performed for albuminuria and diabetic 
nephropathy. Albuminuria refers to albumin in the urine, which is another indica-
tion of poor kidney function. Diabetic nephropathy is characterized by three related 
conditions: albuminuria, low glomerular fi ltration rate, and high blood pressure. 

 A total of 67,073 individuals have been examined to search for SNPs associated 
with GFR, chronic kidney disease, albuminuria and diabetic nephropathy [ 76 ,  77 ]. 
These studies have found 27 SNPs associated with these parameters of kidney func-
tion. These SNPs may be useful in helping to identify individuals with high and low 
renal function. This information could be useful to individuals when they are alive 
by providing information useful for precision medicine. In addition, the genetic 
information could be useful to help identify which kidneys from elderly donors may 
still be viable for use in renal transplantations. 

 In order to predict renal function, one would not evaluate each of the kidney 
SNPs one at a time, but rather one would develop an algorithm that could evaluate 
all of the SNPs together and provide a score that summarizes the information from 
all of the SNPs combined. A preliminary study was performed combining informa-
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tion from 16 kidney SNPs to create a genetic risk score for chronic kidney disease 
[ 76 ]. The genotype score was evaluated in 2129 test subject and was partially 
 successful in predicting chronic kidney disease risk. Carrying a high number of risk 
alleles was partially able to predict those at increased risk for chronic kidney dis-
ease. However, the effect of the genotype was small, and not necessarily an improve-
ment over clinical factors such as lifestyle, blood pressure and the presence of Type 
2 Diabetes. Beyond renal disease, genetic algorithms have been developed for Type 
2 Diabetes mellitus, incident myocardial infarction, coronary heart disease, myocar-
dial infarction and stroke in women [ 78 – 81 ]. In each case, the genetic algorithms 
had only a mild effect in predicting disease risk beyond current clinical tests, indi-
cating that improved methods or more complete data will be required for these 
algorithms to become widely used. Future studies may be able to expand the num-
ber of SNPs known to be associated with renal function, leading to improved genetic 
algorithms with greater predictive power. 

 One study has specifi cally searched for SNPs that are associated with different 
levels of kidney function, independent of age [ 82 ]. To do this study, longitudinal 
data was used from the Baltimore Longitudinal Study of Aging and from the 
InCHIANTI cohort. Both of these cohorts have followed individuals over a number 
of years, so it was possible to follow the loss of renal function with age for each 
individual. However, the total number of people in each cohort was relatively small 
(1–3 thousand), precluding a straightforward GWA study for association with dif-
ferent rates of loss of GFR. 

 Instead of searching through every SNP in the genome, the study used a genomic 
convergence approach to systematically select SNPs that are most likely to be 
involved in kidney aging. The fi rst assumption was that genes whose expression 
changes with age would be enriched for those with functional effect on the rate of 
renal aging or renal function (630 aging-related genes). The next step was to search 
for SNPs that are associated with differential expression of these 630 genes (expres-
sion quantitative trait loci; eQTLs) because higher or lower expression levels may 
affect the age at which the expression of a gene dips below a functional threshold 
(110 SNPs associated with differential expression in kidney aging related genes). 
The last step was to determine whether any of the 110 SNPs was associated with 
different levels of renal function independent of age in the Baltimore Longitudinal 
Study of Aging or the InCHIANTI cohort. Two linked SNPs (rs1711437 and 
rs1784418) located within the matrix metalloproteinase 20 gene (MMP20) were 
found to associate with loss of GFR independent of age at a signifi cant level follow-
ing correction for multiple hypothesis testing. For an individual who carries the A 
allele at rs1711437, his or her creatinine clearance is approximately that of someone 
4–5 years younger who does not carry the A allele. In the BLSA population, the 
genotype of rs1711437 explains 2.1 % of the variation in creatinine clearance and in 
the InCHIANTI population, the genotype explains 0.9 % of the variation. 

 Future work will help fi nd the missing heritability in DNA variants associated 
with kidney function, disease and aging. These studies may use full genome 
sequence rather than DNA chip analysis, enabling one to analyze rare variants. 
Larger cohorts may become available that will increase statistical power. Genetic 
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algorithms may become available that are more powerful and able to better predict 
renal function. These algorithms may gain effectiveness by capitalizing on the 
 complex genetic interactions among the SNPs associated with renal aging. These 
interactions are termed epistatic interactions, and refer to all of the possible ways in 
which two SNPs may be associated with renal aging that are not merely the additive 
sum of each individual SNP. For instance, the two SNPs may act redundantly, such 
that a protective allele in one SNP is as effective as a protective allele in both SNPs. 
Alternatively, the two SNPs may act synergistically, such that protective alleles in 
both SNPs are far more effective than would be predicted by adding up the effects 
of each allele individually. Future work may lead to ways to use DNA information 
to predict current and future renal function. For the purposes of renal transplanta-
tion, this could be key as a criterion to be used to help select which potential donor 
kidneys are most likely to retain adequate function following renal transplantation.  

5     Conclusion 

 As we enter the era of precision medicine, individual genetic and biomarker data can 
be used to provide information about the physiological age of a person, rather than 
simple chronological age. Recent work has begun to unravel some of the mechanisms 
underlying kidney aging (Fig.  3 ). These mechanisms include increasing levels of cell 
senescence, chronic infl ammation, fi brosis, and transcriptional regulation of the aging 
gene network. A better and more complete understanding of the molecular underpin-
nings of aging may one day enable the development of biomarkers that are able to 
report true biological age, as opposed to chronological age. These aging biomarkers 
could be used to more accurately ascertain which kidneys are most suitable for renal 
transplantation. This precision medicine approach of using personalized aging bio-
markers may enable one to expand the pool of available kidneys for transplantation 
without diminishing the length of graft survival or the quality of the transplant.     
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1            Introduction 

 Asthma is a chronic airway disease, driven by complex interactions of infl ammatory 
cells including eosinophils, lymphocytes, neutrophils and mast cells, and their 
mediators. Increased airway infl ammation in asthma produces its characteristic fea-
tures; airway hyperresponsiveness (AHR) to stimuli such as aeroallergens, hista-
mine or methacholine and reversible airfl ow obstruction [ 1 ,  2 ]. However, in some 
patients, in particular those with a history of long-standing asthma, airfl ow obstruc-
tion may become only partially reversible. In susceptible individuals, clinical fea-
tures of asthma are recurrent episodes of wheezing, breathlessness, chest tightness, 
and cough, particularly at night and/or in the early morning. These symptoms are 
usually associated with widespread but variable airfl ow limitation that is at least 
partially reversible either spontaneously or with treatment. While it is not clear 
whether airway hyperresponsiveness is acquired or is genetically determined to 
appear with the appropriate stimulus, it is thought that airway infl ammation is the 
main stimulus as it may be induced by a number of inciting events including viral 
respiratory infections, allergen exposure in sensitized individuals, cold air, and 
exposure to noxious agents such as ozone and sulfur dioxide. Allergic or atopic 
reactions in the upper (nose, sinuses) and lower airways are both important in the 
pathogenesis of asthma in childhood and young adulthood. However, their role in 
the elderly is less clear. Atopy is defi ned by the presence of detectable IgE antibod-
ies to environmental antigens and can be manifested as asthma, eczema and/or sea-
sonal and perennial allergic rhinitis. In elderly patients with or without asthma, an 
elevated level of IgE may be an important risk factor for the development of chronic 
airfl ow obstruction [ 3 ]. 

 Similar to other chronic diseases in this age group, asthma in the elderly popula-
tion has a major impact on the patient’s well-being and signifi cantly impairs health 
status. Patients may consequently suffer from poor general health, symptoms of 
depression, and signifi cant limitations of daily activity [ 4 – 9 ]. The exact prevalence 
of asthma in the aging population is not entirely clear as many studies do not clearly 
distinguish asthma from other obstructive lung diseases, but it appears to be similar 
to younger adults. According to the Center for Disease Control and Prevention 
(CDC), the overall prevalence of asthma in the US population >18 years of age is 7 
% (  www.cdc.gov/asthma/most_recent_data.htm    ) [ 10 ]. Large cross-sectional data 
base surveys including the National Health and Nutrition Examination Survey 
(NHANES) 2005–2006 and the National Health Interview Survey (NHIS) have 
reported that between 6.9–8 % of the U.S. population over the age of 60 years has a 
current diagnosis of asthma based upon a physician diagnosis [ 11 ,  12 ]. This trans-
lates to more than 2.7 million adults >65 age in the US with a diagnosis of current 
asthma. (  www.cdc.gov/asthma/most_recent_data.htm    ) Asthma in the elderly is 
associated with a signifi cant numbers of emergency department visits and hospital-
izations, leading to substantial healthcare costs [ 13 ,  14 ]. Elderly patients with 
asthma are >5 times more likely to die from their disease than younger individuals 
and while mortality rates in some age groups have decreased, this is not true of the 

N.A. Hanania and P. Busse

http://www.cdc.gov/asthma/most_recent_data.htm
http://www.cdc.gov/asthma/most_recent_data.htm


399

elderly [ 13 – 15 ]. According to the CDC, asthma deaths in the elderly account for 
more than 50 % of asthma fatalities annually with an approximately 5.8 asthma 
deaths per 100,000 in this group reported in the years 2001–2003 [ 10 ,  16 ]. Although 
the majority of elderly patients with asthma have long-standing asthma that may 
have developed early in life, some develop asthma late in life. LOA may occur at 
any age, even in the eighth or ninth decades of life and when it does, moderate to 
severe symptoms are more likely [ 17 ]. Despite the frequent occurrence of asthma in 
the elderly, it is a diagnosis that has been frequently overlooked and even when 
discovered it is often under treated [ 5 ,  18 – 22 ]. There are a number of important 
reasons that may explain the under diagnosis and under treatment of asthma in the 
elderly and these will be discussed in this chapter.  

2     Pathophysiology and Risk Factors 

2.1     Airway Infl ammation and Aging 

 The immune system is complex and comprised of an innate arm, providing an initial 
defense against pathogens, and the adaptive arm, a subsequent antigen-specifi c 
response. Non cellular components including C-reactive protein, mannose-binding 
protein and complement, and a cellular component including phagocytic cells (neutro-
phils, macrophages/monocytes), epithelial cells and natural killer cells comprise the 
innate side. Cells of the innate arm use pattern recognition receptors (PRR), such as 
Toll-like receptors (TLR), to identify conserved pathogen associated molecular pro-
fi les (PAMPs) expressed on the surface of pathogens. The actions of the innate response 
are not long-lived, but are an important initial event, triggering activation of antigen-
specifi c responses of the adaptive immune response which include humoral immune 
defenses (mediated through B cells) and cellular responses (mediated by T cells). 

 With increasing age, there are alterations in both the innate and adaptive immune 
responses. One phenomenon is termed “immunosenescence” in which the adaptive 
arm of the immune system response is “blunted” after a pathogenic threat or tissue 
injury. Cellular senescence is due to an irreversible loss of cellular replication and 
eventually results in impaired tissue repair. Senescence either develops via a contin-
ued stepwise accumulation of DNA damage occurring during replication (replica-
tive senescence), or abruptly by activation of oncogenes (typically associated with 
premature aging) [ 23 ,  24 ]. However, despite an inability to proliferate, senescent 
cells remain alive, but function at a diminished or altered capacity. This may include 
an increased low-grade basal systemic infl ammation (characterized by increased 
IL1-β, IL-6 and TNF-α) in the absence of an overt infection, referred to as “infl amm- 
aging.” [ 25 ] 

 Immunosescence research has focused primarily upon cancer and autoimmunity, 
but not asthma. The underlying mechanisms of immunosenescence and infl amm- 
aging are complex, and a consequence of several processes, including both “ran-
dom” (e.g., environmental exposures, accumulation of reactive oxygen species 
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(ROS) from metabolic activity, mutagenesis) and “regulated” (e.g., genetic) aspects. 
Alteration and loss of mitochondrial function plays a key role in cellular changes 
with aging. Decreased mitochondrial function increases generation of ROS result-
ing in accumulation of oxidative products [ 26 ]. Furthermore, damage of mitochon-
dria leads to release of mitochondrial damage-associated molecular patterns which 
are similar in structure to many of the conserved patterns on bacterial surfaces 
(PAMPs), which in turn, activate the innate immune response [ 27 ]. A loss of 
 mitochondrial function alters protein synthesis and protein folding, necessary for 
proteostasis. Additionally, accumulation of damaged cellular and organelle compo-
nents and macromolecules may induce ongoing low-grade systemic infl ammation. 
These products can be subsequently recognized as “danger” signals, initiating 
ongoing infl ammation [ 25 ]. Shortening of telomeres (necessary to protect the chro-
mosomal ends) may signal cell cycle arrest or apoptosis [ 28 ,  29 ] or replicative 
senescence, which in turn induces the release of pro-infl ammatory proteins [ 26 ]. 
Shortening of telomere length in peripheral blood mononuclear cells (PBMCs) has 
recently been demonstrated to correlate with increased asthma severity in older 
patients with asthma [ 30 ]. Mechanistically, microRNAs (miRs, regulatory elements 
which can either suppress or activate gene expression, usually at the post-transla-
tional level) have been implicated in immunosenescence and infl amm-aging, 
increasing the expression of pro-infl ammatory proteins [ 31 ], and decreasing cell 
proliferation and function [ 31 ,  32 ]. 

 Older individuals with fewer features of immunosenescence may have a pro-
longed lifespan [ 33 ]. Conversely, specifi c features of immunosenescence are associ-
ated with increased morbidity and mortality [ 34 ], and low-grade systemic 
infl ammation with more clinically “frail” individuals [ 35 ,  36 ]. However, how the 
effects of immunosenescence translate to airway infl ammation and its regulation in 
older patients with asthma is not well established. Additionally, whether asthma is 
a distinct infl ammatory phenotype in older patients is unknown, important and 
unclear, yet it may alter treatment of the disease. The following section will address 
what is known about the effect of increased age on the innate and adaptive immune 
responses and how these changes may alter airway infl ammation of asthma in older 
adults.  

2.2     Aging-Related Changes in Cellular Components 
of the Innate Immune Response 

2.2.1     Epithelial Cells 

 The respiratory epithelium is an important component of the innate immune system, 
and is composed of ciliated and secretory cells. Ciliated cells propel inhaled anti-
gens and irritants trapped in mucus produced by goblet cells, proximally up the 
tracheobronchial tree via mucociliary clearance. Additionally, airway epithelial 
cells produce nitric oxide, secrete cytokines [e.g. type I and III interferons (IFNs)], 
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growth factors (e.g. granulocyte/macrophage colony-stimulating factor), IgA and 
antimicrobial proteins, which act as an initial immune clearance mechanism. 
Adjacent epithelial airway cells are connected by tight and adherent junctions, 
which form a physical barrier against entrance of microbes and antigens. In younger 
patients with asthma, airway epithelial cells have disrupted tight cellular junctions, 
an increased susceptibility to apoptosis and an impaired production of interferons 
[ 37 ]. Although changes in the airway epithelial cells with aging in individuals  with-
out  airway disease have not been investigated in detail, there is evidence that there 
are alterations. In non-smoking healthy individuals, ciliary beat frequency and 
clearance decrease with age [ 38 ,  39 ]. Additionally, aged airway epithelial cells have 
a decreased barrier function [ 40 ]. In aged mice, repeated inhalation of toxicants 
decreased airway epithelial cell repair and exacerbated p38 MAPK-dependent pro- 
infl ammatory cytokine expression [ 41 ]. These age-associated changes may enhance 
alterations in airway epithelial cells characteristic of some younger patients with 
asthma or increase the risks of respiratory tract infections, thus exacerbating under-
lying asthma. Additionally, it is possible that individuals with asthma are at increased 
risk of “accelerated” cellular aging, as has been suggested with chronic obstructive 
pulmonary disease (COPD) [ 42 ] (see chapter “  Aging in COPD and idiopathic pul-
monary fi brosis    ” by C. Sanchez in this volume).  

2.2.2     Neutrophils/Polymorphonuclear Cells 

 Neutrophils or polymorphonuclear cells (PMNs) have several important functions 
in the initial clearance of pathogens including phagocytosis, recruitment and matu-
ration of dendritic cells, transport of antigens to lymph nodes and secretion of neu-
trophil extracellular traps (NETs), which immobilize bacteria. With increasing age, 
neutrophil recruitment is altered, preventing chemotaxis of PMNs to the site of 
infl ammation [ 43 ]. Additionally, neutrophils from aged mice produce fewer NETs 
after either infection or non-specifi c cellular activation [ 44 ]. Aged neutrophils also 
have a decreased capacity for phagocytosis [ 45 ,  46 ]. Potential mechanisms include 
a decreased surface expression of CD16 [ 47 ] (necessary for Fc-mediated phagocy-
tosis) and decreased downstream signaling of TLRs [ 48 ,  49 ]. Normally, PMNs pro-
duce superoxide anions, which are converted to reactive oxygen species (ROS), for 
intracellular killing after phagocytosis. With advanced age, there is a higher consti-
tutive ROS expression by neutrophils which may be due to increased cellular activa-
tion (suggested by increased extracellular CD11b and HLA-DR expression) and 
altered regulation of cGMP and cAMP for ROS production [ 50 – 53 ]. Increased pro-
duction of free radicals is a theory of aging and damages local tissues [ 54 ]. Despite 
increased basal production of ROS, induction of ROS in response to a bacterial 
infection is suppressed in older compared to younger patients [ 50 ,  55 ]. This may 
occur secondary to a decreased glucose accumulation (required for ROS produc-
tion) in aged PMNs [ 56 ]. 

 Despite diminished anti-pathogen activity, the number of neutrophils in the air-
way of aging individuals without airway disease increases [ 57 ,  58 ]. Whether this is 
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secondary to decreased neutrophil apoptosis [ 59 ] or to increased systemic infl am-
mation with aging is not clearly established. Additionally, the impact this has on 
asthma in aging is not known. Emerging data suggests that older patients with 
asthma may have increased airway neutrophils (measured from induced sputum) 
compared to younger patients [ 60 ,  61 ]. Furthermore, increased airway neutrophilia 
in older asthma subjects corresponds to increased levels of sputum neutrophil medi-
ators including MMP-9, neutrophil elastase and IL-8. This resembles changes seen 
in a phenotype of severe asthma noted in some younger adults [ 61 ] . Determining 
underlying airway infl ammation in older adults with asthma is important as neutro-
philic asthma is often less responsive to corticosteroid treatment [ 62 ,  63 ], therefore 
alternative therapies may be indicated for older patients with asthma.  

2.2.3     Eosinophils 

 There is a limited understanding of the age-associated changes in eosinophil num-
ber and function in older patients with asthma. In younger patients with asthma, in 
particular those with an “allergic phenotype,” the airway eosinophil plays an impor-
tant role in airway infl ammation and AHR [ 64 ] . However, aged eosinophils may 
have decreased effector functions and be less important for AHR. In a study exam-
ining age-related changes in eosinophil function, peripheral eosinophils from sub-
jects with asthma (55–80 years of age) exhibited decreased degranulation in 
response to IL-5 stimulation and a trend for decreased superoxide production, when 
compared to cells from patients 20–40 years of age [ 60 ]. However, study of another 
in vitro eosinophil effector function, leukotriene C4 (LTC 4 ) production, revealed no 
difference between older and younger subjects with asthma [ 65 ]. The role of the 
eosinophil in AHR in older patients with asthma is not well established. In a mouse 
model of asthma, antigen sensitized and airway challenged aged mice developed 
greater bronchoalveolar fl uid (BALF) eosinophilia in comparison to younger mice, 
however AHR was lower in the former, suggesting that increased airway eosino-
philia was not correlated to AHR [ 66 ]. However, the development of AHR later in 
life was associated with elevated peripheral blood eosinophil counts in males (mean 
age 60 years) enrolled in the Normative Aging Study [ 67 ]. Thus, eosinophils may 
be less functional in the elderly; their role in AHR, however, requires further 
investigation.  

2.2.4     Dendritic Cells 

 Dendritic cells (DCs) lie at the interface between the innate and adaptive immune 
responses and play key roles in antigen presentation. There are 2 main sub- 
populations of DCs, plasmacytoid (pDC) and myeloid (mDC). Both DC popula-
tions express TLRs and produce type I and type III interferons (IFN), necessary for 
anti-viral responses, although pDCs produce greater amounts and more rapidly. The 
impact of age-related changes in DC in asthma is not clear. However, there are sev-
eral alterations of DC function with aging which may alter asthma in older patients. 
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The increased production of IL-6 and TNF-α by DCs during aging might contribute 
to the observed infl ammaging [ 68 – 70 ]. Additionally, there are several changes asso-
ciated with DCs during aging which may increase susceptibility to respiratory 
infections and asthma exacerbation, including decreased IFN production [ 71 ], 
phagocytosis [ 68 ], migration [ 72 ,  73 ] and TLR function, as well as a poor antibody 
response to infl uenza immunization [ 70 ]. Although there are likely several mecha-
nisms underlying alteration of DC function with aging, epigenetic modifi cations of 
DNA producing hypomethylation may contribute [ 74 ].   

2.3     Aging-Related Changes in the Adaptive Immune Response 

 In contrast to changes in immune function of the innate system with aging, changes 
in adaptive immunity are better defi ned. With aging, the ability to mount an adaptive 
immune response declines [ 75 ]. These changes produce several clinical outcomes 
including a reduced ability to produce specifi c and long-lasting antibodies to vac-
cinations [ 76 ,  77 ] and a lack of a rapid immunologic response when encountering 
pathogens. Similar to the innate immune response, the effects of age on the adaptive 
response and asthma in older patients is not well characterized. 

2.3.1     T Lymphocytes 

 T cells play a key role in the adaptive arm, in particular, the cellular immune 
response, necessary for eradication of viruses and intracellular pathogens and cyto-
kine production. T cells are identifi ed by surface expression of CD3 and are further 
categorized into CD4 or CD8 T cells which have distinct functions. CD8+ T cells 
recognize class I MHC-associated peptides on infected cells, releasing granular 
contents to promote their cytolysis. In contrast, naïve CD4+ T cells recognize MHC 
II peptides on antigen presentation cells, and after activation, differentiate into sub-
sets including: Th1 (characterized by secretion of interleukin (IL)-2 and interferon 
(IFN)-γ), that function to increase macrophage phagocytosis and CD8+ T-cell pro-
liferation; Th-2, which produce IL-4, −5, −13, stimulating eosinophil activation and 
production of IgE antibodies by B cells; and Th-17 (characterized by secretion of 
IL-17a, IL-21 and IL-22 which recruit and active neutrophils). 

 With increased age, the number of circulating naive T lymphocytes signifi cantly 
decreases. Reduction of naïve T cells has been largely attributed to thymus involu-
tion with aging and replacement of tissue with adipose, which produces additional 
pro-infl ammatory mediators affecting thymopoiesis [ 78 ]. However, recent work 
suggests that a decrease in naïve T cells with aging may be instead due to alterations 
of peripheral cell division [ 79 ], secondary to lower systemic levels of IL-7, which 
normally protects against telomere loss and apoptosis [ 80 ], thereby shortening the 
survival of naïve T cells [ 81 – 83 ]. Although the number of naïve T cells decreases 
with aging, the total number of circulating T cells remain relatively constant due to 
the survival and increased resistance to apoptosis of memory T cells [ 84 ,  85 ]. The 
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increased survival of memory CD4+ was reported to be due to changes in the aged 
mouse microenvironment [ 84 ], and survival of memory CD8+ T cells to chronic 
viral stimulation, in particular Cytomegalovirus (CMV) [ 86 ]. 

 With aging, there are several alterations which affect the T cell receptor (TCR). 
Aging T cells in humans lose surface CD28, necessary for TCR signaling. Loss of 
CD28 expression may occur from repeated antigen stimulation over time, produc-
ing a cellular stage of replicative senescence as demonstrated by shortened telomers 
and reduced proliferation [ 87 – 89 ]. Furthermore, type I interferons and TNF-α can 
decrease CD28 expression [ 90 ,  91 ]. The consequences of loss of CD28 include 
decreased IL-2 secretion and cellular proliferation, and increased resistance to 
apoptosis [ 92 – 94 ]. In addition, TCR diversity decreases with age [ 95 ,  96 ], which 
likely decreases viral clearance [ 97 ].  

2.3.2     Th17 Cells 

 Th17 cells are a subgroup of T cells which secrete IL-17A, IL-17F and IL-22, which 
in turn stimulates IL-23 production. Th17 cells are differentiated from naïve T cells 
when stimulated by IL-6 (increased expression associated with aging) and TGF-β, 
which upregulate Th17 transcription factors retinoid acid-related orphan nuclear 
hormone receptor-γt (ROR-γt) and STAT3 [ 98 ]. The frequency of Th17 cells most 
likely increases with aging [ 99 ,  100 ], which clinically may translate to decreased 
viral clearance, increased neutrophilic infl ammation increased transplant rejection 
[ 101 ], increased risk of autoimmune diseases and cancer [ 102 ] and mortality during 
a viral infection [ 103 ]. 

 Recent data in aged mouse models of asthma also demonstrate an increased 
expression of airway Th17 expression [ 104 ,  105 ]. Murine models of allergic asthma 
suggest that IL-17A and IL-17F are important in airway infl ammation, particularly 
neutrophilia [ 106 ,  107 ], enhanced Th2 associated eosinophila [ 108 ], increased 
AHR and airway mucus gene expression [ 109 ,  110 ]. In humans, IL-17A and IL-17F 
expression is increased in the airways of patients with asthma [ 111 ,  112 ]. Increased 
IL-17 in older patients with asthma likely contributes to increased airway neutro-
philia and may be an additional target for therapy of asthma in this group of patients 
with diffi cult-to-treat asthma and increased morbidity and mortality from their 
disease.  

2.3.3     Regulatory T Cells 

 Regulatory T cells (Tregs) suppress several effector functions of Th1, Th2 and Th17 
cells. Tregs may protect against autoimmune diseases such as multiple sclerosis and 
Type I diabetes, but excessive numbers and activity may lead to increased suscepti-
bility to infection and cancer. Treg cells found in the lung are in the CD4+ CD25 hi  
population. Natural Tregs (nTregs) are derived from the thymus, express the tran-
scription factor Foxp3, and mediate suppression primarily via cell contact. Peripheral 

N.A. Hanania and P. Busse



405

antigen-induced adaptive Tregs (iTregs) are either Foxp3+ or Foxp3-, and their 
major suppressive action is mediated via IL-10 and TGF-β. 

 The effect of age on the numbers and function of Tregs is less clear. Numbers of 
cord blood CD4+ CD25 hi  are elevated at 2.3–9.5 % of the total CD4+ T-cells (sug-
gested to support fetal development of the immune system); they decline within the 
fi rst 36 months of life, and then remain stable in young and middle aged healthy 
adults [ 113 ]. Some investigators have shown an increase in CD4+ CD25+ and 
CD4+ Foxp3+ T cells [ 114 ,  115 ] in healthy elderly compared to younger subjects, 
whereas other groups have found no signifi cant differences in numbers of CD4+ 
Foxp3+ T cells [ 116 ]. The proportion and numbers of CD4+ Foxp3+ cells have 
been shown to be increased in lymphoid organs, but not in lungs or blood of aged 
(>20 month) C57BL/6 mice compared to younger mice [ 114 ,  117 ]. Earlier studies 
suggested that the suppressive activity of Treg cells declines with increasing age 
[ 118 ], but more recent studies have suggested that it is preserved or even enhanced 
[ 115 – 117 ]. 

 The precise role of nTregs and iTregs in asthma is not clearly established, but 
most studies in murine models and in humans with asthma suggest a suppression of 
airway infl ammation and AHR [ 119 – 121 ]. Peripheral numbers of Treg cells are 
lower in younger patients with asthma compared to age-matched subjects without 
airway disease [ 122 ]. Antigen tolerance in murine models of asthma, induced by 
inhalation or low-dose oral feeding of allergen to young mice suppressed several 
features of allergic asthma and increased Treg cell numbers [ 123 – 125 ]. On the other 
hand, aged mice fed low-dose antigen prior to antigen sensitization and challenge 
developed decreased AHR, antigen-specifi c serum IgE, BALF eosinophilia and 
mucus hypersecretion compared to age-matched non-tolerant mice. Additionally, 
the percent of lung tissue containing CD4+ CD25+ Foxp3+ cells was increased, but 
not to the same extent as in young mice, in antigen-tolerant aged mice suggesting 
that with increased age, Treg cells may continue to suppress AHR [ 126 ]. Similar to 
younger patients with asthma, one study reported that older patients with asthma 
had decreased peripheral Treg cell numbers compared to age-matched normal con-
trols [ 127 ]. However, the importance of Treg cells in airway infl ammation in older 
patients with asthma has not been widely investigated.  

2.3.4     B Cells 

 B cells produce antigen specifi c antibodies. With increased age, the potential for the 
bone marrow to generate new naïve B cells from hematopoietic stem cells (HSC) 
diminishes [ 128 ,  129 ]. Although the ability of B cells to produce antibodies remains 
intact with aging [ 130 ], the quality of antibodies produced decreases, as exemplifi ed 
by lower antigen affi nity and avidity [ 131 ]. This is likely due to several alterations 
during aging, including defi cient somatic hypermutation, responsible for the 
enhancement of antibody specifi city for antigens [ 132 ], altered cytokine production 
by aged T cells and decreased expression of CD154 (CD40L), required for class 
switching of antibody production [ 133 ]. Therefore, the age-related decline in 
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diversity and quality of antibodies, particularly in the setting of new antigen expo-
sure, may impact the ability of the elderly to clear pathogens and provide protection 
against a repeat exposure to the same pathogen.  

2.3.5     Cytokine Secretion 

 Cytokine secretion by the adaptive immune system is altered with aging, although 
study results are varied. Some studies suggest increased IFN-γ secretion by activated 
peripheral CD4+ and CD8+ cells [ 134 ] due to increased methylation of the IFN-γ 
promoter [ 135 ], whereas several others have shown a shift towards Type 2 cytokine 
production [ 136 ]. In a study of healthy subjects in three different age groups (between 
21–30 years, 80–81 years, and 100–103 years), fl ow cytometry determined CD4+ 
and CD8+ T cell populations with respect to intracellular IL-4 (Th2) and IFN-γ 
(Th1) expression upon PMA (phorbol myristic acid) stimulation [ 137 ]. When the 
ratio of IFN-γ/IL-4 producing cells was examined, there were no age-related differ-
ences in the CD4+ T cells; however, the IFN-γ/IL-4 ratio in the CD8+ T cells was 
lower in both the older age groups, suggesting an age-related shift from Th1 to Th2 
cytokine profi les. Additionally, aging has been associated with a decreased CD8+ 
IFN-γ response to virus and cytolytic activity [ 138 ]. The underlying effects of cyto-
kine secretion changes with aging and asthma are not clear at this point; however, 
allergic disorders are usually secondary to increased Th2 cell expression.   

2.4     Role of Allergic Sensitization and Aging 

 Atopy is defi ned as the predisposition towards developing an IgE-mediated hyper-
sensitivity reaction. It is documented by the presence of at least one detectable 
antigen- specifi c IgE to a common environmental (e.g. pollens, dust mites, animals 
with fur, cockroaches) or food antigen [ 139 ]. Antigen-specifi c IgE is produced by B 
cells and binds to the high-affi nity IgE receptors on mast cells and basophils. Once 
re-exposed, the specifi c antigen binds to the IgE molecules, causing these cells to 
cross-link. This process initiates cellular degranulation with the release of pre- 
formed mediators including histamine, leukotrienes and the synthesis of cytokines 
which contribute to allergic symptoms and airway bronchospasm. Detection of 
antigen-specifi c IgE is done either through skin prick testing (SPTs) or measure-
ment in serum. Although SPTs are easily performed and offer results quickly, atro-
phy of the skin and declining skin mast cells with aging may decrease their sensitivity 
in older patients [ 140 ]. 

  Total  IgE declines with increasing age in the general population, including indi-
viduals with and without atopy [ 141 – 143 ]. Cross-sectional studies including the 
Tucson Epidemiological Study and the National Health and Nutrition Examination 
Survey (NHANES 2005–2006) demonstrate that total serum IgE peaks by 20 years 
of age and is lowest after 70 years [ 11 ,  141 ]. However, some studies have not sup-
ported a trend of decreased total IgE with increased age [ 144 – 147 ]. Allergen- 
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specifi c IgE also decreases with aging. Studies including healthy subjects  with and 
without asthma and other atopic diseases , suggest that approximately 40–50 % of 
subjects under the age of 50 years and approximately 35 % of subjects older than 50 
are IgE sensitized to at least one allergen [ 143 ,  145 ,  147 – 149 ]. The increase in total 
and allergen-specifi c IgE production with age is most likely due to multiple factors 
such as alterations in cytokine profi les, changes in B cell antibody production, and 
DC and T lymphocyte function with aging, as described previously. 

 For many years, asthma in older patients was characterized as non-atopic or intrin-
sic [ 150 ,  151 ]. However, over the past two decades, it has been demonstrated that 
atopy is not uncommon in older patients with asthma. The reported percentage of 
older patients with atopic versus non-atopic asthma varies and may depend upon the 
characteristics of the population investigated. Studies examining the presence of IgE-
sensitization in older patients with asthma in the United States describe sensitization 
rates between 23.9 % to as high as 74 % in one study [ 152 – 155 ]. Multicenter studies 
from the Netherlands [ 156 ] and France [ 157 ] reported that approximately 35 % of 
older patients with asthma were sensitized to at least one allergen. The most common 
aeroallergen to which older patients are sensitized is not consistent among studies, 
but typically includes cats [ 154 ], dust mites [ 155 ,  158 ], and cockroaches [ 159 ]. 

 Atopy in children with asthma increases disease morbidity [ 160 ,  161 ]. Whether 
this relationship occurs in older patients with asthma is not known. Studies includ-
ing older subjects with asthma, suggest that an atopic history may increase disease 
severity [ 162 ,  163 ]. In a study of 45 patients > 65 years of age recruited from an 
asthma clinic in New York City, cockroach sensitization was associated with more 
severe asthma as measured by airfl ow limitation and hyperinfl ation [ 159 ]. Data 
from NHANES 2005–2006 suggested that the relationship between antigen sensiti-
zation and asthma outcomes (e.g. hospitalizations, health care use) were not differ-
ent in subjects 20–40 years old vs. ≥55 years old [ 164 ]. However, no studies have 
been conducted to date with antigen challenge of older patients with asthma and 
measurement of subsequent airway function. 

 Some studies suggest that antigen sensitization plays a role in late onset asthma 
(LOA) [ 153 ,  165 ]. In the Normative Aging Study, men developing airway hyper- 
responsiveness after 49 years of age were more likely to be sensitized to cat (23.9 
% versus 4.4 %) compared to age-matched controls [ 153 ]. Nearly 50 % of the 40 
patients in the Tucson Epidemiologic study of obstructive lung diseases who devel-
oped asthma after the age of 60 years were skin prick positive to at least one anti-
gen, compared with 26 % of the age-matched control population without asthma 
[ 152 ]. In a study of 21 patients with asthma onset after 65 years of age, 81 % 
demonstrated a positive skin prick test to at least one allergen compared to a group 
of 14 patients developing asthma at <65 years, and in whom 57 % were allergen 
sensitized [ 165 ]. However, some studies suggest that IgE Ag sensitization may 
play a less signifi cant role in LOA. For example, a French study recruited 1,485 
patients (mean age 73 years) with a diagnosis of asthma from a total of 379 lung 
specialists to examine disease characteristics. Only 14.7 % of those developing 
asthma after 65 years of age were sensitized to at least one antigen by skin prick 
testing, whereas 60.1 % of those developing asthma prior to 21 years of age were 
antigen sensitized [ 157 ]. 
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 Although there are several unanswered questions regarding the roles of allergen 
sensitization in older patients with asthma including its role in disease inception, 
disease progression, trigger and management, allergen sensitization evaluation 
should be a component of asthma management and evaluation in this group, in par-
ticular patients with persistent asthma. Additionally, some older patients with 
asthma have enjoyed clinical improvement in their asthma after treatment with anti- 
IgE therapy [ 166 ,  167 ], emphasizing that allergen sensitization should be evaluated 
in older patients with asthma.  

2.5     Role of Cigarette Smoke and Irritants 

 Exposure to cigarette smoke increases the risk of developing asthma in children 
[ 168 ]. Although fi rst and second-hand cigarette smoke exposures are traditionally 
associated with the development of COPD in older adults, it also increases the risk 
of developing asthma later in life. Between 1/3 to ½ of older adults with asthma 
report a current smoking history [ 5 ,  19 ,  169 ]. In the Normative Aging Study, a his-
tory of current smoking and presence of atopy was associated with increased airway 
hyperresponsiveness to methacholine challenge [ 170 ]. Additionally, in 48 patients 
over the age of 70 years with late onset asthma (mean onset 58 years), those with a 
smoking history had increased frequency of antigen-specifi c IgE to common aeroal-
lergens and increased generation of LTB4 by peripheral leukocytes suggesting that 
cigarette smoking may enhance IgE production [ 171 ]. Furthermore, cigarette smoke 
is a common trigger of exacerbation in adults with asthma and exacerbates the rate 
of lung function decline in both young and old patients with asthma [ 172 ,  173 ]. 

 Exposure to biomass fuels, cleaning products, food preparation and chemicals 
increase the risk of developing asthma in younger adults [ 174 ]. Many of these expo-
sures occur in the work-space, which may not be applicable to older patients if they 
have retired. Although the effect of irritants on the development of asthma in older 
patients is less well characterized than in younger patients, exposure to dust parti-
cles, art supplies, and cleaning products has been reported to induce asthma in older 
patients [ 175 ]. Additionally, outdoor air pollution, especially increased ozone, NO 2  
and SO 2  may exacerbate and induce asthma in older patients; however, this needs 
further study [ 176 ]. Diesel exhaust is another potential environmental issue and it 
increases pulmonary neutrophilia in aged compared to younger mice with a pro-
longed pulmonary infl ammation [ 177 ].  

2.6     Role of Infections 

 Immunosenescence increases susceptibility to infections in older patients. 
Respiratory infections in children and young adults (e.g. rhinovirus, Respiratory 
Syncytial Virus (RSV), infl uenza, parvovirus) can affect asthma at several points, 
including disease inception (particularly in the presence of allergen sensitization), 
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exacerbation, and worsening asthma control [ 178 – 186 ]. However, the effect of 
infection in older patients with asthma on these stages is less defi ned. Observational 
studies have reported that nearly 50 % of subjects with asthma onset after the age 
of 60 years reported a prior respiratory infection [ 19 ]. To address age-related dif-
ferences in the effect of a particular respiratory infection, infl uenza A, on antigen 
sensitization and its effect on subsequent allergen-induced AHR and infl amma-
tion, aged and young mice were sensitized to Ag after an acute viral infection. 
There were signifi cant age-associated differences in the response to infection and 
sensitization with greater antigen-specifi c IgE production in aged infected mice, 
but no alteration of AHR [ 104 ]. Detection of respiratory infections is more diffi -
cult in older patients as viral culture and rapid antigen testing, which are used 
frequently in the pediatric population are less sensitive in the older population. In 
a prospective cohort study among healthy older adults and older adults at high-
risk (those with chronic heart or lung disease), RSV infection was seen annually 
in 3–7 % of health patients and 4–10 % in high-risk subjects [ 187 ]. Additionally, 
RSV was noted by RT-PCR detection in 7.2 % of older adults hospitalized with 
asthma in this study. Although viral infections have been traditionally investigated 
as an asthma trigger, the role of  Chlamydia pneumonaie  and other atypical infec-
tions has recently come into focus, in particular with adult-onset asthma [ 188 ]. 

 Vaccination is an appropriate measure to attempt to alter the immune response 
and decrease the risk and progression of infectious diseases in older patients. 
Although vaccination of older patients decreases the progression of many infectious 
diseases, the immunologic protective response is decreased in the aged [ 77 ,  189 ]. In 
children and young adults, both infl uenza and pneumococcal vaccines reduce respi-
ratory infections and rates of asthma exacerbation in patients with asthma [ 190 , 
 191 ]. The effect of infl uenza vaccination or pneumococcal vaccination has not been 
evaluated in reduction of asthma symptoms in older patients. Recently, high doses 
of trivalent inactivated infl uenza vaccine have been shown to increase the antibody 
response and increase protection against infl uenza in older patients [ 192 ], which 
may offer some protection against asthma exacerbations secondary to viral infec-
tions in older patients.   

3     Diagnosis and Clinical Assessment 

3.1     Clinical Phenotypes 

 Data on the clinical phenotypes of asthma in the elderly have been derived from 
both longitudinal community surveys and case studies [ 5 ,  19 ,  150 ,  152 ,  193 – 195 ]. 
Two clinical phenotypes have been reported based on the onset and duration of the 
disease [ 150 ,  193 ,  196 ]. Patients with late-onset asthma (LOA) fi rst develop asthma 
symptoms after the age of 65 years, although particular studies defi ne LOA as fi rst 
asthma diagnosis after the age of 40 years. Some studies of elderly asthmatics have 
shown that as a group, as many as 40 % will have their fi rst attack after the age of 
40 years [ 150 ,  152 ,  197 ]. Patients with LOA tend to be less atopic, have a higher 
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baseline FEV 1 , and a more pronounced bronchodilator response than those with 
long-standing asthma (LSA). Patients with LSA develop asthma symptoms early in 
life, typically before the age of 12 years of age, and tend to have higher incidence of 
atopic diseases, more severe and irreversible or partially reversible airway obstruc-
tion, and greater airway hyperinfl ation. The duration of the disease in this group is 
an important determinant of severity and of development of irreversible airfl ow 
obstruction [ 198 ].  

3.2     Clinical Presentation 

3.2.1     Symptoms 

 The onset of wheezing, shortness of breath and cough in an elderly patient is likely 
to cause concern. Symptoms of asthma that are common in younger patients, includ-
ing episodic wheezing, shortness of breath, and chest tightness, are also character-
istic of asthma in the elderly. Symptoms are generally worse at night and with 
exertion. Dyspnea is a common symptom of many other chronic disorders in older 
patients such as cardiac or other lung diseases, therefore asthma as an etiology of 
these symptoms may be overlooked. Many elderly patients limit their activity to 
avoid getting dyspneic, and others assume that their dyspnea is resulting from their 
aging process and, thus, neglect seeking medical attention early in their disease 
process. However, aging per se does not cause dyspnea, and an etiology needs to be 
always pursued in assessing an elderly patient who complains of breathlessness. 
Cough is a prominent symptom of asthma and may occasionally be the only pre-
senting symptom [ 199 ]. Wheezing, on the other hand, may not be as prominent, and 
its presence is not very specifi c and does not correlate with severity of obstruction.  

3.2.2    Triggers 

 Asthma symptoms are often precipitated by an upper respiratory tract infection. 
However symptoms of asthma in the elderly are non-specifi c and may be caused by 
a variety of other conditions. Symptoms can also often be triggered by medications, 
such as aspirin, non-steroidal antiinfl ammatory agents, or beta-blockers, commonly 
used by this population. History of atopy is a strong predictor of asthma in this age 
group, and allergic rhinitis, sinusitis, and nasal polyps are not uncommon.  

3.2.3    Signs 

 Physical examination in elderly patients with asthma is usually nonspecifi c and may 
misguide the diagnosis. Physical examination should focus on ruling other causes 
for respiratory symptoms such as cardiovascular disease and identifying comorbid 
conditions such as rhinitis/sinusitis and atopic dermatitis.  
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3.2.4    Physiologic Measurements 

 The diagnosis of asthma in the elderly should be confi rmed by objective measures 
which are often also helpful in staging the severity of the disease. Lung function 
testing is especially important in this age group since there is an age-related reduc-
tion in the perception of dyspnea seen in the elderly [ 200 ]. Unfortunately, objective 
measures of lung function such as spirometry and peak fl ow measurements are gen-
erally underutilized in elderly patients and this also contributes to the delay in diag-
nosis [ 19 ,  201 ]. Furthermore, spirometry may be diffi cult to perform in some 
situations, because of physical and poor cognitive impairment. In addition, a major 
problem is the diffi culty in defi ning the lower limits of predicted normal values in 
this age group, which may vary in different patients. Elderly patients with asthma 
may also demonstrate an impaired acute bronchodilator response, which can lead to 
a misdiagnosis of COPD. This poor response may result from the decreased number 
of β-adrenergic receptors on smooth airway muscles that has been described with 
the aging process. Airway obstruction may be absent at the time of testing in 
approximately 8 % of elderly and further testing which may include methacholine 
challenge testing or even cardiopulmonary exercise stress testing may be needed to 
facilitate the diagnosis. Measurement of airway hyperresponsiveness to methacho-
line may not be an accurate test in the elderly [ 202 ], although a few studies suggest 
a higher prevalence of airway hyperresponsiveness in elderly asthmatics than 
younger populations. Peak expiratory fl ow variability may also be helpful in the 
diagnosis and follow-up of patients with obstructive airway diseases, but poor coor-
dination and muscle weakness in some patients may lead to an inaccurate reading 
[ 203 ,  204 ]. However, a prospective study failed to demonstrate any advantage of 
peak fl ow monitoring over symptom monitoring as an asthma management strategy 
for older adults with moderate-severe asthma when used in a comprehensive asthma 
management program [ 205 ]. Other tests such as measuring the carbon monoxide 
diffusing capacity of the lung (DLCO) may help distinguish between asthma and 
COPD (emphysema).  

3.2.5    Diagnostic Challenges 

 Studies have consistently shown that symptoms caused by asthma are frequently 
overlooked by elderly patients and their physicians. Several factors contribute to the 
under diagnosis and misdiagnosis of asthma in this age group. A major factor is that 
symptoms of asthma are also common to other diseases seen in this age group. The 
hallmark symptoms of asthma, including shortness of breath, wheeze and cough, 
are non-specifi c in the elderly and are mimicked by and often confused with such 
diseases as congestive heart failure, emphysema and chronic bronchitis (COPD), 
chronic aspiration, gastroesophageal refl ux (GERD), and tracheobronchial tumors. 
Since smoking is an important risk factor for asthma-like symptoms of wheeze, 
cough and sputum production, asthma is frequently confused with COPD. Lung 
function is generally lower in those who smoke compared with those who do not 
smoke due to concomitant COPD [ 152 ]. Distinguishing between COPD and asthma 
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in older patients may be very challenging and in some patients asthma cannot be 
distinguished from COPD with our current diagnostic tests [ 206 – 208 ]. This group 
of patients has recently been classifi ed as “Asthma-COPD overlap syndrome” or 
(ACOS). Symptoms of ACOS include variability of respiratory symptoms, and air-
fl ow limitation which is not fully reversible. Although there is not a distinct defi ni-
tion for ACOS, such patients tend to have a poorer quality of life, frequent 
exacerbations and a more rapid lung decline than patients with asthma or COPD 
alone [ 207 – 209 ]. 

 It has been known for more than a century that early morning wheezing is a 
prominent symptom of congestive heart failure; it has been called cardiac asthma as 
it can mimic the clinical picture of asthma. Typical symptoms of gastroesophageal 
refl ux in the elderly, such as vomiting and heartburn, may be absent. In a study of 
elderly patients with esophageal refl ux proven by intraesophageal pH monitoring, 
chronic cough, hoarseness and wheezing were present in 57 % of patients [ 210 , 
 211 ]. In addition to causing asthma-like symptoms, there is also evidence that 
GERD may be a cause of worsening asthma. 

 Unlike younger adults with asthma, a family or personal history of atopy is usu-
ally absent in older patients. Blood and sputum eosinophilia are common, but not 
universal. Since large community studies have shown that most patients fi rst develop 
asthma in childhood or adolescence, many physicians have had the misconception 
that asthma is a childhood disease. 

 In addition, elderly patients have been shown to have a reduced perception of 
bronchoconstriction that further delays medical intervention. In fact, many elderly 
patients are fearful of having an illness and dying and are therefore reluctant to 
admit they are having symptoms. Even when they do so, they may underestimate 
them or consider them a result of normal aging. Underreporting of symptoms in the 
elderly may have many causes including depression, cognitive impairment, social 
isolation, denial, and confusing symptoms with those of other comorbid illnesses.  

3.2.6    Assessing Asthma Severity and Control 

 Evidence-based guidelines for asthma advocate that assessing severity and control 
of the disease should be based on assessing current impairment and future risk. 
Assessing impairment includes questions about day symptoms, night symptoms, 
activity limitation, use of rescue medication and lung function measures. In addition 
the use of asthma questionnaires such as the Asthma Control Test (ACT) [ 212 ] or 
the Asthma Control Questionnaire (ACQ) is recommended in assessing asthma 
control. In patients who are newly diagnosed and who have not yet been started on 
controller medication, assessing severity of the disease is recommended at fi rst 
encounter. Asthma severity is classifi ed into either  intermittent  (no interference of 
daily activity, and symptoms occur less than twice per week during the daytime or 
less than two nights per week) or  persistent  (limitation of normal activity and more 
frequent symptoms). Persistent asthmatics are further classifi ed into mild, moderate 
or severe based upon increasing impairment [ 213 ]. In patients who are already 
receiving controller medication, assessing of asthma control is recommended on a 
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periodic basis. Asthma control level may be well controlled to not well controlled 
or very poorly controlled based on the above criteria. Assessment of asthma control 
is essential to defi ne management strategies described below.    

4     Management 

 The goal of asthma therapy is to reduce symptoms and impairments in function 
imposed by the disease and to improve the quality of life. There are two sets of 
published guidelines for the management of asthma, one by the National Asthma 
Education and Prevention Program (NAEPP) [ 213 ] and the other by the Global 
Initiative for Asthma (GINA) [ 214 ]. However, these asthma guidelines are based 
upon studies done in patients younger than 60 years of age, and extrapolated to 
patients over the age of 60 years. As asthma in a 12 year old is likely to be very dif-
ferent from a 65 year old patient, future guidelines should include studies done 
specifi cally on older patients and may need specifi c age-appropriate modifi cations. 

4.1     Non-pharmacologic Management 

 Non-pharmacologic components of management include asthma-education and 
control of environmental factors. Educating patients with asthma about their disease 
and how to assess and manage exacerbations reduces urgent care visits, asthma- 
related health care costs, and improves health status and quality of life and adher-
ence to medication regimens medication in both younger and older patients 
[ 214 – 217 ]. Instructions, or “action plans” for routine asthma care should be easy to 
read and understand for the patient.  

4.2     Pharmacologic Management: Challenges 

 Treatment of asthma in patients of all ages should address the severity of the 
patient’s disease and how well it is controlled. Treating patients to control their 
disease and allow for increased quality of life, while minimizing potential medica-
tion side effects are a major goal, particularly in older patients who often receive 
multiple medications and therefore are at a potentially greater risk for side effects. 
Older patients frequently have a poor inhaler technique, due to decreased cognitive 
function [ 218 ,  219 ], or a physical impairment, and while some breath-activated 
medication devices may be easier for elderly patients to self administer [ 220 ], some 
still may have diffi culties with its administration [ 221 ]. For these patients, a spacer 
can be attached to an HFA pressured metered dose (MDI) or some medications may 
be delivered by nebulizer (including corticosteroids for daily controller use, although 
this is not currently an FDA indicationfor older patients with asthma). There are 
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several medications used to treat congestive heart failure and glaucoma, such as 
non-selective β-blockers [ 222 ], aspirin and NSAIDs which can worsen asthma in 
some patients. 

4.2.1    Bronchodilating Medications 

 All patients with asthma should have a prescription for a “rescue medication” to 
treat acute symptoms. Rescue bronchodilators are either short-acting beta 2- receptor 
agonists (SABAs) or anticholinergic agents. SABAs are relatively safe in the elderly 
if used on an as-needed basis to treat exacerbations, though mild systemic absorp-
tion can produce tachycardia and tremor. The combination of diuretics that do not 
spare potassium (e.g. thiazides) and overuse of β2-agonists may produce signifi cant 
hypokalemia and hypomagnesemia, increasing the risk of cardiac arrhythmias 
[ 223 ]. One report suggested that ipatrotropium in elderly asthmatics was associated 
with a slight increase in mortality, which the authors concluded was secondary to 
these patients having more severe asthma than those patients not receiving ipatrotro-
pium [ 224 ]. However, anticholinergics, due to their atropine-like effects, may pro-
duce adverse side effects in the elderly including a dry mouth, urinary hesitancy, 
constipation and exacerbation of glaucoma. Long-acting β2-agonists should only be 
used as an add-on therapy in patients who have properly used inhaled corticoste-
roids (ICS) without relief, as they are not effective monotherapy for asthma [ 225 ].  

4.2.2    Anti-Infl ammatory Medications 

 Patients with persistent asthma should receive a daily anti-infl ammatory medica-
tion, such as an ICS to suppress airway infl ammation [ 226 ,  227 ]. Elderly patients 
with asthma are often under-prescribed ICS [ 5 ,  22 ,  228 ,  229 ]. ICS may produce 
local side effects including hoarseness or oral candidiasis, which can be prevented 
by using a spacer or by rinsing the mouth after use. A concern when prescribing ICS 
to older patients is increasing the risk of osteoporosis and bone fractures, especially 
for women and if the dose of ICS is >1000mcg/day budeosonide equivalent [ 230 –
 233 ]. Therefore, patients should be given an ICS with the lowest dose to control 
their disease,[ 234 ] and one with a lower oral bioavailability. To decrease the effects 
of corticosteroids on bone resorption, patients should be encouraged to exercise, 
avoid excess alcohol intake, and use daily supplemental calcium with vitamin 
D. Observational studies in the elderly have suggested that ICS have a small, but 
signifi cant risk of subcapsular and nuclear cataracts [ 235 – 237 ]. Observational stud-
ies have also suggested that elderly patients treated with ICS may have a small risk 
for developing glaucoma; however, further studies are needed [ 238 – 240 ]. Therefore, 
patients receiving ICS should have yearly ophthalmologic exams. 

 Corticosteroids improve asthma control and symptoms in some, but not all older 
patients. A large database review of patients 65 years or older hospitalized at least 
once for asthma and followed 12 months after discharge, demonstrated that those 
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given ICS had a 29 % reduction in asthma readmission and a 39 % reduction in 
all- cause mortality in the subsequent 12 months [ 241 ]. However, some older 
patients with asthma may have a component of fi xed airway obstruction [ 150 ]. The 
NAEPP has recommended for some older patients, that a 2 week trial of oral corti-
costeroids (0.3–0.5 mg/kg) be administered with repeat lung function measure-
ment after the course to assess for possible reversal of obstruction and clinical 
benefi t [ 242 ]. 

 Leukotriene modifi ers are a class of anti-infl ammatory agents that inhibit the 
effects of leukotrienes, which are potent bronchoconstrictors, recruit infl ammatory 
cells to the airways and induce mucus hypersecretion. When compared with ICS, 
leukotriene receptor antagonists generally do not have as favorable an outcome in 
improving FEV 1 , symptom scores and other outcome measures [ 213 ]. Two studies 
have investigated the role of leukotriene modifi ers in patients of different ages with 
asthma, and have concluded that their effectiveness may be limited in the elderly 
patients compared with younger counterparts, but continue to improve asthma 
symptoms without reducing the need for rescue therapy [ 243 ,  244 ].  

4.2.3    Methylxanthines 

 Methylxanthines (e.g. Theophylline) increase intracellular cyclic adenosine mono-
phosphate which bronchodilates the airways, and in lower doses have anti- 
infl ammatory properties [ 245 ]. Its use in asthma, especially in an older group, is 
limited by its relatively weak bronchodilator properties and many side effects and 
drug interactions [ 246 ].    

5     Future Research Needs 

 In 2008, the National Institute on Aging and the National Heart, Lung, and Blood 
Institute co-sponsored a conference on asthma in older individuals [ 247 ]. This pro-
gram explored data from animal models and human studies of asthma in older 
patients and concluded that airway infl ammation in asthma and its clinical response 
to therapy in older patients likely differs from younger patients. Since this confer-
ence, there are still several remaining unanswered questions regarding asthma in 
older patients. For example, how do age-related changes in the innate and adaptive 
immune responses impact airway infl ammation in older patients with asthma and 
does it differ from younger patients with asthma? Understanding the pathophysiol-
ogy and underlying airway infl ammation in older adults with asthma and the differ-
ent phenotypes and endotypes of asthma in this population is a major unmet need as 
this group of patients has high rates of morbidity and mortality. Furthermore, with 
the expected increase in the elderly populations, including elderly asthmatic patients 
in clinical trials is essential, and particular attention should be paid to also address 
how differences in infl ammatory mechanisms affect responses to therapy.  
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6     Summary 

 Asthma is a major public health problem which is frequently overlooked in the 
geriatric population. While much has been uncovered about the pathogenesis, 
course and outcomes of asthma in children and young adults, studies in the aging 
population have been scarce or non-existent. Asthma in the elderly has at least two 
distinct phenotypes based on the onset of the disease. While the characteristics of 
long-standing asthma that starts early in life may be similar to the general asthma 
population, more studies are needed to uncover details about asthma that develops 
late in life which can have distinct clinical features and may have different course 
of response to therapy. Our knowledge about management of asthma in this popu-
lation is based on extrapolation from studies in the younger population. Although 
future studies are needed to investigate the response to existing and novel interven-
tions in the elderly, current guidelines recommend that management of asthma in 
this population should not differ from that of younger patients. Careful monitoring 
of compliance with therapy and of adverse events to medication is essential in this 
population. Despite severe symptoms and physiologic impairment, most elderly 
patients with asthma improve with therapy and can lead active productive lives.     
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1            Clinical Aspects and Pathophysiology of COPD 

 The term Chronic Obstructive Pulmonary Fibrosis (COPD) refers to two distinct 
disease entities previously considered separate: pulmonary emphysema and chronic 
(obstructive) bronchitis, both of them may be present in the same individual to dif-
ferent degrees. The Global Initiative for Chronic Obstructive Lung Disease (GOLD) 
defi nes chronic obstructive pulmonary disease (COPD) as “a preventable and treat-
able disease, characterized by a persistent airfl ow limitation that is progressive and 
associated with an abnormal infl ammatory response of the lungs [ 1 ]. COPD is the 
fourth leading cause of death in the world and will rise to the third leading cause of 
death by 2030 [ 2 ,  3 ]. COPD itself is a risk factor for other age-related disorders 
including cardiovascular disease, type II diabetes and other functional deteriora-
tions [ 4 – 6 ]. Importantly, COPD is reported to be two to three times more prevalent 
in persons over 60 years of age [ 7 ]. 

 The histopathological characterization of COPD includes the loss of lung elastic-
ity due to emphysema and small airway obstruction due to infl ammatory narrowing 
and fi brosis. The clinical manifestations include dyspnea, chronic cough, low exer-
cise capacity, wheezing, and frequent or longer-lasting bronchial infections. The 
airway obstruction progresses with time and exacerbations of the disease tend to 
arise about once per year [ 8 ]. 

 Smoking is the greatest risk factor for COPD [ 1 ,  7 ]. But COPD can occur in 
nonsmokers, in which other risk factors include asthma, advanced age, low educa-
tional level, occupational and domestic (from cooking and heating) exposure to 
toxins, a history of airway infections in childhood and genetic predisposition [ 9 –
 11 ]. The understanding of COPD pathogenesis and the factors that infl uence its 
heterogeneity is a complex and evolving area of research. 

1.1     Pathogenesis 

 It is well accepted that impairment in lung function is the result of chronic infl am-
matory processes, many of which are initiated years before the initial symptoms are 
apparent. At the molecular level, the pathogenesis of COPD includes a proteinase- 
antiproteinase imbalance, immunological mechanisms including systemic infl am-
mation, oxidant-antioxidant imbalance, increased apoptosis and ineffective repair. 
At the cellular level, COPD represents a complex interplay among lung epithelial 
cells, endothelial cells, neutrophils, macrophages, and multiple subpopulations of 
both CD8 +  and CD4 +  T cells [ 12 – 15 ] (Fig.  1 ).

   The combination of tissue damage, release of infl ammatory mediators, cyto-
kines, and chemokines leads to the activation of epithelial cells and endothelial 
cells. These cells are a source of chemoattractant cytokines, including CXCL1, 
CXCL8, CXCL10, CCL2, and CCL5 [ 16 ]. The expression of chemokines and adhe-
sion molecules by activated epithelial and endothelial cells drives the accumulation 
of infl ammatory infi ltrates consisting of neutrophils, macrophages, and CD8 +  T 
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cells [ 16 – 18 ]. In addition, the disease is correlated with accelerated apoptosis of 
alveolar and pulmonary vascular endothelial cells [ 18 ] (Fig.  1 ). 

 Evidence for a prominent role of aging in COPD progression is growing and cell 
senescence is one of the possible molecular pathways for development of COPD 
[ 2 ]. In spite of these advances, there is still a fundamental lack of knowledge about 
the cellular, molecular, epigenetic and genetic causes of COPD, as well as the role 
of aging.   

2     Clinical Aspects and Pathophysiology of Idiopathic 
Pulmonary Fibrosis 

 Idiopathic pulmonary fi brosis (IPF) is a chronic, progressive and irreversible scar-
ring of the lungs of unknown origin that causes tissues’ inability to transport oxygen 
to the blood. An estimated 100,000 people in the U.S. have IPF and the mean sur-
vival is approximately 3–5 years from the time of diagnosis with a very heteroge-
neous rate of progression [ 19 – 23 ]. In 2030, there will be more than 70 million 
people in the U.S. aged 65 and older, and because IPFis strongly associated with 
advanced age, they will be at risk for pulmonary fi brosis. 

  Fig. 1    Schematic representation of the main contributing factors for the development and progres-
sion of COPD. Cigarette smoking causes airway infl ammation and remodeling. The infl ammatory 
infi ltrate is composed of macrophages, CD8+ lymphocytes, and neutrophils. In addition, goblet 
cell hyperplasia, squamous metaplasia, peribronchial fi brosis, and smooth muscle hypertrophy is 
observed       
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 The disease, which affects primarily elderly adults (mainly male smokers and 
ex-smokers) is limited to the lungs and is characterized by patchy interstitial fi brosis 
with alternating areas of normal lung, temporal heterogeneity of fi brosis character-
ized by clusters of actively proliferating fi broblasts/myofi broblasts, “fi broblastic 
foci”, and honeycomb structures [ 19 ]. IPF displays a pattern of fi brotic interstitial 
pneumonia similar to that found in other clinical settings, including collagen vascu-
lar disease, chronic hypersensitivity pneumonitis, asbestosis, and Hermansky- 
Pudlak syndrome [ 19 ]. Three different forms of IPF can be identifi ed clinically: 
slowly progressive, rapidly progressive, and relatively stable with peaks of rapid 
disease acceleration (exacerbation). 

2.1     Pathogenesis 

 The mechanism of fi brosis in IPF remains elusive; current concepts suggest that the 
disease results from an aberrant reparative response to alveolar epithelial cell injury 
characterized by migration, proliferation, and activation of fi broblasts, as well as 
secretion of extracellular matrix components, leading to scarring, architectural 
changes, and irreversible loss of lung function (Fig.  2 ). Key players in pulmonary 
fi brosis include:

  Fig. 2    Schematic representation of key players involved in the development and progression of 
Idiopathic pulmonary fi brosis       

 

C.G. Sanchez



433

    Epithelial Injury     It is proposed that microinjuries to alveolar epithelial cells 
induce fi brogenesis. Abnormal or injured epithelial cells secrete growth factors that 
favor the recruitment of resident fi broblasts and fi brocytes that differentiate into 
myofi broblasts [ 24 ]. Those epithelial cells also release infl ammatory mediators that 
initiate an anti-fi brinolytic coagulation cascade and trigger platelet activation and 
blood clot formation. This process is followed by activation of leukocytes at the site 
of tissue injury.  

  IPF Fibroblasts and Myofi broblast Differentiation     IPF fi broblasts are charac-
terized by excessive proliferation possibly linked to decreased PTEN expression 
and aberrant activation of PI3 kinase. Fibroblasts can trans-differentiate to a myo-
fi broblast phenotype, which are major producers of excessive extracellular matrix. 
Continuous accumulation of myofi broblasts prevents proper re-epithelialization. 
Myofi broblasts express features of both fi broblasts and smooth muscle cells, and 
they can be recruited to the lungs or they can differentiate from resident fi bro-
blasts [ 25 ]. Myofi broblasts may also be derived from epithelial cells undergoing 
Epithelial Mesenchymal Transition (EMT), a process triggered in part by the 
Wnt–β-catenin signaling. This pathway is constitutively active in epithelial cells 
from IPF patients (and in mice treated with bleomycin as a model of pulmonary 
fi brosis).  

  Transforming Growth Factor Beta 1 (TGF-β1) Signaling Pathway     TGF-β1 is 
an important profi brotic cytokine that triggers fi broblast proliferation and activa-
tion. TGF-β1 further exacerbates the infl ammatory response by stimulating the dif-
ferentiation of Th17 cells. TGF-β1 induces a number of growth factors and cytokines 
that participate in fi brosis, including, fi broblast growth factor (FGF-2), connective 
tissue growth factor (CTGF), insulin-like growth factor (IGF), platelet derived 
growth factor (PDGF) and interleukins (ILs).  

  Oxidative Stress and Mitochondrial Dysfunction     PTEN-induced putative kinase 
1 (PINK1), is a regulator of mitophagy and maintains mitochondrial integrity by 
regulating diverse aspects of mitochondrial function, including membrane potential, 
respiration, calcium homeostasis, structure, and mitochondrial DNA integrity. 
Recently, it had been shown that PINK1 is deregulated in the aging lung and in 
pulmonary fi brosis. Defi ciency of PINK1 expression promotes fi brogenesis, possi-
bly by inducing the production of mitochondrial reactive oxygen species (ROS), 
which perpetuate profi brotic infl ammatory responses [ 26 – 29 ]. The activation of the 
Nalp3 infl ammasome and IL-1β secretion is largely driven by ROS [ 30 – 32 ].  

 Recent genome-wide studies have identifi ed several genetic variants critical for 
epithelial integrity as a risk factor for IPF, including genes for cell-cell adhesion and 
migration [ 33 ,  34 ]. Furthermore, polymorphisms in common variants in TERT and 
TERC and oligonucleotide/oligosaccharide-binding fold containing1 (OBFC1), 
required for telomere length, indicates telomere attrition in IPF [ 35 ,  36 ]. Toll inter-
acting protein (TOLLIP), is another genetic variant, important for innate immunity 
and epithelial mesenchymal transition [ 37 ]. None of these associations have been 
investigated mechanistically, so their role in IPF remains to be studied. 
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 The animal model most extensively used to study pulmonary fi brosis is the bleo-
mycin model, which recapitulates several of the features seen in the IPF patients 
[ 38 ]. Importantly, age-related differences are noted in this model of pulmonary 
fi brosis. Older mice do not resolve fi brosis as effectively as do younger mice. 
Twenty-four-month-old mice exhibit increased fi brogenesis, collagen deposition, 
and activation of TGF-β signaling compared to 3-month-old mice [ 39 ]. 

 An interesting question is the heterogeneity of outcomes: why does a patient in 
the 60s with a history of smoking, shorter telomeres, alveolar epithelial senescence, 
oxidative stress and mitochondrial dysfunction will develop pulmonary fi brosis and 
not COPD, or why in some cases, emphysema and pulmonary fi brosis can occur in 
the same patient (Fig.  3 ) [ 40 – 42 ]. One major difference is that COPD is viewed as 
an infl ammatory disorder while IPF is considered an abnormal wound healing dis-
order [ 43 ].

2.2        Current Treatment 

 Patients with IPF are currently referred early for lung transplantation, due to the 
unpredictable nature and the high mortality rate of the disease. Recently, nintedanib 
and pirfenidone, two compounds with pleiotropic anti-fi brotic properties, have been 
proven effective in reducing lung function decline and disease progression in IPF 
[ 44 ]. Nintedanib is a tyrosine kinase inhibitor that targets receptors thought to be 
involved in the pathogenesis of IPF such as receptors for the platelet-derived growth 
factor, vascular endothelial growth factor and fi broblast growth factor [ 45 ]. 
Pirfenidone has anti-fi brotic and anti-infl ammatory properties [ 46 – 48 ]. 
Unfortunately, neither nintedanib nor pirfenidone is a cure for IPF [ 44 ].   

3     Molecular Hallmarks of Aging in the Development 
and Progression of COPD and Pulmonary Fibrosis 

 Biological aging, usually linked to chronological age, contributes to the deteriora-
tion of pulmonary function. However, features of biological aging can also occur 
earlier in life (“accelerated aging”) as a result of failure to maintain cellular homeo-
stasis (among other factors), including defi ciencies in cellular maintenance or 
repair, DNA damage, epigenetic alterations, and loss of proteostasis. Some of these 
are induced by environmental factors such as cigarette smoke, viruses, particles, 
etc., but are also likely to interact with the aging-dependent changes in these pro-
cesses. Irrespective of the proximal cause (aging or environment), loss of cellular 
homeostasis promotes tissue injury, involving tissue remodeling, airspace enlarge-
ment, infl ammation, and/or lung fi brogenesis (Fig.  2 ). 
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 There is no doubt that the pathogenesis of emphysema in COPD, as well as idio-
pathic pulmonary fi brosis are characterized by of the appearance of accelerated 
aging of the lung, including infl ammatory pathways, antioxidant responses, epigen-
etic modifi ers and proteolytic pathways [ 49 – 51 ]. The processes of initiation and 
perpetuation of COPD/emphysema and pulmonary fi brosis are not well understood, 
and considering the main pillars of aging might provide important new insights. 
Table  1  summarizes the aging hallmarks associated with COPD and IPF.

  Fig. 3    Schematic representation of the key players involved in the development and/or progres-
sion of COPD/Emphysema or IPF in the elderly.  IPF  ( bottom right ) .  In a genetically predisposed 
and/or pro-fi brotic lung, disrupted alveolar epithelium and basement membrane promote the 
release of proinfl ammatory cytokines and chemokines. These soluble mediators may activate resi-
dential and/or circulating cells including fi brocytes. Profi brogenic molecules such as PDGF and 
TGF-β1 are secreted by infl ammatory, epithelial, and endothelial cells. Fibroblasts respond to 
these changes by proliferation and differentiation into myofi broblasts, promoting abnormal colla-
gen deposition. The aggregates of mesenchymal cells and collagen are called “fi brotic foci”. The 
resulting fi brotic lung has no potential for regeneration and repair . COPD  ( bottom left ). In suscep-
tible subjects (e.g., with severe α-1 antitrypsin defi ciency), aging, cigarette smoke and other envi-
ronmental factors promote the activation of the infl ammatory and structural cells of the lower 
airways of the lungs with the release of mediators causing infl ammation, remodeling and emphy-
sema. Cigarette smoking enhances the age-related accumulation of endogenous ROS and DNA 
damage, NF-κB activation, and oxidative stress responses. Further amplifi cation of infl ammation, 
accumulation of damaged proteins, apoptosis and hyperplasia are also the result of epigenetic 
changes and antioxidant/nitrosant activity       
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   Table 1    The hallmarks of aging in COPD/emphysema and IPF described in the chapter   

 Hallmarks of aging  COPD/emphysema  IPF 

 Nutrient 
 Sensing Systems 

 IGF1 (High)  Low  High  
 mTOR (Activated)  Inhibited  Activated 
 AMPK (Reduced)  Reduced  Reduced 
 Sirtuins 
 Reduced Sirt1 and 
Sirt6. 

 Reduced Sirt1, Sirt6  Reduced Sirt1 expression 
 Smad3 dependent Sirt1 
activation. 
 Reduced Sirt6. 

 The circadian clock 
 (Disruption) 

 Disruption  Disruption 

 Proteostasis  Defi cient autophagy  Cell type dependent 
Increase and 
decreased in 
autophagy reported. 
 Increased mitophagy 

 Disruption 
 Reduced macro-autophagy 
 Reduced mitophagy 

 Proteasome activity 
 (Reduced) 

 Reduced  No differences in activity. 
 Protesome inhibition as a 
therapeutic tool. 

 ER stress and UPR 
response 

 Increased  Increased 

 Mitochondrial 
dysfunction 

 COX activity 
(reduced) 
 mtROS (increased) 
 Altered 
mitochondrial 
dynamics 
 Reduced PIK1 
expression 

 Excessive COX-2 
activity 
 Increase 
mitochondrial 
fragmentation 

 Reduced COX-2 activity 
 Increase mtROS 
 Reduced PINK1 expression 

 Genomic 
instability 
 Microsatellite 
instability 

 Increase DNA 
breaks and Defi cient 
reparative 
mechanisms. 
 Excision repair 
(reduced) 
 Loss of 
heterozygosity 
(LOH) 

 Double-strand breaks 
and activation of 
DNA damage 
response. 
 LOH 

 Double-strand breaks and 
activation of DNA damage 
response. 
 LOH 

 Telomere 
attrition 

 Short telomere 
length 

 Short telomere length  Telomere related disorder 
(familial cases)-TERT, 
TERC, 
OBFC1polymorphism. 
 Short telomere length. 

 Cellular 
Senescence and 
SAPS 

 Increase  Increase  Increase 

(continued)
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Table 1 (continued)

 Hallmarks of aging  COPD/emphysema  IPF 

 Epigenetic 
alterations 

 DNA methylation 
 Increase global 
hypomethylation 

 Increase global 
hypomethylation 
 DNA 
Hypomethylation and 
DNA 
Hypermethylation of 
specifi c genes. 

 No LINE1- 
hypomethylation 
Hypomethylation and 
hypermethylation for 
specifi c genes. 

 MicroRNAs 
 Lack of alteration in 
miRNA expression 
in the aging mouse 
lung. 

 Upregulated miRs 
include: miR223, 
1274a, 144, 374a, 
664, 17–92, 
576-3p,513a-p5, 25, 
99b, 125b-1, 24. 
 Downregulated miRs 
include: miR21, 
mIr923, mIR937, 
miR422a. 

 Upregulation of miRNAs 
21, 34a,145, 154, 155, 
199a-5p 
 Downregulation of miR 
Let7d, 17–92, 26a, 29, 200 
family, and 326. 

 Splicing (altered)  Splicing variants  Differential in IPF Lung 
Tissue. 

 Histone 
modifi cations 
 Increase (H4K16) 
 Variations in 
methylation of 
histones H3 and H4 

 Reduced HDACs 2, 5, 
and 8, HDAC10 
expression. 
 Sirt1 downregulation. 
 H3 and H4 
panacetylation 

 Altered protein-levels of 
Class-I- (HDAC1, 2, 3 and 
8) and Class-II-HDACs 
(HDAC4, 5, 7, 9, 10), and 
of the Class-III-HDAC 
 Sirtuin-1 is signifi cantly 
elevated in IPF lungs. 

 Intercellular 
communications 
and 
infl ammaging 

 Cell-cell contacts 
(altered) 
 Immunoregulation 
(altered) 
 Changes in ECM 

 Loss of cell-cell 
contacts 
 Changes in ECM 
 Elastases 
 Granzyme B 
 Increase extracellular 
ATP levels 
 High PDE4 
 Low cAMP 
 Infl ammaging/SAPS 

 Reduction in gap-junctions 
and changes intercellular 
communication. 
 Changes in ECM 
composition. Increase 
elastic fi bers, stiffness 
 Increase active TGFbeta 
 Changes in MMPs and 
TIMPs 
 Infl ammaging/SASP 

 The microbiome 
(altered) 
 Hormones 
(disruption) 
 17β-estradiol/
estrogen receptor 
alpha signaling 
pathway;melatonin 

 Low testosterone 
levels 
 Reduced melatonin 
levels 
 Decrease in DHEA 

 Decrease in DHEA 

 Stem cell 
exhaustion 

 Reduced tissue 
regeneration, 
healing. 
 Changes in stem 
cells 

 Reduced tissue 
regeneration, healing. 

 Reduced tissue 
regeneration, healing. 
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3.1       Defects in Stress Recognition and Nutrient Sensing 
Systems 

3.1.1     Insulin-Like Growth Factor-1 

 Circulating IGF-1 and IGF-1 signaling is reduced in aging and reduced IGF-1 sig-
naling increases longevity in organisms from worms to mice. Low levels of circulat-
ing IGF-I can negatively infl uence the progression of disease, and are common in 
patients with COPD/emphysema [ 52 ]. For example, exogenous IGF1 reduces dia-
phragm fi ber atrophy in animal models of emphysema [ 53 ]. In apparent contrast in 
the IPF-lung, IGF-I is highly expressed by lung fi broblasts, interstitial macrophages, 
alveolar epithelial cells, and ciliated columnar epithelial cell [ 54 – 56 ]. However, it is 
possible that IGF-1 signaling is actually impaired due to increased expression of 
IGBP3 and IGFBP5, members of a family of IGF-binding proteins that bind to IGFs 
with high affi nity and restrict access of IGF1 to the IGF1 receptor. In keeping with 
this, overexpression of IGFBP5 promotes fi brogenesis in lung tissues [ 57 ,  58 ].  

3.1.2     mTOR Regulation 

 Reduced activity of the mechanistic target of rapamycin (mTOR)/AKT pathway 
increases longevity, as demonstrated both by genetic manipulations in fl ies and 
worms, and by pharmacological inhibition with rapamycin in mice. As in other tis-
sues, activity of this pathway has been shown to be increased in the aged mouse 
lung, with detrimental consequences [ 59 ]. However, Rtp801-null mice exhibit 
increased mTOR signaling and are substantially protected against pulmonary injury 
from smoke exposure [ 60 ]. Rtp801, also known as Redd1, is a suppressor of mTOR 
signaling which is overexpressed in human emphysematous lungs and in lungs 
exposed to cigarette smoke. It appears therefore that the age-related increase in 
mTOR might be protective of the lungs against some types of injury [ 61 ]. 

 Conversely, the mTOR pathway has been shown to be activated in pulmonary 
fi brosis. mTOR is mainly expressed in hyperplastic alveolar epithelial cells and in 
some mesenchymal cells. mTOR expression in pulmonary fi brosis patients signifi -
cantly correlates with the fi brosis score and decline in lung function [ 62 ], indicating 
that this age-related hallmark may be associated with the prognosis of pulmonary 
fi brosis. Treatment with TGFβ and bleomycin also result in the activation of the 
AKT/mTOR pathway and the consequent phosphorylation of p70S6 Kinase, ribo-
somal S6 protein, and 4E-BP1. The effects of TGFβ and bleomycin on extracellular 
matrix deposition are reduced by pre-treatment with rapamycin, an mTOR inhibitor 
[ 63 ]. Taken together, it appears that the age-related increase in mTOR activity might 
be protective against injuries leading to COPD, but deleterious because of promot-
ing the development of fi brosis. 

 Inhibition of autophagy is a downstream effect of mTOR activity, and this 
appears to also play a role in myofi broblast differentiation. Enhanced mTOR activ-
ity is observed in myofi broblasts within fi broblastic foci from IPF patients [ 64 ,  65 ]. 
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The Akt/mTOR pathway desensitizes IPF fi broblasts from polymerized collagen- 
driven stress by suppressing autophagic activity, which produces a viable IPF fi bro-
blast phenotype in collagen [ 66 ]. It is also possible that mTOR activation and the 
consequent blockage in autophagy promote the initial cell fate change to myofi bro-
blasts [ 65 ,  67 ]. The time-dependent regulation of mTOR-autophagy during the ini-
tiation and progression of pulmonary fi brosis needs to be further evaluated [ 29 ]. It 
is safe to conclude that mTOR plays complex and potentially counteracting roles in 
lung disease.  

3.1.3     Adenosine Monophosphate-Activated Protein Kinase (AMPK) 

 Independent of effects on the mTOR pathway, AMPK can also modulate infl amma-
tory responses and oxidative stress. AMPK attenuates infl ammatory lung injury by 
phosphorylating its downstream targets, including sirtuin1 (SIRT1), peroxisome 
proliferator-activated receptor gamma (PPARγ) coactivator-1 alpha (PGC-1α), p53, 
and FOXO3a. AMPK mRNA and protein are signifi cantly reduced in skeletal mus-
cles from rat modes of COPD, in comparison to control rats [ 68 ]. AMPKα1-defi cient 
mice show increased fi brosis after bleomycin exposure, compared to control mice. 
Furthermore, metformin, an AMPK activator, decreases the expression levels of 
fi bronectin and collagen in cultured fi broblasts and suppresses NOX4 activation 
[ 69 ].  

3.1.4      Sirtuins 

 Activation of sirtuins has been shown to extend lifespan and increase healthspan in 
models ranging from yeast to mice. The sirtuin family of proteins contributes to 
interactions among autophagy, metabolism and aging (for reviews, see [ 70 ,  71 ]). 
Substrates of SIRT1 have signifi cant roles in the formation of autophagosomes, 
fatty acid oxidation, glucose homeostasis, circadian rhythm and life span [ 72 – 78 ]. 
SIRT1 expression in the lung is reduced during aging and COPD [ 79 ,  80 ], as well 
as emphysema [ 81 ]. SIRT1 negatively regulates expression of the proteinase MMP9, 
which is increased in chronic infl ammatory diseases [ 82 ]. Moreover, genetic or 
pharmacological activation of SIRT1 protects mice from elastase and cigarette 
smoke-induced emphysema in addition to attenuating stress-induced premature cel-
lular senescence [ 83 ]. 

 The specifi c role of SIRT1 in the process of lung fi brogenesis needs further stud-
ies. Recently SIRT1 has being shown to be a crucial regulator of TGFβ/Smad sig-
naling in systemic scleroderma, whereby mice with fi broblast-specifi c knockdown 
of SIRT1 are in fact less susceptible to bleomycin- or TBRIact-induced fi brosis 
[ 84 ]. Another sirtuin, SIRT6, is also being studied in COPD and IPF. Reduced 
SIRT6 levels in COPD and IPF have been associated with cellular senescence [ 85 –
 87 ]. SIRT6 negatively regulates cigarette and TGFβ-induced senescence [ 87 – 89 ], 
so it appears that SIRT6 may have a protective effect against COPD and IPF.  
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3.1.5      The Clock 

 Circadian rhythms are altered during aging, both at the level of the central nervous 
system in the suprachiasmatic nucleus, and at the individual cellular level in periph-
eral tissues. At the molecular level, the circadian rhythm consists of interlocking 
transcriptional/translational feedback loops of core clock genes and oscillatory 
metabolic products. The clock modulates stress responses and physiological pro-
cesses unique to each organ [ 90 – 94 ]. Importantly, some respiratory pathologies, 
such as pulmonary edema, asthma, and allergic attacks, peak at certain times during 
the circadian cycle [ 95 ]. Animal models of pulmonary fi brosis have revealed the 
effects of day/night cycling in the fi brotic response, with a ‘clock-gated’ pulmonary 
response to oxidative injury. Furthermore, lungs from mice carrying a Clock gene 
mutation are characterized by an increased oxidative burden and increased collagen 
deposition around the bronchioles, even in the absence of bleomycin challenge [ 96 ]. 
Basal autophagy and other metabolic pathways are rhythmically activated in a 
clock-dependent manner [ 97 ], supporting the signifi cance of the circadian clock as 
a bioenergetic regulator of human physiology and pathophysiology [ 98 ,  99 ].  

3.1.6     Therapeutic Approaches Targeting Bioenergetics Sensors 

 Bioenergetic sensors have been proposed as potential targets for interventions to 
modulate autophagy and metabolism and to slow the progression of age-related 
diseases like COPD/emphysema and pulmonary fi brosis. For example, rapamycin 
(an mTOR inhibitor) reduced fi brosis in a mouse model of COPD [ 100 ], although it 
did not prevent fi brosis in the murine model using bleomycin [ 101 ]. Activating 
AMPK with 5-aminoimidazole-4-carboxamide-1-b-4-ribofuranoside or metformin 
leads to protection from airway infl ammation and remodeling in a murine asthma 
model, at least partially through decreased oxidative stress [ 102 ]. 

 The polyphenol resveratrol is known to activate SIRT1, inhibit phosphoinositide-
3- kinase (PI3K), a pro-aging kinase, and regulate FOXO3A and mTOR signaling 
[ 103 – 106 ]. Resveratrol also promotes autophagy, and inhibits infl ammation. 
Resveratrol reduces bleomycin-induced pulmonary fi brosis and ventricular remod-
eling in old rats with COPD [ 107 – 109 ]. In fact, resveratrol reduces the release of 
infl ammatory mediators from human airway smooth muscle cells and relieves alve-
olar epithelial cells from endoplasmic reticulum (ER) stress and apoptosis in animal 
models of COPD [ 110 ,  111 ]. 

 Melatonin, N-acetyl-5-methoxytryptamine, is a naturally occurring compound 
found in animals, plants, and microbes. Melatonin is produced by the pineal gland 
in vertebrates and it is involved in circadian rhythms through the activation of mela-
tonin receptors. Melatonin is also known to exert a powerful antioxidant activity. 
Melatonin has been suggested as a ‘geroprotector’, as an agent to treat age- associated 
infl ammatory diseases and to increase quality of life in elderly patients [ 112 ,  113 ]. 
Clinical studies demonstrated a decrease in oxidative stress in patients treated with 
melatonin, detected by 8-isoprostane levels in exhaled breath after 1, 2, and 3 
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months of melatonin treatment, with signifi cant improvement of dyspnea, although 
there were no signifi cant changes in lung function or exercise capacity [ 112 ]. At the 
cellular level, melatonin has been shown to inhibit mucin 5 AC (MUC5AC) produc-
tion via suppression of MAPK signaling in human airway epithelial cells [ 114 ]. 
Furthermore, melatonin attenuates neutrophil infl ammation and mucus secretion in 
cigarette smoke-induced chronic obstructive pulmonary diseases via the suppres-
sion of Erk-Sp1 signaling [ 115 ]. 

 Finally, it is expected that more geroprotectors and “chronotherapeutic strate-
gies” for intervention against human chronic lung diseases will be proposed in the 
near future, based in part on studies of stress recognition and nutrient sensing sys-
tems [ 112 ].   

3.2     Loss of Proteostasis: The Role of Autophagy 
and Proteasomal Digestion 

 Aberrant proteostasis contributes to COPD, severe emphysema, and pulmonary 
fi brosis [ 116 ]. Quality control is maintained by the autophagy-lysosomal system and 
the ubiquitin-proteasomal system; both these proteolytic systems decline with age 
[ 117 ,  118 ]. In a recently published proteomics analysis of IPF, 89 differentially 
expressed proteins were identifi ed, of which 51 were upregulated and 38 downregu-
lated. Increased expression was observed for proteins involved in unfolded protein 
response (UPR), heat-shock proteins, and DNA damage stress [ 119 ]. In COPD, 
recent studies demonstrated that cigarette smoke promotes the accumulation of 
ubiquitinated protein aggregates in the insoluble protein fraction of cigarette smoke 
extract (CSE)-treated human bronchial epithelium cells. Interestingly, these aggre-
gates disappear after induction of autophagy [ 120 ]. We review recent advances in 
our understanding of the contribution of proteolytic system failure to COPD and IPF. 

3.2.1     Autophagy 

 The recycling and clearance of proteins and mitochondria by autophagy has benefi -
cial effects on aging, including increased energy production and decreased ROS 
production. Nevertheless, the role of autophagy in the pathogenesis of COPD seems 
to be complex and cell type specifi c. In addition to its role in recycling proteins and 
mitochondria, autophagy is implicated in processes such as cilliar homeostasis and 
response to hypoxia. 

 In the lungs of patients with COPD, LC3B-II and autophagosome formation are 
increased [ 121 ], and increased mitophagy in alveolar epithelial cells was found to 
contribute to the pathogenesis of COPD [ 122 ]. Furthermore, increased autophagy 
also results in decreased resistance to emphysema in animals exposed to cigarette 
smoke [ 121 ,  123 ]. On the other hand, autophagic fl ux is impaired in alveolar mac-
rophages, which could contribute to the defi cient xenophagy seen in COPD patients 
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as well as accumulation of ubiquitinated aggregates in bronchial epithelial cells 
exposed to cigarette smoke [ 120 ,  124 ]. 

 In contrast to COPD, autophagy has been shown to be reduced in IPF [ 64 ,  65 ], 
and autophagy inhibition is suffi cient to induce the acceleration of epithelial cell 
senescence and fi broblasts-myofi broblast differentiation [ 64 ,  65 ]. Defi cient autoph-
agy is also associated with the anti-apoptotic features of persistent myofi broblasts 
and the progression of IPF [ 64 ,  65 ,  125 ]. A recent report using bleomycin animal 
models indicates that deletion of the essential autophagy gene ATG7 in endothelial 
cells leads to marked changes in the architecture of endothelial cells, and increased 
susceptibility to pulmonary fi brosis [ 126 ]. These fi ndings underscore autophagic 
defi ciency as a contributing factor in the development and/or establishment of pul-
monary fi brosis. Interestingly, both upregulation and downregulation of autophagy 
have been associated with fi brosis in various organs, highlighting the diverse nature 
of the roles that autophagy may play in the various phases of the response to stress 
and repair in different tissues [ 127 – 129 ]. 

 Mechanistically, it has been proposed that cigarette smoke induces mitophagy by 
stabilizing PINK1 in pulmonary epithelial cells. Genetic defi ciency in PINK1 pro-
tects lung epithelial cells from cigarette smoke-induced cell death and mitochon-
drial dysfunction [ 122 ]. In contrast to COPD, Pink1−/− defi cient mice are more 
susceptible to pulmonary fi brosis than are wild-type mice, PINK1 expression is 
reduced in animal models of pulmonary fi brosis and in biopsies of IPF patients, sug-
gesting a key role for mitochondrial homeostasis in the pathogenesis and the pro-
gression of lung fi brosis [ 26 ]. Recent studies focused on the hSP-C I73T  mutation 
associated with interstitial lung diseases, like IPF, indicate that a disruption of 
autophagy-dependent proteostasis in hSP-C I73T  is accompanied by an increase in 
mitochondrial biomass, and a decrease in mitochondrial membrane potential [ 130 ]. 
This agrees with recent fi ndings by our group that describe an age-dependent decline 
in the autophagic response to bleomycin, a decrease in PINK1 expression with 
aging, and defi cient PINK1 recruitment to the mitochondria in a TGFβ-dependent 
manner, favor the profi brotic phenotype of the aging lung [ 29 ]. 

 Recent studies also demonstrate that autophagy regulates cilia length through 
ciliophagy and ciliogenesis, which control the sensitivity of the cell to stressors 
such as cigarette smoke [ 131 – 133 ]. Autophagy-defi cient mice are protected from 
cigarette-smoke-associated ciliary dysfunction [ 134 ]. Elevated expression of cilium 
genes is associated with more extensive microscopic honeycombing and higher 
expression levels of both the airway mucin gene MUC5B and the metalloproteinase 
MMP7, a gene recently implicated in attenuating ciliated cell differentiation during 
wound repair [ 135 ]. Interestingly, new fi ndings indicate that a functional hedgehog 
pathway machinery is required for the effects of TGF-β1 on normal and IPF fi bro-
blasts during myofi broblastic differentiation [ 136 ]. However, a causal role of 
autophagy in ciliogenesis an IPF pathogenesis remains to be determined. 

 In vivo studies addressing the changes in autophagy during aging and the tempo-
ral relationship between autophagy, cell fate determination and fi brogenesis are 
missing, in part due to the diffi culties in studying autophagic fl ux in vivo at different 
time points in the fi brotic process as well as due to cell type differences. An improved 
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understanding of the specifi c mechanisms by which dysfunctional autophagy and 
mitophagy can promote cell type-specifi c features characteristic of emphysema 
and/or pulmonary fi brosis may lead to an understanding of this dynamic and com-
plex process and the identifi cation of new targets for both diagnostic and therapeutic 
approaches [ 123 ].  

3.2.2     Proteasome Regulation 

 The proteasome regulatory network, a system in charge of the degradation of 90 % 
of cellular proteins, has been shown to be dysregulated during aging. Proteasomes 
can be directly inhibited by oxidative stress [ 137 ,  138 ] and lipofuscin, both of which 
accumulate with aging [ 139 ,  140 ]. Inhibition of proteasome activity increases 
senescence in fi broblasts [ 141 ,  142 ], and proteasome activity decreases signifi cantly 
with age in the lung [ 143 ]. Protein degradation by the ubiquitin-proteasomal system 
plays a positive role in modulating TGF-β1 expression and signaling, a key player 
in pulmonary fi brosis. In fact, proteasomal inhibition is one of the approaches used 
in various animal models of tissue fi brosis to regulate TGF-β1 signaling and conse-
quently fi brogenesis. This has been reviewed elsewhere [ 144 ]. However, while the 
IPF lung is characterized by a higher content of proteasomes, no signifi cant differ-
ences in proteasome peptidase activity in IPF lungs compared to control lungs have 
been found [ 145 ]. This would suggest that if age-dependent dysregulation of protea-
some activity plays a role in the etiology of IPF, it would be permissive rather than 
causal. 

 In contrast several lines of evidence support a role of proteasome dysfunction in 
the pathogenesis of emphysema, including the accumulation of ubiquitinated pro-
teins and the deubiquitinating enzyme UCHL-1 [ 146 ]. Altered expression of genes 
involved in protein ubiquitination has been found in COPD patients [ 147 ]. For 
example, a high expression of the valosin-containing protein retrograde transloca-
tion complex (VCP-Rma1-gp78) correlates with the severity of emphysema in 
COPD and the overexpression of infl ammatory, ER stress, and apoptotic mediators 
like NFκB, GADD-153/CHOP, and p-eIF2α in lung tissues [ 146 ]. VCP-Rma1-gp78 
plays a key role in both protein extraction from the ER and ubiquitin-proteasome 
mediated protein degradation by ERAD [ 148 ]. Those studies propose that VCP 
mediates the proteasomal degradation of HDAC2 and Nrf2, as a potential mecha-
nism for corticosteroid resistance and increased oxidative stress observed in COPD 
subjects with emphysema.  

3.2.3     ER Stress and the UPR Response 

 Injury, viral infections, and defects in protein folding can promote ER stress and the 
consequent UPR in epithelial cells. This mechanism can promote homeostasis and 
cellular survival. Prolonged stress, by contrast, can contribute to apoptosis and the 
initiation of fi brotic remodeling [ 149 ]. UPR and ER stress are detected in alveolar 
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epithelial cells in lungs of patients with emphysema, COPD, and IPF. The activation 
of these pathways may result from altered surfactant protein processing [ 119 ,  149 , 
 150 ]. Activation of the UPR system in epithelial cells may induce secretion of the 
profi brotic mediator, TGF-β1 [ 151 ]. Furthermore, UPR can be induced by TGF-β1, 
through ROS generation, promoting myofi broblast differentiation in human lung 
fi broblasts [ 152 ,  153 ].   

3.3     Mitochondrial Dysfunction 

 Mitochondrial metabolism is known to play a central role in mediating longevity via 
nutrient-sensing pathways and dietary restriction [ 154 ]. Mitochondrial homeostasis 
controls ROS production from respiration. In consequence, mitochondrial dysfunc-
tion is often accompanied by increased ROS levels that can contribute to cellular 
dysfunction and disease etiology. Mitochondrial ROS can directly damage proteins, 
RNA, nuclear and mitochondrial DNA, and promote senescence and/or apoptosis 
[ 155 ]. Mitochondrial ROS is also derived from the NADH oxidase NOX4, which is 
important for the transformation of lung fi broblasts to myofi broblasts and conse-
quently, collagen deposition [ 30 ,  156 ]. 

 The antioxidant transcription factor nuclear factor erythroid 2-related factor 2 
(NRF2) is a “master regulator” that promotes cell survival through the coordinated 
induction of phase II and antioxidant defense enzymes to counteract oxidative stress 
and modulate redox signaling [ 157 ,  158 ]. Defi cient NRF2 activity has been associ-
ated with the pathogenesis of chronic lung diseases such as asthma, COPD, and IPF, 
thus contributing to excessive oxidative stress in the lung [ 159 ,  160 ]. Therefore, 
pharmacological targeting of NRF2 is a potential therapeutic strategy under current 
study [ 161 ,  162 ]. 

 Another potential regulator is Prohibitin-1 (PHB1), a mitochondrial protein that 
interacts with the NADH dehydrogenase protein complex. It is known to play a 
crucial role in preserving normal mitochondrial function, morphology and mitoph-
agy, and also is linked to aging. PHB1 is signifi cantly down-regulated in bronchial 
epithelial cells from patients with COPD. Defi cient PHB1 is probably a contributor 
to oxidative stress in the COPD lung [ 163 ]. 

 Several defects in mitochondrial dynamics, including fi ssion, fusion, biogenesis 
and mitophagy have been reported in various lung diseases. Reduced expression of 
PINK1 is observed in the lungs of aging mice and IPF patients [ 26 ], and it is associ-
ated with pulmonary fi brosis [ 29 ]. In the absence of PINK1, cells often develop 
fragmented mitochondria, due to imbalanced fi ssion/fusion dynamics. Whereas the 
coordinated induction of fi ssion and autophagy is believed to facilitate the removal 
of damaged mitochondria through mitophagy, excessive fi ssion may cause apopto-
sis [ 164 ]. Disruption of mitochondrial dynamics may also be relevant to the patho-
genesis of COPD, as indicated by the exacerbation of mitochondrial fragmentation 
observed in Cigarette Smoke Extract-exposed bronchial epithelial cells [ 165 ]. 
Long-term CSE exposure signifi cantly increased the expression of oxidative 
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 phosphorylation proteins as well as specifi c markers of mitochondrial fi ssion/fusion 
and oxidative stress [ 166 ]. Mitochondrial fragmentation can also be induced in 
human airway smooth muscle cells by CSE exposure, via the increased expression 
of the mitochondrial fi ssion protein dynamin-related protein 1 (Drp1) and decreased 
expression of the fusion protein mitofusin2 (Mfn2). Importantly, the inhibition of 
Drp1 prevents the effects of CSE on mitochondrial networks and ROS generation, 
whereas blocking Mfn2 has the opposite effect [ 167 ]. In consequence, mitochondrial- 
targeted interventions are currently developed as the studies to elucidate the role of 
mitochondrial metabolism and recycling in lung aging, COPD, and pulmonary 
fi brosis.  

3.4     Genomic Instability and Telomere Attrition 

 Smoking is reported to be one of the most important environmental factors that 
cause DNA damage [ 168 ]. Alveolar type I and type II cells and endothelial cells in 
patients with COPD showed higher levels of double-strand breaks and DNA dam-
age response than those in asymptomatic smokers and non-smokers [ 169 ]. DNA 
damage and the activation of the DNA damage response are also seen in IPF [ 119 , 
 170 ]. 

 Telomere length has been proposed as a marker for physiological aging. 
Telomeres protect the DNA at the end of chromosomes from degradation, remodel-
ing, and gene-gene fusion, and constitute a marker for aging [ 171 ]. The replicative 
cycle, ROS and infl ammation promote telomere shortening [ 172 ]. Conversely, telo-
mere erosion versus maintenance and repair can determine cell fate. Telomere 
length abnormalities and the expression of senescence markers such as p16 and 
p21 in alveolar cells have been demonstrated in emphysema, COPD/emphysema, 
and IPF [ 173 – 175 ]. In the case of familial IPF, 10 % of the patients have a mutation 
on the reverse transcriptase component of telomerase, TERT, and/or the RNA tem-
plate component TERC [ 176 ,  177 ]. It is also known that 20 % of the patients with 
telomerase mutations that cause congenital dyskeratosis also develop pulmonary 
fi brosis [ 178 ,  179 ]. Interestingly, models of injury and fi brosis in mice with telom-
erase defi ciency reveal that TERT induction is associated with the increased sur-
vival of lung fi broblasts, which favors the development of fi brosis instead of injury 
resolution, whereas telomerase defi ciency does not result in a predisposition to 
enhanced fi brosis in bleomycin-treated lungs i [ 180 ,  181 ]. 

 Telomere-defi cient mice do not develop spontaneous lung emphysema; however, 
short telomere length is a susceptibility factor in COPD/emphysema; short  telomeres 
lower the threshold of cigarette smoke-induced damage [ 182 ]. Peripheral leuko-
cytes, alveolar epithelial cells, endothelial cells, and fi broblasts from patients with 
COPD contain shorter telomeres compared to cells from healthy lungs [ 175 ,  183 , 
 184 ]. Interestingly, shorter telomere length in peripheral leukocytes has been asso-
ciated with increased comorbidity, as well as total and cancer mortality in patients 
with COPD [ 183 ]. In contrast, parenchymal fi broblasts from emphysema patients 
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do not have altered telomere length despite showing markers of senescence such as 
β-galactosidase, suggesting that cell senescence in this case might be driven by 
stress, rather than exhaustive proliferation [ 185 ].  

3.5      Cellular Senescence 

 Accelerated cellular senescence is considered a possible molecular pathway by 
which COPD occurs [ 2 ]. Pulmonary vascular endothelial cells, alveolar epithelial 
cells, and fi broblasts from COPD/emphysema patients show signs of premature 
senescence compared to controls, as determined by decreased telomerase activity, 
reduced telomere length, and increased expression of p16 and p21 markers. 
Furthermore, senescence can be induced in vitro by the exposure of fi broblasts and 
alveolar epithelial cells to cigarette smoke [ 186 ,  187 ]. It has been proposed that 
after cigarette smoke exposure, senescent cells may contribute to the pathogenesis 
of emphysema, while fi broblasts that resist cigarette smoke-induced cellular senes-
cence may contribute to the pathogenesis of pulmonary fi brosis and possibly to 
fi brotic lesions through a TGF-β1-mediated pathway [ 188 ]. Nevertheless, small air-
ways, alveolar epithelia and resident fi broblasts are characterised by different 
renewal strategies, and telomere dysfunction and cellular senescence could be 
expected to act differently in these compartments and to be associated to different 
pathologic outcomes.  

3.6     Epigenetic Alterations 

3.6.1     DNA Methylation 

 Epigenetic drift refers to alterations in the genomic landscape of DNA methylation 
as a function of age. Both DNA hypomethylation of some loci and hypermethyl-
ation of others have been shown to be differentially present in sputum and small 
airway epithelial cells derived from COPD patients compared to healthy individuals 
[ 189 ,  190 ]. 

 In the context of age-related lung diseases, Alu and LINE-1 hypomethylation in 
circulating leukocytes was found to be associated with increased age and lung func-
tion decline [ 191 ]. Methylation changes in promoter regions drive the differential 
expression of specifi c genes important for the response against infl ammation and 
oxidative stress in COPD, such as the transcriptional downregulation of antioxidant 
NRF2 and PTEN, and the transcriptional upregulation of HDAC6 in COPD patients 
[ 131 ,  190 ,  192 ,  193 ]. 

 DNA hypermethylation and hypomethylation in IPF also correlate with the tran-
scriptional regulation of key genes, such as the hypermethylation of COX2 and 
prostaglandin E receptor 2 PTGER2 [ 194 ,  195 ]. The hypermethylation of Thy1, a 
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fi brosis suppressor, has been associated with the pathogenesis of IPF [ 196 ,  197 ]. In 
IPF, hypermethylation of the promoter for the miR-17–92 cluster, which is critical 
for lung development and lung epithelial cell homeostasis, correlates with the 
reduced expression of miR-17–92 and increased expression of DNMT-1, a target of 
miRNAs in this cluster [ 198 ].  

3.6.2     Histone Modifi cations 

 In addition to DNA methylation, another major aspect of epigenetic regulation is 
represented by post-translational modifi cation of core histones. Many changes 
occur as a function of age; for example, histone acetylation on lysine 16 of histone 
H4 (H4K16) increases gradually, due at least in part to a reduction of sirtuin 1 
(SIRT1) deacetylase protein level [ 199 – 201 ]. Variations in methylation of histones 
H3 and H4, depending on residues, have also been also reported. The tri-methylated 
lysines 9 and 36 of histone H3 (H3K9me3 and H3K36me3 respectively), and the 
mono-methylated lysine 20 of histone H4 (H4K20me) can also change as a function 
of age [ 202 – 204 ]. In theory, the promotion of “healthy aging” could be pursued by 
developing epigenetics drugs able to cope with the “aged epigenome” [ 205 ]. 

 There is evidence that the imbalance between histone acetylases (HAC) and 
deacetylases (HDAC) contribute to specifi c alterations in histone modifi cations and 
gene expression that are characteristic of COPD/emphysema and pulmonary fi bro-
sis [ 206 ]. Indeed, cigarette smoke can modulate histone post-translational modifi ca-
tions through reductions in HDAC activity and expression [ 206 ,  207 ]. One example 
is the downregulation of HDAC2 by cigarette smoke in human macrophages and 
lung epithelial cells in vitro and in mouse lung in vivo [ 207 ]. HDAC2 activity nor-
mally delays cellular senescence by negatively regulating pro-senescent genes, such 
as p21 and p16 [ 208 ]. 

 Reductions in mRNA abundance for HDACs 5, and 8, and a decrease in overall 
HDAC activity are also observed in COPD lung tissue and macrophages [ 51 ]. 
Decreased expression of HDACs correlates with increased H4 acetylation at the IL8 
promoter and consequently, elevated expression, promoting infl ammation [ 51 ]. In 
concordance, elevated H4 pan-acetylation, a marker of “permissive chromatin”, is 
observed in lung tissue and airway smooth muscle cells from patients with COPD 
[ 206 ,  209 ]. Elevated H4 pan-acetylation in the vascular endothelial growth factor 
(VEGF) promoter correlates with reduced VEGF expression in airway smooth mus-
cle from patients with COPD [ 209 ]. 

 Sirtuins (see Sect.  3.1.4 ) are histone deacetylases and reduced SIRT1 activity 
due to cigarette smoke exposure correlates with increased H4 pan-acetylation and 
MMP9 expression in COPD [ 82 ,  210 ]. Cigarette smoke-driven reduction of SIRT1 
expression in lung epithelial cells promotes FOXO3 and p53 acetylation, regulators 
of cell proliferation and cellular senescence (see Section 3.5) [ 210 ,  211 ]. 

 Protein levels of Class-I HDACs (1, 2, 3 and 8), Class-II HDACs (4, 5, 7, 9, 10), 
and of the Class-III HDAC Sirtuin-1 were found to be signifi cantly elevated in IPF 
lungs compared to healthy counterparts [ 212 ]. It has also been demonstrated that the 
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process of myofi broblast differentiation is HDAC4 dependent and requires the 
phosphorylation of Akt [ 213 ]. Histone modifi cations are involved in the activation 
of some pro-fi brotic and repression of anti-fi brotic genes, while modifi cations at the 
Fas promoter are responsible for decreased Fas expression and apoptosis resistance 
in fi brotic lung fi broblasts [ 214 ]. COX-2-defi cient mice are more susceptible to pul-
monary fi brogenesis than are wild-type mice [ 215 ,  216 ], and a defi ciency in COX2 
expression is associated with defi cient histone H3 and H4 acetylation, with a conse-
quent increase in the recruitment of histone corepressor complexes to the COX-2 
promoter [ 197 ]. Furthermore, recent studies demonstrated a marked increase in his-
tone modifying enzymes and their respective binding proteins at the COX-2 pro-
moter in lung fi broblasts from IPF patients, compared to those from nonfi brotic 
lungs [ 195 ]. Importantly, treatment with histone deacetylase inhibitors promotes 
fi broblast apoptosis and ameliorates pulmonary fi brosis in mice, inhibits the expres-
sion of fi brotic markers in IPF lung fi broblasts and restores cytokine-induced COX-2 
mRNA and protein expression [ 217 ,  218 ]. These studies suggest that histone 
deacetylase inhibitors may offer a new therapeutic strategy in IPF.  

3.6.3     MicroRNAs 

 While alterations in micro-RNA expression could contribute to the age-associated 
impairment of lung function, a lack of alterations in miRNA expression in the “nor-
mal aging lung” was initially described [ 219 ]. The total level of miRNA expression 
is reduced in smokers compared to non-smokers, probably due to the reduced activ-
ity of the endonuclease Dicer following cigarette exposure [ 220 ]. Reduced miRNA 
expression has been detected in whole lung tissues, airway epithelia, and alveolar 
macrophages of smokers. Furthermore, differential expression of miRNAs are 
detected in whole lung tissue, lung fi broblasts, cells from bronchoalveolar lavage, 
sputum, serum, and plasma samples from patients with COPD [ 220 – 224 ]. miRNA 
and mRNA expression profi les enriched for biological pathways that may be rele-
vant to the pathogenesis of COPD including TGF β, Wnt and focal adhesion path-
ways have been described. For instance, differentially expression of miR15b in 
COPD regulates Smad7 in bronchial epithelial cells [ 224 ]. COPD patients have an 
abnormal repression of miR-199a-5p compared to unaffected smokers, probably 
contributing to the adaptive immune balance favoring a Th1 and Th17 profi le [ 222 ]. 
The increase in miR-101 in COPD correlates with reduced CFTR expression, which 
may contribute to mucus accumulation, chronic infection and infl ammation [ 225 ]. 
Importantly, recent studies demonstrated that the expression of specifi c microRNAs 
such as miR-638 correlates with emphysema severity and specifi c gene expression 
networks related to the oxidative stress response in aging emphysematous tissue as 
well as lung fi broblasts [ 226 ]. 

 Fibroblasts from IPF patients with a highly progressive disease exhibit reduced 
expression of Dicer1 and Argonaute compared to patients with a slowly progressive 
disease. As Dicer and Argonaute are involved in miRNA biogenesis and silencing 
of gene expression, it is expected that miRNA biogenesis may contribute to the 
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progression of IPF [ 227 ]. Forty-three microRNAs were found deregulated in sam-
ples from IPF patients [ 228 ]. Several specifi c miRNAs have been implicated in 
fi brogenic processes [ 198 ,  229 – 232 ]. The correlation between the fi ndings in IPF 
patient samples and in the bleomycin-treated animal models indicate a miRNA pro-
fi brotic signature that includes the upregulation of miR 21, 145, 155, and 199a and 
the downregulation of miR Let7d, 17–92, 26a, 29, 200 family, and 326 (for a review 
see [ 233 ]); many of these altered miRNAs regulate TGF-β signaling, infl ammation, 
and tissue remodeling [ 231 ,  232 ,  234 ]. 

 An important connection between microRNAs and the pathogenesis of IPF is 
centered in the abnormal activation of epithelial cells and fi broblasts by reactivation 
of developmental programs such as Wnt/B-catenin and Sonic hedgehog signaling 
pathways. For example, miR-154 causes activation of the WNT pathway in normal 
human lung fi broblasts, regulating cellular migration and proliferation, and its lev-
els are increased in IPF fi broblasts and lung fi broblasts treated with TGF-β. 
Upregulation of the Wnt/B-catenin signaling has also been associated with a 
decrease in miR-375 and miR487b [ 228 ,  235 ]. 

 Contrary to the situation of IPF, a decrease in Wnt/B-catenin signaling contrib-
utes to parenchymal tissue destruction and impaired repair capacity in emphysema. 
In fact, activation of the Wnt/B-catenin pathway attenuates experimental emphy-
sema [ 236 ].  

3.6.4    Long Non-coding RNAs 

 Multiple functions are attributed to lncRNAs, such as regulation of transcription, 
mRNA splicing, mRNA decay, and gene neighborhood localization [ 237 – 239 ]. The 
expression profi le of lncRNAs is signifi cantly altered in fi brotic lung tissue, as dem-
onstrated in bleomycin animal models of pulmonary fi brosis [ 240 ]. Until now, no 
specifi c lncRNAs have been associated with the pathogenesis of COPD/emphysema 
or pulmonary fi brosis. In consequence, the pathobiological relevance to lung 
remains to be established.  

3.6.5    Differential Splicing 

 As a major source of protein diversity, alternative splicing plays critical roles in dif-
ferentiation, development and disease. RNA-Seq technology allows us to under-
stand how alternative splicing might affect the structure of the fi nal protein products 
[ 241 ]. Splicing becomes less tightly controlled in aged individuals, based on data 
from the InChianti study [ 242 ]. Some splicing variants are known to occur in con-
junction with fi brosis. For example, the inclusion of at least one of two extra exons, 
termed Extra Type III Domain A (EDA) and Extra Type III Domain B (EDB), is a 
feature of cellular fi bronectin in IPF [ 243 ,  244 ]. While this is a nascent fi eld, further 
RNA-seq experiments might identify additional splicing variants associated with 
lung disease and prognosis [ 241 ,  245 ].   
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3.7     Infl ammation 

3.7.1    Immunosenescence and Infl ammaging 

 The immune system undergoes profound transformations with age, and strong simi-
larities in infl ammation are evident among aging, COPD and IPF, including lym-
phocyte senescence, neutrophil accumulation, NF-κB activation, and an increase in 
IL-6/IL-8/TNFα levels [ 246 ]. Disruption in the balance between infl ammation and 
immune activation after local and systemic insults contributes to increased morbid-
ity and mortality in the elderly [ 247 – 249 ], and older lungs respond to insults in a 
different manner from that of younger counterparts. For instance, the expression of 
cytokines interleukin IL17A, IL6, and CXCL is induced in older lungs to a greater 
degree than in young lungs after house dust exposure [ 250 ] and sputum from older 
asthmatics reveals higher numbers of neutrophils, IL-8, and neutrophil elastase 
[ 251 ] [ 252 ]. However, the source of infl ammatory factors involved in the pathogen-
esis of either COPD or pulmonary fi brosis is unknown. Alveolar macrophages, lym-
phocytes, senescent epithelial cells, and mesenchymal cells constitute potential 
candidates. 

 Chronic infl ammation in the elderly can exacerbate responses to lung injury, 
promoting alveolar destruction, tissue remodeling and the development of chronic 
infl ammatory lung diseases such as COPD, interstitial pneumonia, persistent lower 
respiratory tract infection, and pulmonary fi brosis [ 85 ,  253 – 257 ]. Notably, chronic 
lung injury, inhaled gases, and particles from cigarette smoke mimic the effects of 
infl ammaging [ 258 – 264 ] (Fig.  4 ).

  Fig. 4    Schematic representation of the relationship between immunosenescence induced by bio-
logical aging and environmental exposures in the development of pulmonary fi brosis and/or COPD 
and emphysema       

 

C.G. Sanchez



451

   Systemic immune-related defects described in COPD/emphysema and IPF 
patients include the following: ineffective phagocytic removal of apoptosed cells 
bodies [ 265 – 267 ], defects in innate immunity toll-like receptor sensors and a 
marked downregulation of CD28 in circulating CD4 T cells [ 268 – 270 ]. The down-
regulation of CD28 is a marker of CD8 T cell replicative senescence. 

 In spite of the observations cited above, the role of infl ammation in the progres-
sion of pulmonary fi brosis is challenged by the lack of response to anti- infl ammatory 
treatments and immunosuppressants. In addition, pulmonary fi brosis can be devel-
oped in mice by the overexpression of the profi brotic mediator, TGF-β1, without a 
signifi cant infl ammatory component [ 271 ]. Nevertheless, a pathogenic role for 
infl ammation cannot be excluded in the initiation of the disease. In fact, the inability 
to identify the initiating infl ammatory process in human IPF may explain the failure 
of the anti-infl ammatory therapies.  

3.7.2    Macrophages 

 Macrophages are essential components of innate immunity, contribute to acute and 
chronic infl ammatory responses by releasing both pro- and anti-infl ammatory media-
tors, as well as angiogenic, mitogenic, and under pathological conditions, profi brotic 
proteins [ 272 – 274 ]. M2-activated macrophages secrete cytokines that stimulate col-
lagen production in lung fi broblasts. Moreover, monomeric collagen type I favors the 
shifting of alveolar macrophages to the profi brotic M2 type, which may perpetuate 
fi brosis [ 274 – 277 ]. The M2 phenotype is predominant in the lungs of IPF and COPD 
patients, with higher levels in patients who were smokers [ 278 – 280 ].  

3.7.3    Lymphocytes 

 CD8+ T cells are frequently found in the airways of patients with COPD and are 
considered relevant for the pathogenesis of emphysema [ 281 ,  282 ]. Indeed, overex-
pression of T cell cytokines such as IFN-γ and IL-13 induce emphysematous changes 
in mice [ 283 – 285 ] and CD8+ T cells are required for cigarette smoke- induced 
emphysema. It is therefore suggested that CD8+ T cells induce the production of 
macrophage elastase, which degrades elastin, directly causing lung destruction [ 286 ]. 

 Different types of CD4+ T cells also appear to be associated with COPD/emphy-
sema [ 287 ]. IFN-γ–producing Th1 cells are increased in the airways and parenchy-
mal tissues of patients with COPD [ 288 ]. IL17-producing Th17 cells accumulate in 
the bronchial mucosa and submucosa of patients with COPD [ 289 ,  290 ]. 
Furthermore, the expansion of CD28− CD4+ T cells, seen during aging [ 291 ], is 
found in patients with COPD, and correlates with impaired lung function. Moreover, 
these cells exhibit increased expression of perforin, and  granzyme B ( GzmB) [ 287 , 
 292 ,  293 ]. GzmB released from cytotoxic lymphocytes protects against viral infec-
tion and it also contributes to extracellular matrix degradation and remodeling and, 
consequently, the emphysematous phenotype [ 294 ,  295 ].  
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3.7.4    Airway, Alveolar Epithelial and Mesenchymal Cells 

 These cells may also be an important source of infl ammatory mediators by several 
mechanisms (for a review, see [ 296 ]). Clara cells are found in the epithelium of 
bronchioles and secrete surfactants; they may also have functions in maintenance of 
the bronchiolar epithelium. Loss of Clara cells in the small airways of smokers leads 
to decreased production of anti-infl ammatory Clara cell protein or secretoglobin 
1A1 [ 297 ], while squamous cells in the airway epithelium of individuals with COPD 
produce IL-1 alpha and IL-1 beta [ 298 ]. In COPD, airway fi broblast express high 
levels of IL-6, IL-8 [ 296 ,  299 – 301 ] and integrin alphavB8, which activates TGFβ, 
in turn stimulating CCL1 and CCL20 production in airway fi broblasts in an auto-
crine manner [ 302 ]. In pulmonary fi brosis, epithelial cells release chemokines that 
recruit infl ammatory monocytes and neutrophils. Furthermore, a subpopulation of 
fi broblasts promotes infl ammation, survival, and fi brosis through the constitutive 
activation of signal transducer and activator of transcription (STAT) 3 [ 303 ]. STAT3 
mediates fi broblast chemotaxis through the induction of oncostatin M [ 304 ,  305 ].  

3.7.5    TGF-β Signaling 

 Sequestration of latent TGF-β1 in the extracellular matrix is crucial for proper 
mobilization of this cytokine and its subsequent activation. TGF-β expression, acti-
vation and signaling have been shown to increase in several tissues, including the 
lung, as a function of aging [ 39 ,  87 ,  306 – 308 ]. Older mice (24 months old) are more 
susceptible to bleomycin exposure and develop extensive fi brosis, showing high 
levels of Smad3 phosphorylation (a consequence of canonical TGF-β signaling) 
[ 39 ]. In concordance, Smad3 null mice, defi cient in TGF-β signal transmission, are 
resistant to bleomycin- and TGF-β-mediated fi brosis. However, the role of TGF-β1 
seems to differ in emphysema and pulmonary fi brosis as Smad3 null mice develop 
spontaneous age-related airspace enlargement, consistent with emphysema. 
Furthermore, α v β 6  integrin null mouse, which is compromised in the ability to acti-
vate latent TGF-β, develops an emphysema-like response [ 41 ,  81 ,  309 ,  310 ]. Taken 
together, TGF-β and Smad3 seem to play a key role in the transition from infl amma-
tion to chronic fi brosis and/or from infl ammation to emphysema. This can explain 
why both pathologies can appear within the same lung specimen [ 81 ].   

3.8     Altered Intercellular Communications 

 Age-related alterations in the communication among resident cells, immune cells, 
and the lung microbiome promote susceptibility to age-related diseases [ 311 ,  312 ]. 
Changes in intercellular communication can occur due loss of cell-cell contact, 
changes in the extracellular matrix, hormones, electrical and chemical signals. 
Changes at many of these levels have been described in lung pathology. For 
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example, age-related lung fi brosis worsens after lung injury in mice defi cient in 
CD151, a regulator of cell-cell adhesion [ 313 ]. 

3.8.1    The Extracellular Matrix 

 Alterations in the extracellular matrix (ECM) protein profi le and architecture are 
detected in several organs and tissues as a function of physiological aging. Initial 
studies in the lung from aged rats demonstrated elevation in TGF-β1 protein level, 
increase in the expression of some metalloproteinases and decreased expression of 
TIMPS [ 314 ]. 

 Interestingly, emphysematous and fi brotic changes in the ECM, induced by elas-
tase and bleomycin respectively, can be preserved in decellularized lungs and used 
to evaluate the behavior of other cells, such as engraftment of epithelial cells. It 
appears, therefore, that decellularized emphysematous scaffolds lack the necessary 
extracellular matrix architecture to support sustained cell growth [ 315 ]. Furthermore, 
IPF scaffolds support fi broblast survival, proliferation, and more importantly, dif-
ferentiation to a myofi broblast phenotype, characteristic of fi brotic tissue [ 316 ]. 

  Metalloproteinases     The increased expression of matrix metalloproteinases 
(MMPs) MMP2/9 and the decreased mRNA expression of tissue inhibitors of 
metalloproteinases (TIMPS) are characteristic of the aging lung [ 314 ]. These prote-
ases and anti-proteases secreted into the extracellular milieu are characteristic fea-
tures of the pathogenesis of COPD and IPF [ 39 ,  317 – 320 ]. The relevance of protease 
imbalance for COPD pathogenesis is refl ected by hereditary defi ciency of α 1 - 
antitrypsin or α 1 -antichymotrypsin, which drive emphysematous ECM remodeling 
in patients [ 321 ]. In IPF, the mechanism involves changes in expression, turnover 
and/or deposition of ECM components and promotion of tissue remodeling, apop-
tosis, migration, proliferation, and angiogenesis. For a review, see [ 322 ].   

3.8.2    Hormones 

 Hormones can also defi ne intercellular communications. Disruption of the 
17β-estradiol/estrogen receptor alpha signaling pathway is observed in aging. 
Animal models for acute lung injury and infl ammation treated with 17β-estradiol 
exhibit reduced lung infl ammation in a gender-independent, age-dependent manner 
[ 323 ]. Testosterone levels have been found to be low in COPD patients, with a 
prevalence of hypogonadism in men with COPD between 22 and 69 % [ 324 ]. 
However, the therapeutic effi cacy of testosterone replacement therapy in COPD 
patients remains controversial [ 325 – 327 ]. The most abundant steroid in humans is 
dehydroepiandrosterone (DHEA), and patients with moderately severe COPD have 
lower concentrations of DHEA than smokers with chronic bronchitis or mild COPD 
[ 328 ]. Both DHEA and its sulfated form (DHEA-S) have been previously linked 
decreased function of the immune system observed with aging and this decline was 
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also observed in IPF patients [ 329 ]. DHEA decreases lung fi broblast proliferation, 
increases apoptosis, reduces the fi broblast to myofi broblast differentiation and col-
lagen production mediated by TGF-β1 or PDGF. In consequence, DHEA represents 
a putative therapeutic option and a strong support of the concept that IPF may be a 
disease of accelerated aging [ 329 ]. 

 As discussed in Sect.  3.1.5 , circadian rhythms play an important role in COPD 
and fi brosis. Melatonin is a key regulator of circadian rhythm homeostasis, and in 
consequence, melatonin was found to be signifi cantly reduced during the exacerba-
tion period in patients with COPD [ 330 ]. A low daily dose of melatonin has been 
shown to protect lungs from histopathological changes in rabbits exposed to smoke 
[ 331 ]. In animal models of pulmonary fi brosis, melatonin signifi cantly attenuates 
bleomycin-induced myofi broblast differentiation, and alleviates ER stress and the 
ER stress-mediated epithelial-mesenchymal transition [ 332 ].   

3.9     Stem Cell Exhaustion 

 Age-related defects in epithelial precursors act in concert with environmental toxic 
exposure to promote the breakdown of epithelial regeneration, leading to the chronic 
and irreversible alveolar loss characteristic of chronic lung injury, emphysema, and 
pulmonary fi brosis. Pathogenic models of COPD and IPF propose that premature 
cellular senescence leading to stem cell exhaustion likely affects distinct progenitor 
cells, such as mesenchymal stem cells in COPD, and alveolar epithelial precursors 
in IPF [ 179 ]. Unfortunately, our knowledge regarding lung resident stem cells is 
still emerging, and the changes in these cellular populations during aging and/or 
age-related diseases of the lung remain to be elucidated. Nevertheless, several stud-
ies provide evidence for the existence of human lung epithelial stem/progenitor 
cells [ 333 – 336 ]. Furthermore, convincing evidence for the existence of resident 
stem cells comes from a case study that reported compensatory lung growth with an 
increase in alveolar number in a 33-year-old woman, 15 years after a right-sided 
pneumonectomy for the treatment of lung adenocarcinoma [ 337 ]. 

 The regenerative potential of pulmonary and extra-pulmonary stem and progeni-
tor cells raises the hope for successful treatment options against pulmonary fi brosis, 
as shown by studies using human amniotic epithelial cells and bone marrow-derived 
epithelial progenitors cells [ 338 ,  339 ]. Bone marrow mesenchymal stem cells 
(B-MSCs) protect against the progression of emphysema and pulmonary fi brosis by 
increasing epithelial cell regeneration and reducing alveolar apoptosis [ 340 ,  341 ]. 
Furthermore, B-MSCs suppress the infl ammatory response [ 342 ]. Currently, several 
studies are listed on the   www.clinicaltrial.gov     website using different MSC prepara-
tions and registered MSC products in patients with COPD and IPF [ 343 ,  344 ]. 

 Nevertheless, it is important to consider that in addition to their reparative prop-
erties, MSCs can be a critical factor in the development of dysfunctional lung 
remodeling [ 345 – 349 ]. Furthermore, resident tissue-specifi c mesenchymal progeni-
tor cells can eventually contribute to fi brogenesis in human lung allografts [ 349 ].   
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4     Conclusions and Future Directions 

 The lung is a unique organ that is directly exposed to high levels of oxygen and 
other reactive compounds. It will be important to further understand the interaction 
between the hallmarks of aging and the environment in the development of age- 
related lung diseases. Two generalizations can be taken from the fi ndings reviewed 
in this chapter. First, the diverse pillars of aging appear to be more permissive than 
causal in the development of COPD and IPF. If borne out by future research, this 
would identify an important intersection between the biology of aging and environ-
mental risk-factors for the prevalence of lung diseases among the elderly. Second, 
some aspects of aging biology may be protective in one disease but permissive in 
the other, as illustrated by the relatively different prevalence of fi brosis in IPF versus 
COPD (e.g., cellular senescence as described in Sect.  3.5 ) 

 Here we described major similarities as well as differences in the aging features 
in two age-related lung diseases, COPD/emphysema and IPF. Several preclinical 
studies using modulators of proteostasis, selective epigenetic modifi ers as well as 
hormetic compounds to promote restoration of some of the aging hallmarks were 
presented. Modulation of endogenous stem cells may also help restore normal 
regenerative processes and correct the cellular and structural architecture of the lung 
and provide immunomodulation and trophic support for epithelial regeneration. It is 
expected that future studies will provide additional interventions to promote healthy 
lung aging and prevention of the onset of age- related lung diseases such as COPD 
and IPF. 

 We expect that future studies on molecular hallmarks of aging in young, middle 
age, and old age will provide a better understanding of the progressive decline of 
lung function in “normal aging” and to separate normal compensatory mechanisms 
occurring during aging from pathologic changes. Studies that also consider the 
diversity of cell types present in the lung may lead to an improved understanding of 
the dynamic and complex process of aging and the identifi cation of new targets for 
early diagnostics, interventions and therapeutic approaches against age-related lung 
diseases. 

 The discoveries of gene variants and changes in gene expression in COPD and 
IPF that reliably predict outcomes have the potential to revolutionize the prognostic 
perspective and impact on therapeutic approaches. Emerging approaches to study-
ing genetic/epigenetic/environment interactions, which impact disease pathogene-
sis are promising leads for novel biomarkers. By adding the perspective of the major 
pillars of aging, geroscience approaches will add a physiological layer to the efforts 
in personalized medicine currently focused on gene × environment interactions. 
This should incorporate aging as an essential parameter to match subjects with opti-
mal therapeutic regimens while minimizing side effects.     
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1            Introduction 

 The eye is the organ that allows for vision, the ability to see the world. For a person 
to be able to see, light must enter through the transparent cornea in the front of the 
eye, be focused by the lens, and detected by the light-sensitive retina in the back of 
the interior of the eye. Photoreceptors, cells in the outer retina that contain the light-
sensitive opsin proteins, transmit the visual signal through the inner retina, where 
the signal is amplifi ed, parsed, processed, and fi nally sent through the optic nerve to 
the brain for higher visual processing and image interpretation. In humans, photore-
ceptors can be divided into two primary cell types: rods and cones. Rod photorecep-
tors, which greatly outnumber cone photoreceptors, are incredibly sensitive to light 
and are primarily responsible for vision in dim light conditions. Cone photorecep-
tors, on the other hand, operate primarily under bright light conditions and are 
responsible for providing color-rich and detailed vision. Rods and cones are not 
evenly distributed throughout the eye; rods are found throughout the entire eye, with 
the exception of the very center of the retina. In humans, cone photoreceptors are 
predominantly found in a structure called the macula, which is located in the center 
of the retina and where light is most focused from the lens. For healthy vision, each 
component of this pathway must work in concert, and degeneration or injury to any 
one of these anatomical structures can lead to visual impairment or blindness. The 
retinal pigmented epithelium (RPE) is a cell monolayer underlying the retina that is 
responsible for several important functions, one of the most important being the 
maintenance of photoreceptor health. As individuals age, they can sometimes expe-
rience a progressive loss of RPE cells in the macula, and this loss of RPE cells 
compromises the overlying photoreceptors and can result in severe visual impair-
ment or blindness. This age-associated degeneration of cells in the macula is known 
as age-related macular degeneration (AMD).  

2     Clinical Aspects 

2.1     Clinical Presentation 

 The initial form of AMD (known as early AMD) is marked by the presence of yel-
lowish or whitish punctate extracellular deposits (drusen) that are found between 
the RPE and the underlying basement membrane known as Bruch’s membrane, and 
that can be seen during a fundus examination. The presence of drusen alone does 
not necessarily indicate AMD, other diseases can also present with drusen distinct 
from those noted in AMD patients [ 1 – 3 ]. For drusen to be considered pathognomic 
of AMD, they must be >63 μm in diameter and be “soft” in nature (i.e., have poorly- 
defi ned edges and cluster together in the fundus) [ 4 ]. By commonly-accepted clini-
cal diagnostic criteria [ 4 ], individuals who present with these drusen (along with 
Bruch’s membrane thickening) without associated pigmentary disturbances are 
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classifi ed as having early AMD. At these early stages of the disease, patients com-
monly have no reported visual defi ciencies. Focal hypo- and hyperpigmentation of 
the RPE are also found in the fundus with drusen [ 5 ] in patients with intermediate 
AMD [ 4 ]. Typically, visual defi cits are not noted until more advanced stages of 
AMD, which can be divided into two separate categories: (1) the non-exudative (or 
“dry”) form of the disease known as geographic atrophy (GA) that presents with 
large regions of pigmentary abnormalities in the fundus and cell death in the RPE, 
without blood vessel infi ltration, and (2) the exudative (or “wet”) form of the dis-
ease known as neovascular AMD (nvAMD) that presents with infi ltration of blood 
vessels into the retina that have a high likelihood of leakage [ 4 ]. The severity of 
AMD can be graded on a classifi cation system [ 6 ] developed by the Age-Related 
Eye Disease Study (AREDS) group, which is based on the previously published 
Wisconsin age-related maculopathy grading system [ 7 ]. The advent of spectral 
domain optical coherence tomography (SD-OCT) imaging has further aided in the 
monitoring of AMD [ 8 – 10 ].  

2.2     Visual Impairment 

 Unlike the earlier stages of AMD, in which visual impairment is not detectable or 
not noticeable by the patient, later stages of AMD are associated with profound 
visual defi cits. Progression from early AMD to one or both of the advanced forms 
of AMD may take 10 years or more. For patients with AMD, the amount of visual 
acuity loss correlates with the percentage of the fovea (a particularly cone 
photoreceptor- dense location in the macula) affected [ 11 ]. Once patients develop 
GA, individuals with <10 % foveal involvement and 20/20 visual acuity (by Snellen 
chart) may take as little as 5 years to have >80 % foveal involvement, at which point 
visual acuity may be worse than 20/200 [ 11 ]. Likewise, patients with untreated 
nvAMD have a poor prognosis with respect to visual function: 3 years after diagno-
sis with nvAMD, >75 % of patients who receive no treatment will have 20/200 or 
worse [ 12 ]. Despite the devastating visual outcomes for many late-stage AMD 
patients, it should be noted that patients with untreated nvAMD typically have a 
worse visual prognosis than their GA counterparts, so although nvAMD patients 
account for only 10–15 % of all AMD cases [ 13 ], 75 % of all blindness resulting 
from AMD can be attributed to the neovascular form of the disease [ 14 ].  

2.3     Known Risk Factors 

 Although the exact etiology of AMD is not known, many studies have been per-
formed to identify factors that correlate with increased incidence of the disease in 
the population. The greatest risk factor for AMD is age [ 15 ]; individuals 65 years or 
older are more likely to be diagnosed with AMD, and individuals 85 years or older 
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are more likely to have advanced forms of the disease [ 16 ]. Race also appears to be 
a risk factor. Individuals who identify as non-Hispanic Caucasian are more likely to 
develop AMD than non-Hispanic African-American or individuals of Hispanic 
descent [ 17 ]. Also, individuals who have a family history of AMD are more likely 
to develop the disease [ 18 ]. In addition to these risk factors (i.e., age, race, and fam-
ily history), other environmental risk factors have been shown to increase risk for 
AMD development and progression. After age, smoking is widely considered to be 
the next strongest risk factor for developing the disease. Individuals who have 
smoked at one point or who currently smoke are more likely to develop the disease 
and to have advanced forms of the disease as compared to individuals who never 
smoked [ 16 ]. Finally, dietary fat intake and obesity are also known to associate with 
AMD, and some reports indicate that individuals with healthy diets and who regu-
larly exercise may experience lower incidence of the disease [ 18 ].  

2.4     Prevalence 

 Because age is the risk factor that is reported to best correlate with AMD develop-
ment and progression, it follows that AMD prevalence increases in older popula-
tions. Several studies have been done to estimate the prevalence of AMD in the 
general population, such as the Beaver Dam Eye Study [ 19 ], Rotterdam Eye Study 
[ 20 ], and Blue Mountains Eye Study [ 21 ]. In individuals 18 years of age or older, 
AMD patients only comprise approximately 1 % of the population, but in adults 
65–74 years old, the prevalence of AMD approaches 9 % [ 22 ]. Of the patients 
affl icted with more advanced forms of AMD, nvAMD appears to be more common 
than GA [ 16 ]. Depending on the age group and population being surveyed, nvAMD 
can be twice as common as GA [ 16 ]. Because a relatively large percentage of the 
aging population suffers from AMD as compared to other age-related diseases, mil-
lions of people worldwide are affected. The number of affected individuals is 
expected to rise as the aging also comprise the fastest growing segment of the gen-
eral population.  

2.5     Current Treatment Options—Dry AMD 

 Currently, the only treatment for nonexudative AMD is the AREDS vitamin supple-
ment formulation. Based on reports published beginning in the late 1980s [ 23 – 26 ], 
it was hypothesized that dietary supplementation with a mixture of antioxidants, 
vitamins, and zinc could aid in the prevention or slowing of AMD progression. A 
large-scale clinical trial was conducted at the turn of the century with the goal of 
determining whether AMD patients who took a formulation of high-dose vitamin C 
and E, beta carotene, and zinc would benefi t from a slowing of AMD progression 
and visual acuity loss [ 27 ]; this study became known as the AREDS1 study [ 28 ]. 
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The AREDS group concluded that this combined vitamin supplement (i.e., the 
AREDS formulation) slowed the progression of dry AMD in patients. Later, another 
large-scale clinical trial was performed in the AREDS2 study, which added lutein, 
zeaxanthin, and omega-3 fatty acids to the AREDS1 formulation to test whether 
these additional supplements could further slow visual acuity loss and AMD pro-
gression [ 29 ]. It was found that the AREDS2 supplement formulation did not sig-
nifi cantly improve upon the effi cacy of the AREDS1 formulation [ 29 ]. Furthermore, 
the AREDS2 formulation did not signifi cantly improve upon the AREDS1 formula-
tion in patients harboring mutations reported to confer AMD risk when patients that 
did not harbor these mutations were excluded from statistical analysis [ 30 ]. 

 This is not to say that the AREDS1 formulation could be considered a success in 
preventing AMD progression and vision loss, however. Almost immediately after 
the fi ndings of the AREDS1 formulation were published [ 27 ], the AREDS1 study’s 
conclusion was challenged. Careful examination of the AREDS1 dataset revealed 
that there was no statistically signifi cant effect of the AREDS1 formulation on 
visual acuity, and even whether there was any effect on the progression of early and 
intermediate AMD to late-stage dry AMD was questioned [ 31 ]. Other independent 
large-scale studies found that patients taking AREDS1 formulation were at higher 
risk for developing choroidal neovascularization (CATT & CAPT) [ 32 ,  33 ]. Meta- 
analysis of other small-scale studies also indicate no signifi cant therapeutic benefi t 
from the AREDS vitamin formulation [ 34 ]. A 10-year follow-up of patients 
included in the original AREDS1 study found that the progressive visual loss of 
AMD patients continued unabated [ 35 ], casting further doubt on the effi cacy of the 
AREDS vitamin formulation in treating the disease. In light of these results, many 
AMD physicians and researchers now believe it should not be recommended that 
AMD patients take the AREDS supplement [ 34 ,  36 ]. In addition to being of ques-
tionable effi cacy, it was argued that the AREDS vitamin supplement could also 
carry the risk of being harmful to AMD patients’ health, because of the association 
of some of these vitamins with exacerbated lung cancer progression [ 37 ,  38 ]. The 
fact that smoking is a risk factor for AMD patients [ 16 ] has led many physicians to 
feel that not only are the AREDS vitamins ineffective at treating dry AMD, they 
may also predispose patients to a greater risk of potentially life-threatening off-
target effects. In summary, there is no safe and effective treatment approved for the 
treatment of dry AMD.  

2.6     Current Treatment Options—Wet AMD 

 Unlike dry AMD, there has been considerably more success with respect to treat-
ment development for nvAMD. In decades past, destructive treatments such as ther-
mal laser photocoagulation and photodynamic therapy with verteporfi n were 
employed for nvAMD [ 39 – 41 ]. Over the past decade, the U.S. Federal Drug 
Administration (FDA) and regulatory bodies in other countries have approved sev-
eral molecular therapies targeting vascular endothelial growth factor A (VEGF-A) 

Age-Related Macular Degeneration and Vision Impairment



476

[ 42 ], a potent pro-angiogenic factor that has been implicated in the formation of the 
unstable, leaky blood vessels that invade the retina in nvAMD [ 43 ]. There are cur-
rently four anti-VEGF-A treatments used to treat nvAMD patients in the United 
States: bevacizumab (Avastin) [ 44 ], ranibizumab (Lucentis) [ 44 ], pegaptanib 
(Macugen) [ 44 ], and afl ibercept (Eylea) [ 42 ]. Bevacizumab and ranibizumab are 
both derived from antibodies raised against human VEGF-A; bevacizumab, origi-
nally approved as a therapy for colorectal cancer, is the full-length anti-VEGF anti-
body that has been used in an “off-label” fashion to treat nvAMD, while ranibizumab 
was specifi cally approved for use in nvAMD patients and only consists of the Fab 
portion (the region that recognizes the human VEGF-A epitope) of the antibody 
[ 45 ]. Pegaptanib sodium is a pegylated aptamer (i.e., a nucleic acid designed to bind 
to a specifi c biological target) that specifi cally binds VEGF-A 165 , one of the many 
isoforms of VEGF-A [ 44 ]. Afl ibercept is a fusion protein that consists of the VEGF 
binding region found on VEGF receptors-1 and −2 fused to the Fc portion of human 
IgG1 immunoglobulin [ 42 ]. These drugs are injected into the vitreous humor of 
nvAMD patients on a monthly basis or as needed [ 45 ]. Extensive off-label use of 
bevacizumab instead of ranibizumab because of lower cost prompted the National 
Institutes of Health (NIH) to fund the Comparison of Age-Related Macular 
Degeneration Treatment Trials (CATT) Study to test whether bevacizumab was 
comparable to ranibizumab at preserving or improving visual acuity in nvAMD 
patients [ 45 ]. CATT, and subsequently similar studies in other countries, reported 
that bevacizumab and ranibizumab have clinically similar effects on visual acuity in 
nvAMD patients [ 45 ]. Although these studies indicate bevacizumab has safety and 
effi cacy profi les similar to ranibizumab, bevacizumab is not currently approved for 
the treatment of nvAMD. Despite the success of treating a subset of nvAMD patients 
with these anti-VEGF-A therapies, many nvAMD patients do not experience sig-
nifi cant reductions in blood vessel penetration or visual improvement [ 46 ]. 
Treatment options for anti-VEGF-resistant nvAMD are currently limited. For 
patients that do respond well to treatment, repeated use of these drugs is associated 
with the development of GA [ 47 – 50 ], which is currently untreatable.   

3     Cell Types Implicated in AMD Pathology 

3.1     Retinal Pigmented Epithelium (RPE) 

 Both late stage forms of AMD, GA and nvAMD, are ultimately diseases of RPE 
dysfunction and degeneration. The RPE serves multiple roles in the maintenance of 
healthy vision, including maintenance of photoreceptor cell health (e.g., phagocyto-
sis of shed rod and cone outer segments [ 51 ], transport of nutrients from the chorio-
capillaris to the metabolically-demanding photoreceptors [ 52 ]) and the formation of 
the outer blood-retinal barrier separating the intraocular tissues from the systemic 
blood circulation that aids in maintaining the eye as an “immune privileged” site 
[ 53 ]. In the case of GA, the advanced form of dry AMD is marked by large, 
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confl uent regions of RPE atrophy [ 13 ]; this suggests that one of the primary RPE 
functions, maintenance of photoreceptor cell health, is compromised. Likewise, 
another primary function of the RPE layer, formation of the blood-retinal barrier, is 
compromised in nvAMD [ 50 ]. Because patients can simultaneously present with 
both GA and nvAMD [ 16 ], the loss of both of these critical functions should not be 
considered to be mutually exclusive from one another. Compromised RPE cell 
function ultimately associates with the deterioration of other tissues on either side 
of the RPE, such as the retina and choriocapillaris [ 13 ].  

3.2      Immune Cell Involvement 

 To date, there has been little evidence in the literature suggesting immune cell (e.g., 
macrophage) infi ltration in individuals with early or intermediate AMD or in GA 
patients [ 50 ,  54 ]. For individuals with nvAMD, though, immune cell infi ltration is 
particularly important with respect to angiogenesis. Of particular interest are mac-
rophages, which have been implicated in multiple studies of nvAMD [ 55 – 59 ]. 
Macrophages, involved in the clearance of cellular detritus and foreign matter, have 
been proposed to play a role in AMD pathogenesis for quite some time—but 
whether their presence is pro- or anti-angiogenic is still a matter for debate. Evidence 
for both pro- and anti-angiogenic roles of macrophages abound in the literature. 
Macrophage depletion by genetic ablation of the chemoattractant  Ccl2  or  Ccr2 , 
necessary for macrophage recruitment to the retina, has been shown to promote 
angiogenesis in mouse models [ 58 ]. On the other hand, genetic ablation of the cyto-
kine IL-10 has also been shown to decrease macrophage activity and this inhibits 
angiogenesis instead [ 60 ]. Other data indicate that macrophages may also have a 
potent pro-angiogenic role in nvAMD, as shown in numerous studies of human 
neovascular membranes and in mouse choroidal neovascularization (CNV) models 
[ 55 – 57 ,  59 ]. Because of the potential dual-role of macrophages in nvAMD, many 
researchers hypothesize that macrophage polarization may be important in modu-
lating angiogenesis in nvAMD. Macrophages can interchangeably adopt either one 
of two polarization states, M1 or M2, which determine their activity in tissue. M1 
macrophages are typically understood to assume pro-infl ammatory roles in tissue, 
while M2 macrophages are involved in wound repair activities [ 50 ]. With respect to 
AMD, pro-infl ammatory M1 macrophages are thought to be anti-angiogenic, and 
M2 macrophages are thought to be pro-angiogenic. Direct evidence for macrophage 
polarization modulating angiogenesis in nvAMD is sparse at the moment. There is 
some evidence to suggest that IL-10, which is known to be involved in switching 
macrophages from M1 to M2 polarization, may be upregulated in mice with laser- 
induced CNV [ 61 ]. Future studies will hopefully resolve current questions concern-
ing macrophage polarization with respect to nvAMD. 

 The retina also contains resident macrophages called microglia that are involved 
in spontaneous CNV formation in mice. Genetic ablation of the macrophage- 
associated  CX3C chemokine receptor 1  ( CX3CR1 ) results in accumulation of retinal 
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microglia in the subretinal space, and these mice develop spontaneous CNV [ 62 ]. 
 Ccl2 - and  Ccr2 -defi cient mice also develop spontaneous retinal lesions in addition 
to spontaneous CNV formation [ 63 ]. Despite the associations of these genes with 
microglia involvement in spontaneous CNV formation in mice, there is still no clear 
evidence to date of microglia accumulation in the subretinal space of human neo-
vascular membranes [ 64 ]. At this time, it is unclear what role microglia play in 
nvAMD progression, but future work may be able to explore microglia in further 
detail. 

 Work in animal models of nvAMD implicated neutrophil involvement in CNV 
formation, but there is also compelling evidence to indicate that neutrophil infi ltra-
tion of CNVs may be the result of experimental artifact. Studies in mouse nvAMD 
models have reported that neutrophils may be involved in disruption of Bruch’s 
membrane integrity following laser-induced CNV [ 65 ] and that neutrophils may 
directly promote CNV in laser-induced mouse models of nvAMD [ 66 ]. Other stud-
ies, on the other hand, indicate that neutrophils may only be peripherally involved 
in CNV formation and that even if neutrophils are associated with CNV formation 
in the mouse, this fi nding is not relevant with respect to human nvAMD cases. For 
example, laser-induced CNV in mice with impaired macrophage infi ltration exhibit 
minimal neovascularization [ 67 ]; this suggests neutrophil involvement in CNV for-
mation is minimal. Furthermore, histological analysis of human neovascular tissue 
indicated minimal neutrophil intrusion into the retina [ 68 ] as compared to mouse 
laser-induced CNV tissue. Because of the known role neutrophils play with respect 
to injury response, it is possible that the reported neutrophil involvement in nvAMD 
mouse models is a result of the injury incurred by laser rather than angiogenesis.   

4     Aging Processes Contributing to AMD 

4.1     Infl ammation 

 Evidence now indicates that AMD has an important infl ammatory component to its 
pathology, as do many aging-related diseases. The RPE expresses the components 
of many different pro-infl ammatory pathways, including Toll-like receptors (TLRs), 
infl ammasome-associated proteins, complement cascade proteins, and other pro- 
infl ammatory cytokines. These pro-infl ammatory components are currently an 
active topic of research, and although the relative contributions of each pro- 
infl ammatory pathway on AMD progression in patients is still unclear, many lines 
of evidence indicate that age-related infl ammatory dysregulation is involved in dis-
ease development and progression. These pro-infl ammatory mediators are thus 
attractive targets for future therapeutic approaches. TLR, NLRP3, and complement 
cascade pathways are currently targets of active investigation. 

 TLRs are a class of transmembrane receptor proteins that are a primary compo-
nent of the innate immune system. These TLR proteins are classifi ed as pattern 
recognition receptors (PRRs), where each TLR is capable of recognizing a type of 
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pathogen-associated molecular pattern (PAMP) and inducing a signal transduction 
pathway to initiate an immune response [ 69 ]. TLR signal transduction pathways 
have been well-characterized and have also been implicated in retinal degeneration. 
One such TLR, TLR3, is best known for its role in recognizing double-stranded 
RNA (dsRNA) [ 70 ]. Unlike other TLR proteins, which rely upon Myeloid differen-
tiation primary response gene 88 (MyD88)-mediated intracellular signaling, TLR3 
relies upon TIR-domain-containing adapter-inducing interferon-ß (TRIF) for down-
stream intracellular signaling [ 69 ]. dsRNA-induced TLR3 signal transduction ulti-
mately results in activation of the transcription factor Interferon response factor 3 
(IRF3) for expression of type I interferon (IFN) and other pro-infl ammatory cyto-
kines [ 69 ]. 

 In addition to TLR signaling, recent evidence of the involvement of the NOD- 
like receptor family, pyrin containing domain protein 3 (NLRP3; also known as the 
NACHT, LRR, and PYD domains-containing protein 3, or NALP3) infl ammasome 
gives further credence to the role of age-related infl ammation in AMD progression. 
Some TLRs, such as TLR4, which senses extracellular lipopolysaccharide (LPS) 
found on Gram-negative bacteria, lead to downstream infl ammasome activity. The 
NLRP3 infl ammasome, a protein complex that contains NLRP3 protein, Apoptosis- 
associated speck-like protein containing a CARD (ASC; encoded by the  PYCARD  
gene), and cleaved Caspase-1, acts as a platform for interleukin (IL)-18 and IL-1ß 
cytokine maturation [ 71 ]. These cytokines can then be secreted; extracellular IL-18 
is known to then bind and activate IL-18 receptor (IL-18R) to induce either pyrop-
totic or apoptotic cell death pathways [ 72 ]. Infl ammasome activity is the result of 
two distinct phases: the fi rst step is priming, in which infl ammasome-associated 
gene products (e.g., NLRP3, Pro-Caspase-1, Pro-IL-18, etc.) are upregulated, and 
the second step is activation, in which the infl ammasome protein complex assem-
bles and begins producing mature, cleaved proteins capable of producing a biologi-
cal response (e.g., cleaved Caspase-1, cleaved IL-18, etc.) [ 71 ]. Despite the potential 
overlap between TLR signal transduction pathways and the NLRP3 infl ammasome, 
recent evidence suggests the RPE degeneration can proceed via the NLRP3 infl am-
masome independently of TLR receptors. Also, unlike TLR signal transduction, 
which typically requires a specifi c ligand to initiate downstream infl ammasome or 
interferon secretion pathways, NLRP3 infl ammasome activators are varied. To date, 
mitochondrial toxins, reactive oxygen species (ROS), various organic molecules 
(e.g., nigericin, LPS, etc.), and ions (e.g., potassium) have all been demonstrated to 
induce NLRP3 infl ammasome activation [ 73 ]. 

 The complement cascade is a central component of the innate immune response 
in humans; although the complement cascade can be initiated by multiple different 
pathogenic insults, the end result is the creation of the membrane attack complex 
(MAC) which is used to lyse invading pathogens [ 74 ]. The MAC complex can be 
assembled via activation of either the classical, alternative, or lectin pathways; all 
pathways converge upon C3 activation for assembly of the C5b-9 protein complex 
(i.e., MAC) [ 15 ]. The classical pathway requires antibody binding to antigen for 
activation by the C1 protein complex [ 15 ], and this same set of complement proteins 
(C2, C4, etc.) is activated through recognition of mannose residues on pathogen 
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surfaces by Mannose-binding lectin-associated serine proteases (MASP) 1 and 
MASP2 [ 75 ]. Unlike the classical and lectin pathways, the alternative pathway 
makes use of a different set of complement activating proteins (e.g., CFB, CFD) for 
C3 activation [ 15 ]. 

4.1.1      TLR Signaling 

 TLR3 signal transduction triggered by dsRNA has been shown to be activated in a 
sequence-independent manner by dsRNAs that are 21-nt in length or longer [ 76 ]. 
dsRNA is found in large quantities in the drusen of patients with GA, and consistent 
with this observation, RPE degeneration occurs in mice following subretinal injec-
tion of 21-nt [ 77 ]. Furthermore, TLR3 SNPs have been associated with a protective 
effect against GA in human patients [ 78 ], suggesting that TLR3 signaling may play 
a role in AMD progression, although these fi ndings are not universal among studies. 
Paradoxically, TLR3 signaling that exacerbates one form of advanced AMD (GA) 
may also inhibit angiogenesis in nvAMD, the other form of advanced AMD. TLR3 
signaling has been shown to inhibit both angiogenic and lymphangiogenic events 
[ 79 ,  80 ], but despite the potential utility of the TLR3 signaling pathway with respect 
to angiogenic inhibition, the parallel apoptotic events associated with TLR3 signal 
transduction have largely precluded this pathway as a viable therapeutic target. At 
least one TLR3 polymorphism may be protective in patients [ 81 ], but its veracity is 
still controversial; this is discussed later in this chapter. In spite of unclear genetic 
data, however, multiple labs have independently shown that TLR3 activation is 
capable of inducing RPE cell death [ 82 – 84 ].  

4.1.2      Infl ammasome 

 The NLRP3 infl ammasome has been implicated in AMD under the effect of various 
stressors. Carboxyethylpyrrole (CEP)-adducted proteins, the result of free radical- 
catalyzed oxidation of docosahexaenoate (DHA) that causes damaging covalent 
modifi cations to proteins [ 85 ], have been shown to prime the NLRP3 infl amma-
some [ 86 ]; these CEP adducts have also been shown to accumulate with age in the 
retina [ 85 ]. In addition to CEP protein adducts, certain drusen components are 
known to be capable of inducing NLRP3 infl ammasome activation. Unfortunately, 
aside from the fact that drusen correlates with AMD, it is not known whether drusen 
are directly capable of inducing pro-infl ammatory events. The complement cascade 
intermediate C1q has been shown to activate the NLRP3 infl ammasome [ 86 ]; other 
complement cascade proteins have also been implicated in AMD and will be dis-
cussed in further detail below. Recently, it has also been shown that DICER1, a 
protein normally associated with microRNA (miRNA) biogenesis, may also play a 
role in GA via NLRP3 infl ammasome activation because of its ability to degrade 
cytotoxic  Alu  RNA transcripts [ 77 ].  Alu  elements are retrotransposons that are 
found interspersed throughout the genome (over 1 million copies are present) [ 87 ] 
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and were until recently thought to be mostly transcriptionally inactive. GA patients 
have reduced DICER1 levels in the retina and RPE, and the resulting accumulation 
of cytotoxic  Alu  RNA transcripts results in infl ammasome activation in an NF-κB- 
dependent [ 88 ], TLR-independent manner [ 89 ]. Mature IL-18 production by  Alu  
RNA-mediated insult then causes MyD88- and Caspase-8-dependent RPE apopto-
sis [ 90 ]. Interestingly, elevated circulating levels of IL-18 have been reported in 
patients with dry AMD [ 91 ,  92 ]. Most likely, given the diverse range of substances 
capable of inducing the NLRP3 infl ammasome, more infl ammasome agonists will 
be found to associate with AMD progression.  

4.1.3      Complement Pathway Activation 

 In addition to the potential involvement of C1q in infl ammasome activity, the com-
plement cascade may play a role in AMD. Of the three complement activation path-
ways (classical, alternative, and lectin), the alternative pathway may be associated 
with AMD progression. Recognition of the complement system as playing a poten-
tial role of AMD came in 1992 with the fi nding that subretinal membranes surgi-
cally removed from AMD patients contained complement proteins C1q, C3c, and 
C3d [ 93 ]. It was also found later that C5 and C9 complement components could be 
found in both hard and soft drusen in AMD patients [ 94 ] and that immunohistologi-
cal sections of AMD patient samples were positively labeled for C3, C5, and C5b-9 
[ 95 ]. The potential role of the complement system, particularly the alternative path-
way, was further highlighted by a genome-wide association study (GWAS) that 
found roughly 50 % of the heritability for AMD could be associated with a poly-
morphism in the complement factor H (CFH) gene (Y402H); individuals with the 
CFH Y402H  variant were found to be signifi cantly more likely to develop AMD [ 96 –
 98 ]. In the alternative complement activation pathway, CFH plays an inhibitory role 
by regulating C3 convertase (C3bBb) activity [ 15 ]. Putative pathogenic CFH vari-
ants have been found to have reduced binding affi nity for proteins found in the ret-
ina [ 99 – 101 ], including C reactive protein (CRP), a protein that has increased 
expression in response to infl ammation and that is known to activate the comple-
ment system via C1q [ 102 ]. Other polymorphisms in CFH and other complement 
proteins will be discussed later in the chapter. 

 Despite reports of complement proteins appearing in drusen and statistical asso-
ciations of complement gene polymorphisms with AMD in human patients, a pre-
cise mechanism for complement-mediated cell stress and cell death remains elusive. 
For example, C1q is capable of inducing NLRP3 infl ammasome activation in cell 
culture, but the precise mechanism for this phenomenon remains unknown [ 86 ]. 
Furthermore, although complement proteins that appear in drusen may be capable 
of inducing an infl ammasome response and causing cell death, these drusen compo-
nents are insoluble; after all, drusen are deposits of insoluble cell debris. Because of 
this, it is still not entirely clear how insoluble materials could be capable of produc-
ing a cell response in vivo. Experiments reporting the cytotoxicity of these comple-
ment proteins are performed with soluble complement proteins and depletion of 

Age-Related Macular Degeneration and Vision Impairment



482

endogenous negative complement regulators; they do not recapitulate the conditions 
that are present within the aging eye. 

 In addition to uncertainties with respect to mechanism from cell culture data, 
mouse models have been unable to reproduce AMD pathology when the  Cfh  gene is 
ablated. Despite a strong statistical association between CFH polymorphisms and 
AMD development in human patients,  Cfh  null mice exhibit an extremely weak 
phenotype.  Cfh  mutant mice exhibit no appreciable photoreceptor degeneration, 
even at 2 years of age [ 103 ]. Also, AMD patients have regions of RPE and retinal 
atrophy; there seems to be very little effect on the RPE of  Cfh  mutant mice despite 
the fact that they accumulate more C3 in the eye [ 103 ]; this suggests that although 
CFH may inhibit C3 deposition, C3 itself may not be suffi cient to induce AMD phe-
notypes. This fi nding has been reproduced in humans; despite the fact that C3 depo-
sition occurs in the eye, many humans with C3 or C5b-9 deposition never develop 
AMD [ 104 ,  105 ]. Perhaps most concerning is the fact that none of the clinical trials 
for inhibition of complement factors have yet met with any success in human patients. 
This raises concerns about the utility of the  Cfh  mutant mouse in developing treat-
ments given the fact that the disease phenotype in these mice is very weak and there-
fore does not seem to accurately recapitulate the human condition. Many of these 
approaches have passed Phase I clinical trials without any appreciable safety con-
cerns, but they have not shown any functional benefi t with respect to inhibiting dis-
ease progression and visual function loss in patients [ 50 ]. Thus, although the  CFH  
gene has been associated with AMD susceptibility in multiple studies, these genetic 
fi ndings have not as of yet translated into a comprehensive molecular pathological 
mechanism. Much more work remains to be done to elucidate the role of the comple-
ment cascade in AMD beyond the current genetic associations [ 106 ]  

4.1.4     Cytokines and Chemotactic Signaling 

 Increases in the expression of numerous pro-infl ammatory cytokines are associated 
with AMD, further highlighting the importance of infl ammation in disease forma-
tion and progression. In addition to specifi c suspected pro-infl ammatory pathways 
involved in AMD progression that have already been discussed in this chapter, there 
are multiple other reports of cytokines involved in pro-infl ammatory events and 
cytokines and chemotactic signaling factors involved in angiogenic events. Pro- 
infl ammatory cytokines IL-17 and IL-22, for example, are recently identifi ed cyto-
kines that may be upregulated in patients with non-exudative AMD [ 107 ,  108 ]. 
With respect to nvAMD, multiple anti-infl ammatory pro-angiogenic cytokines and 
chemotactic signaling proteins have been implicated. IL-10 is of particular interest 
as it has been shown to promote M1 to M2 macrophage polarization [ 108 ] and has 
been reported to be increased in the serum of AMD patients [ 109 ]. Other groups 
report that IL-6 may be a good marker of nvAMD progression [ 110 ]. The eotaxins 
CC-chemokine ligand (CCL) 11, CCL24, CCL26, CXC-chemokine ligand (CXCL) 
10 and CC-chemokine receptor (CCR) 3 have been shown to be upregulated prior to 
blood vessel invasion in the retina [ 59 ,  111 ]. The increases in CCL11 and CCL24 
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expression do not appear to be restricted to the retina, as other studies have shown 
their serum levels increase in AMD patients [ 111 ,  112 ]. Future work will hopefully 
identify some as potential therapeutic targets.   

4.2     Angiogenesis 

 Angiogenesis, the process by which new blood vessels are formed, is necessary for 
development [ 113 ], wound repair [ 114 ], and a number of other vital processes in 
healthy individuals. Given the fundamental role that angiogenesis plays in complex 
organisms, dysregulation of angiogenic signaling pathways can have far-reaching 
consequences. Inside the eye, dysregulation of angiogenic signaling events are associ-
ated not just with nvAMD but also corneal neovascularization [ 115 ] and diabetic reti-
nopathy [ 116 ], both of which are vision-threatening. Outside the eye, dysregulation of 
angiogenic processes can have life-threatening consequences, such as preeclampsia 
[ 117 ], diabetic nephropathy [ 118 ], and cancer [ 119 ]. Like infl ammation, regulation of 
angiogenesis is impaired with age [ 120 ]. In the context of AMD, angiogenesis plays a 
crucial role in nvAMD progression through the formation of new blood vessels during 
both CNV and retinal angiomatous proliferation (RAP) [ 121 ,  122 ]. Both CNV and 
RAP result in the formation of aberrant blood vessels in the retina, but the two terms 
refer to the differing origin of the blood vessels; CNV refers to blood vessels originat-
ing from the choroid that invade the retina, while RAP refers to blood vessels originat-
ing from the retina that migrate externally toward the choroid [ 123 ]. Fortunately, 
despite differences in the origin of these aberrant blood vessels, both RAP and CNV 
may respond favorably to anti-VEGF therapies [ 121 ,  122 ]. In light of the importance 
that anti-VEGF therapies have with respect to current nvAMD treatments, under-
standing the VEGF signaling pathway is critical to understanding nvAMD. 

 VEGF-A is considered the most important regulator of angiogenesis in many tis-
sues [ 124 ], and it is expressed in a variety of isoforms [ 125 ]; with respect to angio-
genesis in nvAMD, VEGF-A 165  is considered the most biologically relevant [ 124 ]. 
Increased VEGF-A expression has been associated with nvAMD in human tissue 
samples [ 126 ]. VEGF-A is capable of extracellular binding to Vascular endothelial 
growth factor receptors (VEGFRs; part of a class of tyrosine kinase receptors) to 
induce intracellular signaling events that ultimately result in endothelial cell migra-
tion and blood vessel growth [ 127 ]. There are two VEGF-A receptors that have been 
shown to mediate angiogenesis in the eye: VEGFR1 (also known as fms- like tyro-
sine kinase 1), which binds VEGF-A with high affi nity but has weak tyrosine phos-
phorylation upon binding, and VEGFR2 (also known as fetal liver kinase 1, or FLK1, 
and as kinase insert domain receptor, or KDR), which has a weaker affi nity for 
VEGF-A but a stronger tyrosine phosphorylation in response to binding [ 127 ]. It is 
commonly thought that VEGFR2 is predominantly responsible for angiogenic events 
in a variety of tissues [ 127 ], including the retina [ 124 ]. Nevertheless, VEGFR1 is 
also thought to play an important role in regulating angiogenesis through the action 
of one of its splice variants, soluble VEGFR1 (sVEGFR1; also known as soluble 
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FLT-1, or sFLT-1). sFLT-1, which has been shown to have reduced expression in both 
the eye (where it is primarily expressed in the RPE) [ 128 ] and in the serum in nvAMD 
patients [ 129 ], acts as a soluble decoy receptor for VEGF-A to prevent its binding to 
VEGFR2 for angiogenesis [ 130 ]. In addition to VEGF-A overexpression in nvAMD 
patient’s eyes, there are other anti- angiogenic factors with decreased expression that 
have been reported. One such protein is pigment epithelium-derived factor (PEDF), 
a potent inhibitor of angiogenesis in the eye, which is highly expressed when oxygen 
is abundant in the microenvironment [ 131 ]; in nvAMD, PEDF levels were reported 
to be decreased [ 132 ]. PEDF acts by antagonizing VEGF-A signaling through cleav-
age of the transmembrane domain of membrane-bound VEGFR1 [ 133 ]. 

 Chemokine and chemokine receptors are also implicated in angiogenesis because 
of the roles that macrophages and microglia have in nvAMD pathology (see 
Sect.  3.2 ). CCL2, CCR2, CX3CR1 and CCR3 have all been implicated in nvAMD, 
and they all regulate macrophage or microglia recruitment to Bruch’s membrane 
[ 58 ,  59 ,  62 ]. Because macrophages can have either pro- or anti-angiogenic effects 
with respect to AMD, the role of macrophage involvement appears to be more 
nuanced than in the case with VEGF-A (where increased VEGF-A expression is 
more easily correlated with angiogenesis). Future research is required for a more 
complete picture to be formed for the involvement of macrophages and VEGF-A 
signaling pathways in nvAMD. 

 The relative contributions of CNV and RAP to nvAMD are still unclear. It was 
originally suspected that nvAMD patients presenting with RAP account for only 
12–15 % of all cases [ 121 ], but more recent work suggests that RAP may be present 
in as much as 1 out of every 3 nvAMD cases [ 134 ]. Given the fact that most clinical 
trials for anti-VEGF therapies have excluded nvAMD patients presenting with RAP 
and that three times as many nvAMD patients may present with this form of aber-
rant blood vessel growth than previously thought, more attention to the molecular 
underpinnings of RAP development may be warranted. Fortunately, the VEGF sig-
naling pathway still appears to be an effective therapeutic target for a subset of 
nvAMD patients presenting with either RAP, CNV, or both. It is thought that VEGF 
is overexpressed in the retina in patients presenting with RAP much in the same way 
as nvAMD patients with CNV [ 135 ], thus making both sets of patients responsive 
to treatment. To date, multiple independent studies have indicated that different 
anti-VEGF therapies (bevacizumab, ranibizumab, and pegaptanib) are all effective 
at treating RAP lesions [ 136 – 138 ], although it should be noted that the reported 
therapeutic benefi t was observed in relatively small sample sizes. Other therapies 
for anti-VEGF-resistant nvAMD patients are limited at this time.  

4.3       Protein Homeostasis 

 The RPE is an extremely metabolically active cell type. Its many functions include, 
but are not limited to, visual cycle metabolism (the recycling of vitamin A isomers 
that are required for visual function) [ 139 ] and outer segment phagocytosis [ 140 ]; 
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these processes are notoriously metabolically demanding and can lead to an over-
abundance of reactive oxygen species (ROS) [ 141 ]. The ROS generated by the RPE 
can result in signifi cant oxidative damage to proteins and other macromolecules 
within the cell, and to cope with this constant onslaught of ROS damage, the cell 
relies on autophagy. Autophagy is the process by which cells can clear damaged 
proteins and organelles via lysosomal degradation [ 142 ]. Because of the constant 
insult from ROS on the RPE over the course of the lifetime, AMD researchers 
hypothesize that impaired clearance of these damaged cellular components because 
of impaired autophagy could lead to drusen formation [ 28 ,  143 ]. 

 There is some evidence in the literature to support this hypothesis; aging patients 
are known to accumulate protein adducts known as advanced glycation end prod-
ucts (AGEs) that have been associated with some age-related diseases [ 144 ]. AGEs 
form under oxidative conditions through Maillard reactions, which nonenzymati-
cally covalently glycate proteins [ 144 ]. These AGEs are capable of binding recep-
tors for advanced glycation end products (RAGEs), and it is possible that RAGE 
signaling may lead to either VEGF-A upregulation that could promote angiogenesis 
[ 145 ] or innate immune activation (e.g., NLRP3 infl ammasome) via NF-κB [ 146 ]. 
It is important to note, however, that these fi ndings came primarily from cell culture 
data; despite a reported increase in AGEs in the serum of AMD patients [ 147 ], it is 
unclear if the reported observations of AGE in endothelial cell culture studies will 
be replicated in human tissue samples. A proteome analysis of drusen taken from 
human tissue samples also identifi ed CEP-adducted proteins (formed from the oxi-
dation of docosahexaenoic acid), which have been interpreted as being potentially 
relevant to AMD [ 148 ]. Furthermore, anti-CEP autoantibodies were identifi ed in 
the sera of AMD patients in higher amounts than in age-matched controls [ 85 ]. 
Despite the potentially clinical relevance of the fi nding on anti-CEP autoantibodies 
in the sera of AMD patients, there has yet to be a defi ned molecular pathway leading 
from CEP protein adduct formation to antibody production [ 108 ]. Future research 
will hopefully provide the missing links to this phenomenon. 

 Amyloid ß (Aß) is most commonly known for its suspected role in causing 
Alzheimer’s disease (AD), but it has also been identifi ed as a component of drusen 
in human AMD patients [ 149 ]. Aß is formed from cleavage of Amyloid ß precursor 
protein (APP) by ß and γ secretases and accumulates in extracellular, insoluble 
amyloid plaques in patients with AD; the function of both Aß and the APP protein 
precursor are still a matter of debate [ 150 ]. Interestingly, Aß was found in drusen 
also positive for activated complement proteins [ 149 ], suggesting a functional link 
between the two with respect to AMD pathogenesis. Later work indicated that Aß 
could cause upregulation of complement factor B (CFB), a protein involved in the 
alternative complement activation pathway [ 151 ]. Further highlighting the fact that 
many aging processes are interrelated and can contribute to disease formation is the 
fact that Aß could also activate the NLRP3 infl ammasome through lysosomal desta-
bilization, in addition to being potentially linked to the alternative complement 
pathway [ 152 ]. Because the lysosome is central to autophagic processes, this fi nd-
ing further emphasizes the importance of protein homeostasis to age-related disease 
processes.  
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4.4     Metabolism 

 As mentioned in Sect.  4.3 , one of the primary functions of the RPE is photoreceptor 
outer segment phagocytosis [ 140 ]. Photoreceptor outer segments are outgrowths of 
the plasma membrane on photoreceptors that are densely packed with the visual 
pigment molecules rhodopsin (in rods) and opsins (in cones) [ 153 ]. Each day, based 
on a circadian rhythm cycle [ 154 ], the outermost plasma membrane discs contain-
ing visual pigments (which are closest to the apical processes of the RPE) are shed 
so they can be phagocytized and broken down by lysosomes in the RPE [ 51 ]. The 
phagocytosis of shed outer segments by the RPE is compensated by the continuous 
renewal of new outer segment discs by the photoreceptors and allows for the removal 
of older visual pigment proteins that become damaged as the result of oxidative 
stress [ 51 ]. One of the metabolic byproducts of visual pigment activation by pho-
tons is the retinoid all- trans -retinal, which is typically recycled back into 11-cis - 
retinal by other visual cycle proteins for reformation of functional visual pigment in 
outer segments still attached to their respective photoreceptors [ 155 ]. Under oxida-
tive conditions, two molecules of all-trans-retinal can react with ethanolamine to 
form N-retinyl-N-retinylidene ethanolamine (known more commonly as A2E) 
[ 156 ]. When A2E in outer segments is phagocytized by the RPE, it accumulates 
because the cell has no method for metabolizing it back into all- trans -retinal. A2E 
forms one of the primary components of lipofuscin, an autofl uorescent accumula-
tion that collects in the RPE with age [ 157 ]. Because early studies with high- 
performance liquid chromatography (HPLC) found that patients with AMD may 
have increased amounts of A2E [ 158 ], it was long thought that the age-related accu-
mulation of lipofuscin may be a contributing factor to AMD development [ 157 ]. A 
proposed mechanism of action for A2E cytotoxicity was inhibition of effi cient lyso-
somal activity that could then lead to apoptosis [ 156 ]. As more research was per-
formed examining the A2E in AMD, though, the proposed causative role of A2E in 
AMD development was challenged. Initial measurements of A2E accumulation in 
AMD patients were performed with whole eyecups; separate HPLC measurements 
of macula and periphery indicated that A2E accumulated in the periphery of the eye, 
not in the macula [ 158 ]. Other work indicated that lipofuscin only poorly predicted 
the spread of atrophic regions in GA [ 159 ], and perhaps most damaging to the 
hypothesis that A2E contributed to lipofuscin accumulation and RPE cell death was 
the fi nding that lipofuscin and A2E distribution in the RPE did not even correlate 
with one another [ 160 ]. 

 That is not to say there is no suspected role for metabolism in AMD, however. 
Disruptions in metal homeostasis in the aging eye may contribute to AMD [ 161 ]. 
Although one study has implicated reduced copper and zinc in the eyes of AMD 
patients as compared to age-matched controls [ 162 ], iron accumulation in particular 
may have a contributing role in AMD [ 163 ]. In healthy eyes, iron is an important 
cofactor necessary for many proteins, including proteins that perform necessary 
visual functions [ 164 ]. Because of the toxic nature of iron and the fact that it is 
required for many proteins, its transport and metabolism must be carefully regulated 
by the cell. Iron-induced retinal degeneration has been noted in patients and in ani-
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mal models of hereditary iron overload, aceruloplasminemia, hereditary hemochro-
matosis, and pantothenate kinase associated neurodegeneration (PKAN) [ 163 ]. The 
levels of free iron (i.e., iron ions that are not bound to proteins or other macromol-
ecules) are also known to increase with age, possibly because of reduced ability of 
the aging body to clear the ions from tissues [ 165 ]. This increase in free iron con-
centration occurs throughout the entire body, but is particularly relevant to AMD 
because patients were reported to have an increase of free iron in the affected mac-
ula [ 166 ] and were reported to also have iron as a drusen component [ 167 ]. 
Furthermore, AMD patients were found to have increased mRNA expression of the 
iron transporter gene transferrin (responsible for binding iron for transport into the 
cell), which is highly expressed in the RPE [ 168 ]. Also, mice defi cient in both the 
iron-binding protein ceruloplasmin (Cp; also binds free iron) and hephaestin (Heph; 
necessary for cellular excretion of excess iron) appear to develop retinal pathologies 
similar to those seen in AMD patients, such as sub-RPE deposits and neovascular-
ization [ 169 ]. Collectively, these data suggest that metabolic events favoring intra-
cellular accumulation of iron may contribute to AMD pathogenesis. The toxicity of 
iron in biological systems is largely attributed to the result of Fenton chemistry, the 
process by which free divalent cations can catalyze the formation of hydrogen per-
oxide from water [ 170 ]. The resulting oxidative stress is then thought to contribute 
to cell death via apoptosis, but it is also possible that free divalent cations like iron 
could directly induce an infl ammatory response. After all, it is already well known 
that ROS intermediates can cause NLRP3 infl ammasome activation, which has been 
implicated in AMD by multiple different causative factors (please refer to 
Sect.  4.1.2 ). Indeed, recent evidence also suggests that iron also activates the NLRP3 
infl ammasome via sequestration of Poly(rC) binding protein 2 (PCBP2), which is 
required for effi cient DICER1-mediated clearance of  Alu  RNAs, and that this mech-
anism is independent of ROS generation [ 171 ].  

4.5     Genetic Associations 

 As is most likely the case with many complex diseases like AMD, a single mutation 
alone may not be suffi cient to cause disease; genetic variants may predispose indi-
viduals to developing AMD, but other environmental risk factors are most likely 
necessary for interactions with those genetic variants [ 5 ]. Some of these genetic 
variants confer more risk for AMD development than other genetic variants. One 
such polymorphism, CFH Y402H , has already been discussed earlier in this chapter 
(please refer to Sect.  4.1.3 ). The CFH Y402H  variant is thought to contribute to as 
much as 50 % heritability to the disease [ 96 – 98 ], but the exact mechanistic pathway 
for CFH involvement in AMD is still unclear. The relative contributions of other, 
less common or rare genetic variants are still a matter for further investigation. 
Another potential confound with respect to interpreting the genetic data in the lit-
erature is the fact that some variants found to be signifi cant in one study may not be 
found to be signifi cant in another. Reasons for discrepancies between studies include 
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differences in risk conferred by each polymorphism in specifi c populations, insuf-
fi cient statistical power in the study, or the presence of false positives in the dataset. 
It is also worth noting that individuals of Caucasian ancestry are more likely to 
develop clinical features of AMD than African Americans even though the rates of 
late AMD do not differ signifi cantly between the two groups, although the exact 
reason for this is currently unknown [ 172 ]. In this section of the chapter, known or 
suspected polymorphisms will be discussed with respect to the known functional 
roles these genes have in healthy cells, but it is important to keep in mind that many 
of these polymorphisms have been reported without subsequent analysis of their 
molecular consequences. For many reported polymorphisms, further work is needed 
to ascertain their functional importance in disease processes and to understand why 
genetic mutations present from birth do not manifest as being pathogenic until 
patients are older. 

4.5.1     Infl ammatory Pathway Genes 

 To date, CFH variants are the most strongly associated genetic variants with 
respect to AMD. The fi nding that the CFH Y402H  polymorphism could contribute to 
AMD [ 96 – 98 ] was signifi cant because it was the fi rst report of a strong genetic 
association with a complex disease [ 50 ]. Furthermore, a later GWAS study indi-
cated that although the CFH Y402H  variant did strongly associate with AMD, 20 
other CFH variants also showed association with AMD [ 173 ], suggesting CFH 
variants account for a large amount of the heritability reported in AMD patients. 
In addition to CFH polymorphisms, other complement pathway factors have also 
been associated with AMD, even though the relative contributions of these other 
polymorphisms is still debated [ 15 ]. C2 E318D , C3 R102G , and CFB R32Q  polymorphisms 
were each found to independently associate with AMD risk in 2011 [ 174 ]. 
Another CFB variant, CFB L9H , was identifi ed later [ 175 ]. The association of 
C3 R102G  with AMD has also been replicated in another independent study [ 176 ]. 
Other rare complement factor variants, such as C3 K155Q  [ 177 ,  178 ], CFH R1210C  
[ 178 ], CFH R53C , CFH D90G  [ 179 ], CFI G119R  [ 180 ], and C9 P167S  [ 181 ] have all been 
identifi ed as being highly penetrant in their association with AMD. The exact 
functional consequences of these variants with respect to protein function are still 
being studied. 

 In Sect.  4.1.1 , the contribution of TLR signaling to AMD was discussed; TLR3 
signaling has been reported to both inhibit neovascularization [ 79 ] and induce 
 retinal degeneration [ 76 ], but the involvement of genetic polymorphisms in TLR 
signaling pathway genes is less clear. Initial fi ndings of a potential protective effect 
against GA conferred by a TLR3 L412F  polymorphism [ 78 ], a potential susceptibility 
to AMD conferred by a TLR D299G  polymorphism [ 182 ], and a potential association 
of AMD with a TLR7 polymorphism were not replicated in later studies [ 183 ,  184 ]. 
One group later reported that the TLR3 L412F  variant may have a protective effect 
against GA because of a reduced ability of the receptor to bind dsRNA [ 185 ], but 
this fi nding has not been independently replicated by other laboratories. Because of 
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the previous independent genetic studies that concluded this variant was unlikely to 
be signifi cant, the contributions of TLR polymorphisms to AMD is at best 
uncertain.  

4.5.2     Angiogenic Signaling Pathway Genes 

 With the recent interest in pharmacogenetics (i.e., the infl uence genetic polymorphisms 
have in the response to drug treatment), researchers have focused on the potential infl u-
ence of VEGF-A polymorphisms on the nvAMD patient’s response to anti-VEGF 
therapy. Despite the occasional report of VEGF-A polymorphism association with anti-
VEGF therapy treatment outcome [ 186 ], rigorous analysis indicates that VEGF-A or 
VEGF-A receptor polymorphisms have no effect on treatment response [ 179 ]. Another 
study has implicated a CCR3 polymorphism (rs3091250) as a potential risk factor for 
AMD, but this result has not yet been replicated in other laboratories (it should be noted 
that another CCR3 variant, rs3091312, was not found to signifi cantly associate with 
AMD) [ 187 ]. Stronger statistical associations of genetic variants in the  VEGFR1  gene 
that are predicted by computer modeling to alter splice sites and RNA secondary struc-
ture have also been reported [ 188 ] but have still yet to be examined at the protein level.  

4.5.3     Genes with Other Functions 

 Genes with known functions in retinoid clearance from photoreceptors, lipid metab-
olism, and extracellular matrix maintenance have also been implicated in AMD [ 5 , 
 189 ]. High-density lipoprotein metabolism pathways have been implicated in AMD 
because of an association of the hepatic lipase ( LIPC ) gene [ 190 ], and this gene 
association was supported by fi ndings from another study [ 191 ]. APOE, a gene 
involved in low-density lipoprotein (LDL) metabolism, has also had polymorphisms 
associated with AMD [ 192 ]; this fi nding highlights the possible role that lipid dys-
metabolism may have in disease development and progression. TIMP3, an inhibitor 
of matrix metalloproteinases [ 193 ], has also been associated with AMD along with 
 COL8A1 , a gene involved in the  FRK / COL10A1  extracellular collagen matrix path-
way [ 194 ]. It is possible, but not yet clear, that these polymorphisms may affect the 
maintenance of Bruch’s membrane with age.  

4.5.4     Chromosome 10q26 Locus 

 Along with CFH, a genomic region with one of the strongest genetic associations 
with AMD is the chromosome 10q26 locus containing the two open reading frames 
(ORFs),  HTRA1  and  ARMS2  [ 195 ]. Because of the great degree of linkage disequi-
librium in this region, genetic approaches alone have been unsuccessful in identify-
ing the gene responsible for the strong association with AMD [ 195 ]. Studies of 
these two genes are further confounded by the fact that the  ARMS2  gene has a 
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largely unknown function because it is only present in primates and thus precludes 
the use of a mouse model for studies of gene function [ 196 ]. Attempts to defi ne the 
cellular and tissue localization of ARMS2 protein have produced inconsistent fi nd-
ings [ 197 ,  198 ]. Because of this, ARMS2 has not been defi nitively implicated in 
AMD pathology despite the strong associations of individual gene variants with the 
disease. HTRA1, on the other hand, is a serine protease with a well-defi ned function 
in extracellular matrix degradation, suggesting it may have an involvement in deg-
radation of Bruch’s membrane to promote RPE atrophy. HTRA1 is also an attractive 
candidate for AMD pathological association because of its presence within drusen 
[ 199 ]. Unfortunately, HTRA1 has produced inconsistent results based on hypothe-
ses of the proposed mechanism of action. It would be expected that HTRA1 overex-
pression would be connected to AMD pathology in patients because of its ability to 
degrade extracellular matrix, but this has not been found in humans [ 200 ]. Because 
of this, the HTRA1 protein remains an attractive candidate for AMD association, 
but like ARMS2, ultimately has an uncertain role in disease progression based on 
current data. Future research into the functions of HTRA1 and ARMS2 in AMD 
patients may resolve these questions. Again, it is worth noting that despite these 
strong genetic associations, it is still unclear why these genetic infl uences do not 
become relevant until old age.   

4.6     Epigenetics 

 Currently, there are few published studies examining epigenetics and AMD risk 
[ 201 ,  202 ]. There is some evidence to suggest that DNA hypermethylation of the 
 GSTM5  promoter, which encodes for the glutathione  S -transferases mu1 and mu5, 
may result in reduced expression of these proteins in AMD patients [ 203 ]. Future 
work may further explore this potential link and other possible avenues of study.   

5     Future Therapeutic Prospects 

 Unlike nvAMD, which has multiple current therapeutic interventions approved for 
use in patients, dry AMD has no current FDA-approved therapies with the excep-
tion of the AREDS formulation which, as discussed, does not appear to prevent the 
development of geographic atrophy [ 35 ]. Multiple clinical trials with the goal of 
inhibiting the complement pathway have had little success in preventing or restor-
ing vision loss [ 50 ,  204 ]. It is not currently clear why these complement inhibition 
therapies have not had any clinical success with respect to AMD, but successful 
interventions seen in animal models that do not translate to human patients suggests 
current models are not refl ective of human disease pathology and that there are gaps 
in our understanding of the role of complement in AMD. Also, many of these thera-
pies have been developed in younger mice, suggesting that perhaps studies in older 
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mice would better refl ect the conditions found in aging AMD patients. The creation 
of better animal models will ultimately allow for better treatment validation so the 
fi eld can make progress with the goals set forth in the NEI Audacious Goals Initiative 
[ 205 ,  206 ]. Nonetheless, other complement inhibition therapies, e.g., anti- 
complement factor D antibody (lampalizumab), are currently in clinical trials, and 
it is possible these new methods will be more successful than other approaches 
taken in the past. Because of the potential role that autophagy may play in AMD 
progression (please refer to Sect.  4.3 ), this pathway is currently a focus of interest 
for therapeutic intervention. Recent work indicated that RPE cell stress induced 
through oxidative stress may activate the Protein kinase B (AKT)/Mammalian tar-
get of rapamycin (mTOR) pathway, which could be inhibited with rapamcyin 
administration in a mouse model [ 207 ]. It is interesting to note that rapamycin is not 
only of interest in AMD research, but is also of interest in many other age-related 
diseases discussed in this book, because of observations that long-term rapamycin 
administration may promote longevity [ 208 ]. 

 Given the advent of induced pluripotent stem (iPS) cells, cell replacement ther-
apy is another current avenue of research that may show promise for the treatment 
of AMD [ 28 ]. Stem cells derived from mouse bone marrow were capable of estab-
lishing a monolayer in subretinal regions damaged by sodium iodate after subretinal 
injection [ 209 ]. Other work with adult hematopoietic stem cells (HSCs) indicated 
that these cells could assume RPE-like characteristics after transgenic expression of 
RPE65 [ 210 ], a visual cycle protein specifi c to the RPE in the eye [ 155 ]. Mice with 
RPE damage from sodium iodate exhibited restored visual function and prevented 
retinal degeneration upon subretinal injection of these HSCs [ 210 ]. Cell replace-
ment therapy therefore offers the potential for benefi t in AMD patients, but signifi -
cant hurdles remain with respect to assessing its effi cacy in the clinic. Despite the 
success of this technique in mouse models, it is unclear whether this method could 
rescue vision in an eye in which AMD has already caused signifi cant RPE and pho-
toreceptor cell atrophy. After all, restoration of the cell layer responsible for photo-
receptor cell health is ultimately futile if the photoreceptors have already been lost 
by the time of cell replacement therapy. Furthermore, many of these proof-of- 
concept studies for stem cell therapies were performed in younger mice. Given the 
senescence of stem cells in older patients, it is currently unclear whether these ther-
apies could be used with stem cells from aging individuals. 

 Recent work has also raised the possibility that nucleoside reverse transcriptase 
inhibitors (NRTIs) may have potential therapeutic against AMD pathology [ 211 ]. 
This fi nding is based on previous work that indicated that DICER1 defi ciency could 
induce NLRP3 infl ammasome activation and RPE apoptosis via  Alu  RNA accumu-
lation [ 77 ,  89 ,  90 ,  212 ].  Alu  RNA-induced RPE cytotoxicity requires the purinore-
ceptor P2X7 for cell death [ 88 ], and evidence suggests that NRTI’s mechanism of 
action may involve blockade of the receptor [ 211 ]. NRTI treatment of AMD could 
offer several advantages over other therapeutic approaches currently under investi-
gation, such as the fact that many NRTIs are already approved by the FDA for treat-
ment of other diseases, like human immunodefi ciency virus (HIV). Because AMD 
is a chronic disease that patients could have for several decades, drugs with long- 
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term safety are particularly needed. Many HIV patients take NRTIs for decades and 
these drugs are thus promising candidates for AMD treatment. 

 With respect to nvAMD, IL-18 has been the subject of recent debate as it has 
been proposed as a potential treatment for nvAMD, based on reports that recombi-
nant IL-18 administration could inhibit CNV [ 213 ] and that neutralization of endog-
enous IL-18 by antibody administration results in increased CNV [ 86 ]. However, 
fi ve independent laboratories were unable to reproduce the original fi ndings [ 214 ]. 
Hence, IL-18 is most likely not therapeutic for AMD and, based on fi ndings of 
IL-18 with respect to RPE degeneration induced by  Alu  RNA accumulation, will 
most likely prove harmful to patients already experiencing cell atrophy because of 
AMD.  

6     Future Research Needs 

 Despite the advances made in the understanding of AMD pathology, biology, and 
treatment, much work remains because of the complexity of the disease. Treatments 
for nvAMD have allowed patients who would otherwise have debilitating vision 
loss to maintain quality of life. That being said, nvAMD treatments have much 
room for improvement. Even though the risk of infection with each injection of anti-
VEGF- A drug is low, repeated injections of drug for several years increases the 
possibility of an eventual eye infection. Also, nvAMD patients who receive anti-
VEGF- A therapy also have a high likelihood to develop GA, for which there is no 
current treatment. Because of these reasons, there is a need for future treatments that 
will allow sustained therapeutic benefi t and that do not exacerbate the progression 
of the dry form of the disease. Furthermore, the pitfalls of current nvAMD therapies 
highlight another important need in the fi eld today: the need for treatments for the 
early and intermediate forms of AMD and the advanced dry form, GA. The thera-
peutic benefi t of the AREDS formulation, which is currently the only option avail-
able for non-nvAMD patients, is still debated and may be limited in its effi cacy. It 
appears that the formulation may even cause more harm than good in some patients. 
The reasons for this dearth of options for all AMD patients are manifold but ulti-
mately refl ect the lack of basic understanding of the biology underlying AMD 
pathology, including the impact of aging on development of the disease. The vast 
majority of the data in the literature concerning AMD development and progression 
are correlative observations (e.g., drusen formation, complement deposition, etc.) 
and do not offer molecular mechanistic explanations for their actual role in the dis-
ease. For example, CFH variants associate with AMD risk but as of yet, there is 
little data on how these associations translate into an actual disease mechanism that 
could be targeted by therapy. Because of this, there is no clear demarcation between 
normal aging in the eye and AMD. 

 The fi rst CFH variant identifi ed was found to be highly signifi cant, and other 
signifi cant associations between individual variants and AMD have been made 
since then, but these variants have not allowed for the creation of an animal model 
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that can fully recapitulate the patient phenotype. Mouse models will always have 
confounding factors because of the fact that mice do not have a macula, but mice 
mutant for genes identifi ed in GWAS studies have consistently failed to accurately 
refl ect observations seen in the clinic with respect to RPE atrophy and visual func-
tion loss. Moreover, despite not having a macula, mouse models of nvAMD have 
been useful in their ability to advance clinical therapies for macular nvAMD in 
humans. This begs the question about whether the reason there is no effective treat-
ment for early, intermediate, or dry AMD is because of the fact that current com-
monly accepted models do not adequately refl ect the disease and the impact of 
aging on development of the disease has not been thoroughly tested. The number of 
failed clinical trials supports this hypothesis. The biggest challenge facing AMD 
research today is the fact that the fi eld needs to fi nd a way to tie clinical observations 
(including, but not limited to, genetic associations) to experimental models that 
accurately refl ect the disease to allow for a comprehensive understanding of molec-
ular disease processes so new, effective treatments can be created.     
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1            Introduction 

 Why is there a chapter on HIV in a translational science textbook on aging? Effective 
antiretroviral therapy (ART) has resulted in many people with HIV infection living 
far beyond what was thought possible just a few years ago [ 1 ,  2 ]. It is estimated that 
over half of all U.S. HIV-infected persons will be >50 years by 2015 [ 3 ,  4 ], and the 
success and availability of ART is even leading to an aging HIV-infected population 
in developing nations [ 1 ,  5 ,  6 ], emphasizing the need for aging-related research in 
those countries where HIV burden of illness is greatest [ 7 ]. 

 There is marked debate as to whether HIV accelerates aging itself or is an added 
risk factor for a number of diseases and conditions that lead to an “aged phenotype.” 
Of course, there is no single pathway that defi nes “aging” – in fact, two recent, 
excellent reviews [ 8 ,  9 ] emphasize a number of “hallmarks” of aging – biologic 
changes that accompany aging, but none is clearly “the” causal pathway. 
Cardiovascular disease (CVD) and many other diseases increase with age, and 
advancing age is the leading risk factor for CVD. But we generally don’t consider 
CVD risk factors (e.g. hypercholesterolemia) to be conditions that accelerate aging 
itself. However aging with HIV is different than aging with hypercholesterolemia; a 
much broader array of illnesses occurs with greater frequency in people aging with 
HIV (PAWH). This leads not only to prematurity of a single disease, but multiple 
diseases, as well as decreased physiologic reserve and increased vulnerability to 
catastrophic illness, hospitalization and death. Functional decline – physical and/or 
cognitive – often accompanies multi-morbidity or may occur independently, but in 
either case functional decline is the strongest risk factor for disability and loss of 
independence, particularly when social and family support structures are lacking. 
This state of multi-morbidity, vulnerability, functional decline and loss of indepen-
dence is what we usually view as “old” – or the aged phenotype – and there is no 
doubt that this phenotype occurs earlier in PAWH when compared to HIV-uninfected 
persons [ 10 – 14 ]. In this chapter, we will briefl y summarize a few examples of age- 
related serious non-AIDS events (SNAEs) such as CVD and cancer – and geriatric 
syndromes (functional decline/frailty and multi-morbidity) to highlight the clinical 
relevance and translational opportunities to link mechanisms to clinical outcomes in 
PAWH.  

2     Increased Prevalence of Age-Related, Serious Non-AIDS 
Events (SNAEs) in PAWH 

 While life expectancy has increased markedly for PAWH, this group experiences a 
greater frequency of age-associated comorbid conditions, such as CVD, non-AIDS- 
defi ning cancers (liver, lung, anal), osteoporosis/osteopenia/bone fractures, meta-
bolic syndrome, and neurocognitive dysfunction. These events are termed SNAEs 
and increasingly robust data suggest they are very common in PAWH, even those 
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well controlled on ART [ 15 ]. CVD and cancer have the most robust database and 
are therefore examined in greater detail in the following paragraphs. 

 CVD risk factors and rates of acute coronary syndromes and heart failure are 
markedly increased in HIV-infected vs. age matched control subjects [ 16 – 20 ], and 
coronary artery “age” is accelerated on average by about 15 years in treated HIV- 
infected persons (median duration of ART ~11 years) as assessed by coronary artery 
calcium (CAC) score comparing PAWH to age-defi ned norms established in the 
MultiEthnic Study on Aging (MESA) cohort [ 21 ]. Higher levels of C-reactive pro-
tein, interleukin-6, and D-dimer have been shown to be signifi cantly associated with 
an increased risk of all-cause mortality in HIV-infected individuals not on ART, and 
much of this is cardiovascular mortality [ 22 ]. Specifi c ART drugs also may be caus-
ally associated with early heart disease, even after controlling for age and traditional 
cardiovascular risk factors [ 23 ,  24 ]. Further, lipodystrophy and metabolic syndrome 
(altered body fat, hyperlipidemia and insulin resistance) are common in HIV- 
infected patients receiving ART [ 25 ,  26 ]. The redistribution of fat mass and progres-
sion to metabolic syndrome (12/100 patient-years) typically occurs within 3 years 
after the initiation of ART [ 27 ], when weight gain is often substantial, thus increas-
ing cardiovascular disease risk. Enhanced cardiovascular “aging” is not limited to 
coronary artery disease. Left ventricular diastolic dysfunction and increased vascu-
lar stiffness [ 28 – 30 ] are more common in HIV-infected subjects versus uninfected, 
age-matched controls even after controlling for hypertension and other risk factors. 
Heart failure and atrial fi brillation, typically seen in older adults, is increasingly 
being reported in younger PAWH [ 18 – 20 ]. 

 As ART use has become widespread, AIDS-defi ning cancers (Kaposi’s Sarcoma, 
lymphomas) have become less common in this population, but increased survival 
and perhaps decreased competing causes of AIDS-defi ning cancer deaths have led 
to increased numbers of non-AIDS-Defi ning Cancers (NADC) [ 31 ]. A number of 
NADC occur more frequently in PAWH than age-matched control cohorts [ 32 ] and 
NADC are increasingly a cause of death in PAWH [ 15 ]. Initial reports suggested the 
age of onset of many NADC was much earlier than in those without HIV, but most 
of this appears to be a cohort effect. PAWH are a younger cohort than the general 
population [ 1 ] so colon, lung or other cancers may appear to only be occurring in 
younger adults, but there aren’t many 70+ year old PAWH so this is often a false 
impression. As control groups and age-adjustments have been refi ned, it appears 
NADC are only minimally “accelerated” with regard to age at diagnosis – perhaps 
3–5 years [ 33 ] (Table  1 ). It is important to note that some NADC that are most 
strongly related to age – breast cancer in women and prostate cancer in men – do not 
appear to be increased in those with HIV [ 33 ,  34 ], though data are sure to evolve as 
persons continue to age with HIV infection.

   Another way to examine the question of whether HIV directly “ages” individuals 
or acts in parallel is to assess whether age remains an independent risk factor for 
SNAEs in PAWH. Within cohorts of PAWH, increased age is an independent pre-
dictor of stroke, myocardial infarction, fractures, osteoporosis, diabetes, and non- 
AIDS associated cancers, while controlling for CD4 count, viral load, intravenous 
drug use, smoking, and duration of HIV infection [ 35 ].  
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3     Geriatric Syndromes in PAWH 

3.1     Multi-morbidity 

 Despite the success of ART, extensive evidence suggests HIV-infected persons are 
more likely than their HIV-uninfected counterparts to have multiple comorbidities 
at a young age. This is perhaps not surprising for illnesses with overlapping risk 
factors (i.e. hepatitis C, human papillomavirus [HPV]-related cancers), but it is also 
true across organ systems where intersecting risks are not so clear; early-onset of 
disease in individual organ systems in PAWH has been observed (e.g. coronary 
artery disease, arterial stiffness, cerebral blood fl ow, and bone fractures) [ 21 ,  36 –
 39 ]. Chronic liver and renal diseases are also more common in PAWH compared to 
HIV uninfected populations [ 40 ]. Although behavioral factors such as smoking and 
illicit drug use are more prevalent in populations of PAWH, controlled studies have 
shown that these factors do not fully explain the increased risk for age-related con-
ditions such as cardiovascular and liver disease [ 35 ,  41 ,  42 ]. Where aggressive ART 
is widely available, 58 % of HIV-infected subjects aged 51–60 have one or more of 
the following: renal failure, diabetes mellitus, bone fracture, hypertension or overt 
cardiovascular disease vs. only 35 % of HIV-uninfected controls [ 10 ,  35 ]. The rate 
of multi-morbidity (> one major chronic illness) at age >50 years is about 2.5 times 
higher in HIV-infected subjects vs. HIV-uninfected controls [ 10 ,  35 ,  40 ]. 

 On average, PAWH aged 50 and older have up to three chronic illnesses, in addi-
tion to HIV [ 43 ] (Fig.  1 ). Depending on the population, studies have demonstrated 
increased prevalence of specifi c comorbidities. The onset of multi-morbidity 
appears to be accelerated 12–15 years in those with HIV infection [ 10 ]. Further, 
multi-morbidity risk assessments such as the Veterans Aging Cohort Study (VACS) 
Index derived and validated in HIV-infected subjects correlates with mortality risk 
and hospitalization [ 44 ,  45 ]. Importantly, the VACS index has now been validated to 
predict mortality in HIV-uninfected populations [ 45 ] demonstrating the 
 generalizability of this integrated measure of cumulative damage to the hematopoi-
etic, immunologic, hepatic and renal systems.

   Table 1    Age differences between HIV-infected and HIV-uninfected for select NADC   

 Select 
NADC 

 Median age 
at diagnosis 
in AIDS 
population 
(years) 

 Median age at 
diagnosis in 
HIV –  general 
population 
(years) 

 Apparent 
difference 
(years) 

 Median expected 
age at diagnosis in 
HIV –  population 
if cohort limited 
to the same age 
distribution as those 
with AIDS (years) 

 Real 
difference 
(years) 

 Rectal  46  69  −23  51  −5 
 Lung  50  70  −20  54  −4 
 Ovarian  42  63  −21  46  −4 
 Myeloma  47  70  −23  52  −5 

  Adapted from [ 33 ]  
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3.2        Polypharmacy 

 In the setting of multi-morbidity, PAWH have increased risks of developing both 
HIV-associated non-AIDS (HANA) and non-HIV related conditions. Consequently, 
polypharmacy and increased complexity of care are becoming commonplace in the 
health management of PAWH, noting that the disease courses may be altered 
depending on the patient’s state of virologic suppression [ 46 ]. PAWH who are aged 
50 and older are more likely to have at least one medication (in addition to ART) 
compared to PAWH younger than age 50 [ 47 ]. Specifi cally, older PAWH are more 
likely to take concurrent cardiovascular, gastrointestinal, and hormonal medications 
than younger patients [ 47 ]. 

 The inherent complexity of polypharmacy translates into potential harm for older 
patients. In older adults without HIV, polypharmacy is a known risk factor for falls, 
adverse drug events (ADE) including drug-drug interactions (DDI), morbidity, and 
mortality [ 48 ]. These associations remain true for PAWH but may occur at younger 
ages compared to people without HIV infection [ 47 – 49 ]. At baseline, older patients 
are at increased risk for ADE, compared to younger patients. In addition to direct 
toxicity for the patient, ADE and DDI can mean decreased effi cacy of therapy, both 
for HIV and other comorbidities, especially in the case of protease inhibitor 
 (PI)-based ART [ 49 ]. The list of potential DDI is extensive and includes virtually 
every class of therapeutics, including cardiovascular, gastrointestinal, hematologic, 
anti- neoplastic, antimicrobial, psychiatric, and endocrine (including inhaled ste-
roids which aren’t typically considered to have systemic effects) [ 47 – 50 ]. Predicting 
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  Fig. 1    Prevalence of comorbidity burden, HIV-infected persons age > 50 (Data derived from [ 10 ])       
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DDI is more challenging due to changes in drug metabolism that occur with normal 
aging, a process which may be accelerated or accentuated in PAWH. The known 
increased prevalence of liver and kidney disease in PAWH further complicates pre-
diction and prevention of DDI and ADE [ 48 ,  49 ]. 

 Adherence to ART is extremely important for PAWH and is a predictor of mor-
bidity and mortality for these patients, but a signifi cant challenge for many [ 49 ,  51 –
 53 ]. Similar principles regarding consistent medication use can apply to other chronic 
illnesses, including the common HANA and non-HIV associated comorbidities 
which are so prevalent in this population. Recent data suggest that lower pill burden 
is an important factor in improving adherence and virologic suppression, making 
awareness (and avoidance if possible) of polypharmacy even more salient [ 54 ].  

3.3     Frailty 

 Frailty has been defi ned and various measures validated in older HIV-uninfected 
adults, but it is generally agreed to represent increased risk and decreased ability to 
recuperate from illness and injury. Frailty is increased in HIV-infected vs. age- 
matched HIV-uninfected controls [ 13 ,  55 – 61 ]. In those PAWH, there is a high cor-
relation between various measures of frailty validated in seniors, though defi nitions 
vary from study to study and the reader should be cautious to assess frailty defi ni-
tions, cohort effects, and control group defi nitions when comparing individual rates 
of frailty between studies [ 62 ]. Early research measured the prevalence of frailty 
using the frailty-related phenotype (FRP) in 55 year old men with HIV infection 
(infected for less than or equal to 4 years) as equivalent to the prevalence of FRP in 
men 65 years of age or older without HIV [ 12 ]. Onen et al. measured a prevalence 
of 9 % for frailty in an outpatient HIV clinic (mean age of 41.7 years), which was 
comparable to the prevalence of frailty in Caucasian Europeans aged 65 years and 
older [ 13 ]. In the same study, investigators measured patient-level characteristics; 
frailty was associated with socioeconomic status, multi-morbidity, lower education 
level, longer period of HIV infection, history of opportunistic infection, as well as 
an increased risk of hospitalization, number of hospitalizations, and inpatient length 
of stay [ 13 ]. Much of the early data suggested frailty in PAWH was associated with 
uncontrolled HIV/weight loss/wasting, but more recent data suggest frailty in HIV 
has been associated with obesity and intramuscular adiposity, as seen in HIV- 
uninfected older persons [ 59 ,  61 ,  63 ]. 

 Frailty is potentially mediated more by infl ammation and body composition than 
by HIV infection itself. This is compounded by the fact that optimal immune func-
tion may be hindered by age-related changes that are independent of virologic 
 suppression [ 46 ,  64 ]. In PAWH, frailty is associated with central obesity, sarcope-
nia, and increased muscle fat density for age [ 65 ]. Oursler et al. showed that, despite 
ART, physical function in PAWH aged 50 years and older was worse compared to 
HIV-uninfected people [ 60 ]. Regardless of age, HIV-infected patients with chronic 
pulmonary disease had worse physical function compared to HIV-uninfected peo-
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ple, such that a 50 year old person with HIV and chronic obstructive pulmonary 
disease (COPD) had functional measurements approximating a 68 year old person 
with COPD, but without HIV [ 60 ]. Within populations of PAWH, the prevalence of 
frailty is increased in people who also use intravenous drugs [ 43 ]. Not surprisingly, 
frail PAWH have a high prevalence of comorbidities, including hypertension, 
COPD, viral hepatitis, dementia, and cancer; this pattern of multi-morbidity mirrors 
trends seen in the larger population of PAWH [ 11 ]. 

 Beyond the effects that frailty may have on physical health and mental well- 
being, this phenotype has implications for healthcare delivery and models of care. 
Guideline-driven care may not be practical or universally applicable to PAWH if 
their risks of various conditions change at different age breakpoints or based on fac-
tors other than what has been measured in the foundational studies. Use of more 
tailored prediction tools such as the VACS Index may be more applicable due to 
incorporation of multiple biomarkers [ 46 ].  

3.4     Neurocognitive Impairment 

 A full examination of the neurologic manifestations of HIV and even discussion 
limited to cognitive impairment is beyond the scope of this review. Briefl y, 50 % of 
PAWH will develop an HIV-associated neurocognitive disorder (HAND) [ 43 ,  66 ]. 
HAND is a spectrum of clinical conditions ranging from asymptomatic neurocogni-
tive impairment (ANI – least severe) to HIV-associated dementia (HAD – most 
severe, previously known as “AIDS Dementia Complex”) [ 67 ] (Fig.  2 ). The symp-
toms can be largely reversed with ART, but the incidence of HAND is associated 
with worse adherence. The impact of HAND is marked with HAND being associ-
ated with decreased ability to complete daily functions, poorer quality of life, and 
shorter survival. While the incidence and prevalence of HAND are decreasing due 
to ART, the incidence and prevalence of ANI and mild neurocognitive disorder 
(MND) are stable to increasing, spurring a recommendation for universal neurocog-
nitive screening of PAWH [ 67 ,  68 ]. Furthermore, HIV itself may alter brain struc-
ture, despite ART, thus, the full expression of HIV-related cognitive disorders may 
require time to become apparent [ 69 ].

3.5        Quality of Life and Mental Health 

 Compared to HIV-uninfected people, PAWH (ages ≥ 50 years) are not as happy, 
optimistic about aging, or resilient [ 43 ,  70 ]. They also experience more perceived 
stress, anxiety about the future, and lower quality of physical and mental health 
[ 70 ]. Social isolation, a common occurrence in older adults regardless of HIV sta-
tus, is associated with increased risk for hospitalization and all-cause mortality. The 
social networks for older PAWH may shrink due to common age-related factors 
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(e.g. age-related deaths, limited transportation, geographic isolation) and/or more 
HIV-specifi c factors: loss of peers earlier in the HIV/AIDS epidemic, stigma, mar-
ginalization in the current make-up of the epidemic [ 43 ,  71 ,  72 ]. While both HIV- 
infected and HIV-uninfected older adults may experience social isolation to some 
degree, HIV infection alone is associated with increased risk and prevalence of 
social isolation [ 71 ].   

4     Potential Mechanisms Linking Chronic HIV Infection 
with Age-Related Conditions 

4.1     Immunological Similarities Between HIV Infection 
and Healthy Aging 

 The overlapping burden of morbidities and SNAEs in PAWH and aged individuals 
has led to the hypothesis that similar pathogenic mechanisms are driving the devel-
opment of these diseases in both populations. Indeed there are many immunological 
parallels between chronic HIV infection and healthy aging which are summarized 
in Table  2  and discussed in detail below.
      Adaptive Immune Changes 
 The reduced number of naïve T cells and reduced CD4:CD8 T cell ratio observed in 
the aged is a hallmark of T cell immunosenescence [ 73 ,  74 ] and also occurs in HIV- 
infected individuals due in part to thymic involution and reduced regenerative 
capacity [ 75 ,  76 ]. Low CD4:CD8 T cell ratio is an independent predictor of non- 
AIDS mortality [ 77 ] and cardiovascular disease risk [ 78 ,  79 ] in HIV-infected 

HIV-Associated Neurocognitive Disorders
(HAND) 
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neurocognitive
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neurocognitive
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(MND)

HIV-associated
dementia
(HAD)  
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  Fig. 2    The spectrum of HIV-associated neurocognitive impairment       
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individuals, suggesting T cell immunosenescence has important clinical implica-
tions in the context of PAWH. Importantly, the majority of HIV-infected individuals 
on long term ART fail to normalize the CD4:CD8 T cell ratio, despite restoration of 
CD4+ T cell levels [ 80 ]. Elderly HIV-uninfected and HIV-infected individuals also 
exhibit increased T cell activation (as measured by expression of the activation 
markers HLA-DR and CD38) [ 76 ,  81 ], an increased susceptibility to spontaneous 
apoptosis [ 82 ,  83 ] and an expansion of ‘senescent’ memory CD8+ T cells which 
lack expression of the co-stimulatory molecule CD28, contain shortened telomeres 
and exhibit a reduced proliferative potential [ 84 – 86 ]. Expansion of this cell popula-
tion is thought to be largely driven by chronic antigenic stimulation by cytomegalo-
virus (CMV), with a large proportion of CD8+ T cells in both HIV-infected and 
aged individuals being specifi c for CMV epitopes (discussed further below). 
However, there are phenotypic differences in the T cells expanded due to HIV infec-
tion and those observed in CMV+ HIV seronegative individuals, in that the former 
show an increased number of transitional memory cells and a reduced proportion of 
CD28- cells expressing CD57 (a marker of reduced proliferative capacity), with low 
levels of this population being associated with increased risk of mortality [ 87 ]. 
These observations suggest that although there are many phenotypic similarities 
between HIV infection and aging, the mechanistic drivers, and thus immunological 
consequences of, senescent T cell expansion in HIV and aging may be subtly 
different. 

 While the above mentioned immunological alterations due to HIV are signifi -
cantly improved by ART, they typically fail to normalize, and defects including 
reduced naïve T cell proportions, inverted CD4:CD8 T cell ratios and increased T 
cell activation largely persist in virologically suppressed HIV-infected individuals 
(reviewed in [ 88 ]). Furthermore, aging appears to impact negatively on the immu-
nological benefi t of ART and associated reductions in immune activation, with 
older HIV-infected individuals exhibiting muted naïve T cell regeneration following 
ART initiation [ 89 ], suggesting immunological aging may heighten HIV-related 
immune dysfunction in older HIV-infected individuals. 

 During aging, there is a reduction in the number of both total and memory B cells 
and defects emerge in class switching and antibody production which are thought to 
contribute to impaired vaccine response in the elderly [ 81 ,  90 ]. Viremic HIV infec-
tion is similarly associated with reduced total and memory B cell numbers together 
with hypergammaglobulinemia, increased cellular activation and increased suscep-
tibility to apoptosis [ 91 ]. ART reverses many of these defects, although virologi-
cally suppressed HIV-infected individuals continue to show impaired antibody 
production, reduced vaccine responses and an incomplete restoration of memory B 
cells [ 92 ,  93 ]. Markers of HIV disease severity including viral load and immune 
activation are associated with an increased frequency of regulatory B cells (Bregs), 
which inhibit CD8+ T cell proliferation and function via a mechanism involving 
IL-10 and PD-1 [ 94 ], which may potentiate immune dysfunction in HIV. Bregs 
from HIV-infected individuals constitutively express higher levels of IL-6, IL-10 
and cellular activation markers, suggesting increased Breg activation in vivo [ 95 ]. 
Interestingly, older HIV-infected individuals show an altered pattern of B cell resto-
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HIV Infection Aging

T cells

Decreased naïve and increased memory T cells
Decreased CD4:CD8 T cell ratio

Expansion of senescent CD8+ CD28-T cells
Expansion of CMV-specific CD8+ T cells

B cells

Decreased numbers and proportion of mature/memory B cells
Impaired class switching and antibody production, leading to

impaired vaccine response

Monocytes/Macrophage

Impaired phagocytosis
Increased proportion CD16+ inflammatory monocytes

Increased expression of cellular activation markers
Increased TLR4-stimulated cytokine/chemokine production

Dysfunctional TLR-responses

Natural Killer (NK) cells
Expansion of CD56dim population (acute HIV infection only)
Impaired cytokine production (modest decline in aging) 

Increased activation
Increased spontaneous ADCC
Expansion of CD56-
population
Impaired cytotoxic potential

Dendritic cells Reduced numbers in blood (pDC in HIV and mDC in aging)

Impaired response to TLR 7/8
stimulation
Increased activation in pDC

Impaired chemotaxis and antigen
uptake 

Neutrophils Increased basal activation Decreased chemotaxis

Impaired phagocytosis, migration, respiratory burst and
intracellular killing

Inflammation Increased plasma levels of IL-6, TNF, hsCRP

Soluble markers of
immune activation

Increased plasma levels of CXCL10, sCD14, sCD163, neopterin

Gut integrity

Increased plasma concentrations of LPS
Increased levels of gut permeability markers I-FABP and/or

zonulin-1

Oxidative stress Increased plasma markers of oxidative stress

Telomere length Shortened (PBMC, T cells, monocytes)

  Shaded cells indicate immunological changes which occur in both HIV infection and aging  

   Table 2    Comparison of immunological changes observed in HIV infection and aging       
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ration after ART initiation, including expansion of the naïve population to levels 
greater than those in uninfected individuals [ 96 ], suggesting that HIV and age may 
potentiate immune dysfunction in PAWH. These studies collectively indicate that 
HIV infection induces a phenotype within the adaptive immune system which 
resembles age-related immunosenescence and immune dysfunction, and viral sup-
pression associated with ART only partially improves these parameters.  

4.1.1     Innate Immune Changes 

 Immunological similarities are also seen between HIV infection and healthy aging 
within the innate immune system. Monocytes from both HIV-infected individuals 
and the elderly show impaired phagocytic function, increased TLR4-mediated pro-
duction of pro-infl ammatory cytokines and chemokines and an increase in pheno-
typic markers of activation, including an expansion of the infl ammatory CD16+ 
monocyte subset [ 97 – 101 ]. Viral suppression associated with ART appears to nor-
malize some of these changes, such as the proportions of CD16+ subsets, whilst 
other markers of monocyte dysfunction persist [ 97 ,  102 ]. Elevated levels of soluble 
plasma monocyte/innate immune activation markers including the chemoattractant 
CXCL10 (released from IFNγ-stimulated monocytes), neopterin and soluble(s) 
receptors CD14 and CD163 (shed from activated monocytes/macrophages) are ele-
vated in both the elderly and HIV-infected individuals and although ART reduces the 
levels of these markers in HIV infection, they fail to normalize [ 97 ,  98 ,  103 – 107 ]. 

 An increase in total NK cell number, due to expansion of the CD56 dim  population 
occurs during aging and in acute HIV infection [ 74 ,  108 ]. Aging is associated with 
a minimal impairment of NK cell cytotoxic function and cytokine production [ 109 –
 111 ], whilst overall cytolytic activity is impaired in HIV infection (most  prominently 
in viremic infection) which may be due in part to expansion of an anergic CD56 neg  
population in HIV-infected individuals [ 108 ]. NK cells from both viremic and viro-
logically suppressed HIV-infected individuals show heightened basal activation 
[ 112 ,  113 ] and spontaneous ADCC activity [ 112 ], whilst cytokine production is 
impaired [ 114 ]. The functionality of neutrophils is similarly impaired in HIV infec-
tion as in aging, as evidenced by impaired phagocytosis and oxidative burst but a 
heightened basal level of activation [ 115 ]. The impact of age on the number, activa-
tion state and function of dendritic cells remains unclear due to confl icting fi ndings 
(reviewed in [ 116 ]), although chemotaxis and antigen uptake are impaired in aged 
humans [ 117 ,  118 ] whilst HIV infection is associated with impaired ex vivo response 
of plasmacytoid dendritic cells to TLR7 ligands [ 119 ]. Taken together, these data 
suggest that a signature of increased activation but dysregulated function is a com-
mon effect of both HIV infection and aging on innate immune cells, although much 
work is required to fully defi ne the extent of these effects. It is important to note that 
many of the above mentioned age-related immunological changes have been 
observed in cross-sectional studies of HIV-infected individuals with varying degrees 
of immunosuppression both prior to and following ART initiation. Future 
 longitudinal studies are required in cohorts of individuals who initiate ART early 
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and maintain immunocompetence to adequately determine the impact of virologi-
cally suppressed HIV infection on age-related immune changes in PAWH.   

4.2     Telomere Shortening 

 The presence of telomeres at the ends of chromosomes protects the DNA from dam-
age and preserves the replicative potential of the cell. Telomere length progressively 
decreases with age and triggers replicative senescence, which contributes to immu-
nosenescence and immune aging [ 120 ]. Telomere shortening is associated with risk 
of a range of age-related diseases including malignancies [ 121 ], cardiovascular/
metabolic disease [ 122 – 124 ] and neurocognitive disease [ 125 ,  126 ] (summarized in 
Table  3  and reviewed in [ 195 ]) and has been linked with premature death in a large 
prospective study in Denmark [ 123 ]. HIV infection is associated with heightened 
telomere shortening within both T cells [ 85 ] and monocytes [ 97 ]. However, epide-
miological links between shortened telomeres and HIV-related co-morbidities have 
received little investigation to date.

   Telomere length is maintained within cells via the action of telomerase and pre-
mature telomere shortening in HIV infection may be due to reduced activity of this 
critical enzyme. The HIV proteins Vpr [ 196 ] and Tat [ 197 ] have been shown to 
inhibit telomerase in vitro whilst HIV-infected individuals appear to have an 
impaired ability to upregulate telomerase in response to cell stimulation [ 198 ]. 
Antiretroviral therapy may also contribute to premature telomere shortening as the 
nucleos(t)ide reverse transcriptase inhibitor (NRTI) drugs can inhibit the telomerase 
reverse transcriptase (TERT) component of human telomerase. In vitro studies have 
shown that even modern, relatively non-toxic NRTIs such as tenofovir and 
 emtricitabine show inhibitory effects on human TERT [ 199 ,  200 ], and can acceler-
ate telomere loss in cultured cells [ 199 ] whilst a small cross-sectional study found 
telomeres from individuals on NRTI-containing regimens were shorter than HIV 
negative controls and HIV-infected individuals taking non-NRTI containing regi-
mens [ 200 ]. NRTIs remain the backbone of ART regimens throughout the world, 
but the accumulated consequences of decades of NRTI-treatment on oxidative stress 
and telomere shortening remain to be defi ned.  

4.3     Oxidative Stress 

 An imbalance between levels of oxidants and anti-oxidants occurs during aging, 
resulting in increased plasma markers of oxidative stress in the elderly [ 201 ,  202 ] 
which contribute to immunosenescence and infl amm-aging (reviewed in [ 203 ]). 
HIV infection is also associated with increased levels of oxidative stress, with 
decreased plasma levels of anti oxidant factors such as glutathione and increased 
levels of the oxidative stress marker malondialdehyde found in both viremic and 
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     Table 3    Associations between immunological changes occurring during aging/HIV infection and 
morbidity/mortality   

 HIV-infected 
 General 
population 

 Marker  Outcome/risk factor 

  Infl ammation  
 Cardiovascular/metabolic 
disease 

 IL-6  Cardiovascular events 
[ 127 ,  128 ], obesity [ 129 ] 

 Sudden cardiac 
death [ 130 ,  131 ], 
cardiovascular 
events [ 131 – 134 ] 

 hsCRP  Cardiovascular events 
[ 127 ,  128 ], progression 
of cIMT [ 135 ], metabolic 
syndrome [ 136 ], diabetes 
[ 137 ] 

 Cardiovascular 
events [ 131 ,  138 ], 
insulin resistance 
[ 139 ] 

 sTNFRI/II  Obesity [ 129 ], diabetes 
[ 137 ] 

 Cardiovascular 
events [ 138 ] 

 TNF  Coronary artery calcium 
[ 140 ] 

 Neurocognitive impairment  IL-6  [ 141 ]  [ 132 ] Future 
cognitive decline 
[ 142 ] 

 hsCRP  [ 132 ,  143 ] 
 sTNFR-I/II  [ 144 ] 
 TNF  Alzheimer’s 

disease [ 145 ,  146 ] 
 Malignancies  IL-6, hsCRP  All cancers [ 147 ]  All cancers [ 148 ] 

 D-Dimer  All cancers [ 147 ] 
 TNF  All cancers [ 148 ] 

 Bone disease/osteoporosis  hsCRP  Bone mineral 
density [ 149 ], 
fracture risk 
[ 150 ], future bone 
mineral density 
loss [ 151 ] 

 IL-6  Future bone 
mineral density 
loss [ 151 ,  152 ] 

 TNF  Future bone 
mineral density 
loss [ 151 ] 

 Frailty/disability  IL-6  [ 153 ,  154 ]  [ 132 ,  155 ] 
 TNF  [ 153 ] 
 CRP  [ 153 ]  [ 132 ,  156 ] 

 Mortality  sTNFRI, 
hsCRP 

 [ 157 ] 

(continued)
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Table 3 (continued)

 HIV-infected 
 General 
population 

 Marker  Outcome/risk factor 

  Loss of gut integrity/microbial translocation  
 Cardiovascular/metabolic 
disease 

 LPS  Progression of cIMT 
[ 158 ], endothelial 
dysfunction [ 159 ], 
hypercholesterolemia 
[ 160 ], insulin resistance 
[ 160 ], hypertension 
[ 161 ] 

 Metabolic 
syndrome [ 162 ] 

 LBP  Metabolic 
syndrome [ 163 ] 

 Neurocognitive impairment  LPS  [ 141 ,  164 ] 
 Malignancies  LPS  Non-Hodgkin’s 

lymphoma [ 165 ] 
 Mortality  IFAB-1, 

zonulin 
 [ 157 ] 

  Monocyte/innate immune activation  
 Cardiovascular/metabolic 
disease 

 sCD14  Increased cIMT [ 166 ], 
cIMT progression [ 158 ], 
coronary calcifi cation 
[ 167 ], hypertension 
[ 161 ] 

 Diabetes [ 169 ], 
hypertension 
[ 169 ] 

 sCD163  Arterial infl ammation 
[ 170 ], non-calcifi ed 
coronary artery plaques 
[ 171 ] 

 Atherosclerosis 
[ 172 ], insulin 
resistance [ 139 , 
 173 ,  174 ], 
diabetes [ 175 ] 

 MCP-1  Coronary artery calcium 
[ 140 ] 

 Neurocognitive impairment  sCD14  [ 141 ,  144 ,  176 ,  177 ] 
 sCD163  [ 178 ] 
 Neopterin  Alzheimer’s 

disease [ 179 ] 
 Malignancies  sCD14  Non-Hodgkin’s 

lymphoma [ 165 ] 
 Frailty/disability  Neopterin  [ 180 ] 
 Mortality  sCD14  [ 157 ] 
  T cell activation/senescence  
 Cardiovascular/metabolic 
disease 

 HLADR + 
CD38+ 
T cells 

 Carotid artery plaques 
[ 181 ,  182 ], carotid artery 
stiffness [ 183 ] 

 Bone disease/osteoporosis  T cell 
activation 

 Bone mineral density 
[ 184 ] 

 Mortality  Low CD8+ 
CD28- CD57+ 
T cells 

 [ 185 ] 

(continued)
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Table 3 (continued)

 HIV-infected 
 General 
population 

 Marker  Outcome/risk factor 

  Telomere shortening  
 Cardiovascular/metabolic 
disease 

 Leukocyte 
telomere 
length 

 Increased cIMT 
[ 122 ,  185 ], risk of 
myocardial 
infarction and 
stroke [ 122 – 124 ], 
Diabetes [ 122 ] 

 Monocyte 
telomere 
length 

 Type 2 diabetes 
[ 187 ] 

 Neurocognitive impairment  Leukocyte 
telomere 
length 

 Dementia [ 125 ] 

 Monocyte 
telomere 
length 

 Alzheimer’s 
disease [ 126 ] 

 Malignancies  Epithelial cell 
telomere 
length 

 Epithelial cancer 
[ 121 ] 

 Telomere 
length in 
mucosal tissue 

 Early stages of 
gastric carcinoma 
[ 188 ] 

 Early death  Leukocyte 
telomere 
length 

 [ 123 ,  125 ] 

  Cytomegalovirus (CMV) infection  
 Cardiovascular/metabolic 
disease 

 CMV 
seropositivity 

 Type 2 diabetes 
[ 189 ], mortality in 
coronary artery 
disease patients 
[ 190 ] 

 CMV-specifi c 
T cells 
responses 

 cIMT [ 191 ] 

 CMV IgG  Carotid artery disease 
[ 192 ] 

 Frailty/disability  CMV IgG  [ 193 ] 
 Mortality  CMV IgG 

 CMV 
seropositivity 

 All-cause 
mortality [ 193 ], 
cardiovascular 
related deaths 
[ 194 ] 
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virologically suppressed HIV-infected individuals [ 204 ,  205 ]. High intracellular 
levels of the antioxidant factors N-acetylcysteine and glutathione inhibit HIV repli-
cation in infected cells [ 206 ] whilst low levels of these factors are associated with 
increased NF-kB-mediated transcription of HIV and a heightened ability of the pro- 
infl ammatory cytokine TNF to activate HIV transcription [ 207 ], suggesting a posi-
tive feedback loop between infl ammation and HIV replication. The mechanism 
responsible for decreased anti oxidant levels in HIV may involve the HIV Tat pro-
tein, which has been shown in mouse models to decrease production of anti oxidants 
and induce mitochondrial damage [ 208 ]. Certain antiretroviral (ARV) drugs includ-
ing PIs and NRTIs increase the production of reactive oxygen from cells treated 
in vitro [ 209 ]. Consistent with this, one study reported higher levels of oxidative 
stress in ART-treated individuals as compared to both untreated HIV-infected and 
uninfected individuals, however the HIV-infected individuals in this study had sig-
nifi cantly higher levels of a number of confounding factors including concurrent 
hepatitis C infection [ 210 ]. More data from virologically suppressed HIV-infected 
cohorts with adequate control of variables which may potentially infl uence oxida-
tive stress are required to determine the impact of oxidative stress on immune aging 
in the modern ART era.  

4.4     Chronic Infl ammation and Immune Activation 

 Increased infl ammation is one of the cornerstones of immunological aging and 
geroscience, and appears to be potentiated by HIV infection. Indeed, chronic infl am-
mation and related immune activation likely has the greatest impact on morbidity 
and mortality in PAWH in the post-ART era. Infl ammaging is a well-documented 
state of chronic, low-grade infl ammation occurring progressively with age and is 
associated with the development of many age-related morbidities and functional 
decline in the elderly [ 211 ]. Markers of infl ammation including IL-6, TNFα and 
high-sensitivity C-reactive protein (hsCRP) are elevated in both HIV-infected indi-
viduals and the elderly [ 212 ,  213 ] and are associated with increased risk of SNAEs 
including CVD, frailty, malignancies, bone disease and neurocognitive decline. 
Infl ammation is intrinsically linked with cellular activation, and biomarkers of 
immune activation and infl ammation are increasingly being recognised as risk pre-
dictors of infl ammatory diseases in HIV infection, as they are in the aged (see 
Table  3 ). Biomarkers of monocyte/macrophage activation including plasma levels 
of sCD163 and sCD14 are predictive of age-related diseases including neurocogni-
tive impairment/dementia [ 141 ,  176 – 178 ], malignancies [ 165 ] and also mortality 
[ 214 ] in HIV infection (see Table  3 ). Chronic monocyte/macrophage activation 
appears to be particularly relevant for the development of CVD in HIV infection; 
biomarkers of monocyte activation including the proportion of infl ammatory CD16+ 
monocytes, the expression of monocyte activation markers (i.e. CD11b) and the 
soluble activation markers mentioned above are associated with atherosclerosis and 
its progression [ 158 ,  159 ,  215 ], arterial infl ammation [ 170 ], coronary calcium score 
[ 167 ] and the presence of non-calcifi ed carotid plaques [ 171 ] in HIV-infected 
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individuals. Importantly, these associations have been made in cohorts of primarily 
virologically suppressed individuals, suggesting mechanisms other than overt HIV 
viremia are involved. Indeed, in the post-ART era, markers of infl ammation and/or 
immune activation are emerging as more relevant predictors of disease outcome and 
death in virologically suppressed individuals than traditional HIV biomarkers such 
as viral load and CD4+ T cells count [ 157 ,  216 ]. Recent data reporting an associa-
tion between sCD163 levels and telomere length [ 217 ] provide a direct link between 
monocyte/macrophage activation and potentiation of immunological aging. Given 
chronic infl ammation/immune activation and resultant disease burden are similar 
between HIV-infected individuals and the aged, the question arises to what extent 
the mechanisms driving these phenomena are similar in both populations and what 
contributing factors may be unique to HIV infection.   

5     Factors Potentiating Age-Related Changes and Morbidity 
in HIV-Infected Individuals 

 The development of SNAEs in PAWH is multifactorial, and typically results from 
the combined effects of traditional risk factors, HIV-specifi c effects, and a potentia-
tion of age-related changes (see Fig.  3 ).

5.1       Traditional Risk Factors 

 Traditional risk factors for disease development are highly relevant for the aging 
HIV-infected population, not only as they are often more readily modifi able but also 
because they may potentiate HIV-specifi c factors. Many cohort studies report a 
higher prevalence of smoking amongst HIV-infected participants [ 218 – 220 ], and 
whilst illicit drug use is higher within certain high risk HIV-infected populations, 
this variable is often not adequately assessed or controlled for in HIV cohort studies. 
Relevant to the development of cardiovascular disease, HIV infection is associated 
with dyslipidemia and metabolic alterations, which are discussed further below.  

5.2     Metabolic Alterations 

 Hyperglycemia occurs in up to 17 % of HIV-infected individuals receiving ART and 
diabetes mellitus is more common in HIV infected vs seronegative people [ 221 ], 
with some studies reporting up to a fourfold increased risk due to HIV [ 222 ]. Insulin 
resistance in ART-treated HIV infection is largely associated with the use of prote-
ase inhibitor antiretroviral drugs, which act to inhibit the glucose transporter Glut-4 
[ 223 ], although hepatitis C virus (HCV) co-infection, infl ammation and immunode-
fi ciency also contribute to insulin resistance and diabetes in HIV infection [ 221 ]. 
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High glucose levels have been shown to increase the susceptibility of CD4+ T cells 
in HIV infection in vitro by upregulating the expression of the HIV co-receptor 
CXCR4 [ 224 ], whilst increased expression of Glut-1 on T cells from HIV-infected 
individuals (irrespective of ART) is associated with T cell activation and immuno-
defi ciency [ 169 ]. Taken together, these data suggest that metabolic alterations due 
to both HIV and its treatment not only increase the risk of co-morbidities such as 
diabetes, but may also perpetuate HIV replication and immune activation to further 
drive immune exhaustion and senescence in PAWH. 

 HIV-related lipodystrophy syndrome is common in HIV infection, and includes 
lipoatrophy (loss of subcutaneous fat) and dyslipidemia. Lipoatrophy appears to be 
largely due to PI and NRTI use, particularly the NRTIs stavudine and zidovudine 
(reviewed in [ 225 ]). Whilst HIV infection per se is associated with lipid alterations 
including high triglyceride and low HDL levels (thought to be due to the effect of 
infl ammation on lipid peroxidation, reactive oxygen species production and vascu-
lar changes [ 226 ,  227 ]), the majority of dyslipidemia observed in the post-ART era 
is due to the specifi c effects of antiretroviral drugs.  

5.3     Antiretroviral Drugs 

 Although highly effective in inhibiting HIV replication and maintaining immune 
health, many antiretroviral drugs, particularly the NRTIs, have some degree of tox-
icity which is at least partially attributable to effects on the mitochondria. The 
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  Fig. 3    Mechanism contributing to the pathogenesis of SNAEs in HIV-infected individuals       

 

A. Hearps et al.



527

ability of NRTIs to inhibit HIV reverse transcription is due to structural similarities 
between NRTIs and endogenous nucleos(t)ides, and whilst nuclear DNA polymer-
ases are not signifi cantly affected by NRTIs, the mitochondrial replicase pol γ is 
inhibited by NRTIs at physiologically relevant levels, resulting in depletion of mito-
chondrial DNA and increased oxidative stress (reviewed in [ 208 ]). Specifi cally, zid-
ovudine and stavudine have been shown to increase oxidative stress in a number of 
cell types including adipocytes and macrophages [ 228 ]. As discussed above, NRTIs 
are also able to inhibit the RT component of cellular telomerase and may potentially 
contribute to premature telomere shortening. Interestingly, certain NRTIs have 
recently been shown to be able to inhibit NLRP3 infl ammasome-mediated activa-
tion of caspase-1 and subsequent production of the pro-infl ammatory cytokines 
IL-1β and IL-18 [ 229 ], suggesting NRTIs may have an unexpected infl uence on 
cytokine production in HIV-infected individuals receiving these drugs. 

 HIV-infected individuals treated with ART have a relative risk of CVD of 1.52 
(95 % CI 1.35–1.70) compared to untreated individuals [ 230 ], suggesting ART may 
contribute to the pathogenesis of CVD. Indeed, recent use of certain PIs and the 
NRTIs abacavir and didanosine has been associated with increased risk of myocar-
dial infarction [ 231 ,  232 ] although the association with abacavir was not reproduced 
in a randomised control trial and remains controversial [ 233 ]. The increased risk 
attributable to PIs is largely due to an effect on lipid levels, as 70–80 % of HIV- 
infected individuals receiving PI-containing ART regimens show elevated lipid 
 levels [ 226 ]. Most PIs (with the possible exception of atazanavir) have been shown 
to induce dyslipidemia involving increased plasma concentrations of triglycerides, 
total cholesterol and LDL [ 234 ], all of which are known risk factors for cardiovas-
cular disease. The mechanism involves a direct effect of PIs on adipocyte differen-
tiation and also an ability of these drugs to inhibit factors involved in lipid transport 
and metabolism [ 227 ]. 

 Untreated HIV infection results in loss of bone mineral density which contrib-
utes to increased fracture risk and osteoporosis (as discussed above), but ART- 
initiation potentiates this effect and results in a further loss of bone mineral density 
of approximately 2–6 % within the fi rst 2 years of ART initiation. This effect is 
thought to be due to disruption of the delicate immunological balance in the bone 
marrow which governs osteogenesis, and specifi c antiretroviral drugs including the 
NRTI tenofovir [ 235 ] and the protease inhibitor class of drugs have been shown to 
potentiate bone loss in ART-treated individuals [ 236 ]. 

 The relatively recent introduction of ART, combined with the lengthy and mul-
tifactorial pathogenesis of many HIV-related co-morbidities, means that signifi -
cant associations between specifi c ARVs and disease outcomes are continuing to 
emerge. HIV-infected individuals initiating therapy in the early days largely did 
so with low CD4 counts and received ARVs which have since been phased out 
due to side effects and toxicities. Thus, ongoing and future longitudinal studies 
will be critical for evaluating the long term effects of current ARVs on immune 
changes and the development of age-related diseases in HIV-infected individuals 
who avoid signifi cant immunological damage by initiating ART at higher CD4 T 
cell counts.   
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6     Mechanisms That May Contribute to Chronic 
Infl ammation and Immune Activation in HIV 

6.1     Microbial Translocation and Endotoxemia 

 HIV infection is associated with increased permeability of the gut to microbial 
products, which translocate across the gut epithelium and eventually into the blood-
stream, resulting in increased plasma levels of the bacterial endotoxin lipopolysac-
charide (LPS) and bacterial DNA in HIV-infected individuals [ 237 ]. The cause of 
increased gut barrier permeability in HIV infection is due to immunodefi ciency and 
structural defects within the gut-associated lymphoid tissue (GALT) resulting from 
HIV-mediated T cell depletion [ 238 ]. The majority of lymphocytes in the body are 
contained in GALT, which is an important site for both pathogenesis and persistence 
of HIV. CD4+ T cells are rapidly depleted from the GALT during primary HIV 
infection and remain depleted into chronic infection. Studies in Simian 
Immunodefi ciency Virus (SIV)-infected macaques (a pathogenic animal model of 
HIV infection) have revealed that peak infection of CD4+ T cells in the lamina 
propria of the gut occurs within 10 days of infection, at which point 93 % of target 
CD4+ memory T cells are infected [ 239 ]. While effective ART suppresses viral 
replication and restores peripheral CD4+ T cells, gut-associated CD4+ T cells 
remain depleted years after ART initiation [ 240 ]. Interestingly, a subset of HIV- 
infected individuals who maintain high CD4+ T cells counts and low/undetectable 
viral loads in the absence of ART (known as long term non-progressors) maintain 
normal CD4+ T cell levels in the GALT [ 241 ], suggesting the importance of this 
compartment for disease pathogenesis. The mechanism of increased gut permeabil-
ity in HIV involves epithelial disruption and decreased production of tight junction 
proteins in the distal portions of the colon [ 242 ] which is consistent with increased 
levels of intestinal fatty acid binding protein (I-FABP; a marker of enterocyte dam-
age) and zonulin-1 (a regulator of tight junction permeability) in the plasma of HIV- 
infected individuals [ 157 ,  243 ]. The inability to fully restore GALT structure and 
function despite effective restoration of peripheral T cells by ART means that 
chronic endotoxemia (elevated levels of LPS in the blood) persists in virologically 
suppressed HIV-infected individuals. Lipopolysaccharide (LPS) is a potent immune 
activator which is recognised by toll-like receptor (TLR)-4 expressing cells such as 
monocytes/macrophages in an immune complex consisting of LPS-binding protein 
(LBP), the adaptor protein MD2 and either soluble or cell-bound CD14. LPS signal-
ling stimulates the production of pro-infl ammatory cytokines including IL-6, TNF 
and type I interferons. Microbial translocation is considered a signifi cant driver of 
both HIV disease and related co-morbidities, with gut translocation markers such as 
LPS, the LPS binding protein LBP and I-FABP/zonulin-1 associated with immune 
activation and HIV disease progression [ 237 ,  244 ,  245 ], cardiovascular and meta-
bolic disease [ 159 ,  160 ], neurocognitive impairment [ 141 ] and mortality [ 157 ,  216 ]. 

 In contrast to HIV, relatively little is known regarding the effect of age on the 
integrity of the gut epithelium in humans [ 246 ], however work in  Drosophila  has 
demonstrated that loss of intestinal barrier integrity occurs with aging and is a better 
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predictor of age-related morbidity and death than chronological age [ 247 ]. Increased 
plasma levels of LPS [ 98 ] and LBP [ 248 ] in the elderly indicate microbial transloca-
tion, may also increase during aging and the inverse association between LBP levels 
and physical function in the aged [ 248 ] suggests it may also contribute to morbidity 
in this population, although this requires further investigation. 

6.1.1     Alterations to the Gut Microbiome 

 Within the GALT, cytokines including IL-17 and IL-22 play a critical role in maintain-
ing gut integrity and orchestrating the mucosal immune responses to gut pathogens. 
Depletion of CD4+ T cells from the gut during HIV infection reduces the production 
of these cytokines and disrupts the delicate mucosal immunological balance. The gut 
microbiome interacts intimately with mucosal immunity and helps educate and regu-
late immune cells. Signifi cant alterations are observed in the gut microbiome of HIV-
infected individuals, with sequence analysis of bacterial communities from stool/gut 
mucosa samples revealing an overall increase in genetic diversity, an expansion of 
 Prevotella  and potentially pathogenic bacteria and a reduced proportion of  Bacteroidia  
species [ 249 – 252 ]. Importantly, these changes in microbial communities are associ-
ated with infl ammation, innate and adaptive immune activation and markers of disease 
progression in HIV-infected individuals. ART appears to only partially normalize the 
bacterial composition of the microbiome in a proportion of treated individuals [ 251 ]. 
A higher proportion of bacteria from the order  Lactobacillales  (lactic acid-producing 
bacteria) in the distal gut of ART naïve individuals has been associated with more 
favorable immunological parameters including higher pre-ART CD4+ T cells counts 
and CD4:CD8 T cells ratio but lower viral loads and sCD14 levels [ 253 ]. The complex 
interplay between the gut microbiome, GALT immunity and systemic infl ammation/
immune activation continues to be elucidated but may reveal an important mechanism 
of persistent immune dysfunction in HIV which can be targeted therapeutically.  

6.1.2     Cytomegalovirus (CMV) and Latent Viral Infections 

 Accumulative immune stimulation by pathogens and subsequent immune exhaus-
tion is an integral mechanism of immune aging and heightened pathogen burden 
due to concurrent and reactivated viral infections may hasten this process in 
PAWH. While CMV-seropositivity rates vary considerably between different coun-
tries (ranging from 40 to >90 %), there is a consistent trend of increasing seroposi-
tivity with age [ 254 ] and CMV is recognized as a signifi cant driver of 
immunosenescence [ 255 ,  256 ]. CMV infection profoundly shifts the lymphocyte 
subset proportions towards a differentiated memory T cell phenotype [ 257 ,  258 ]. In 
aged individuals, the proportion of CD8+ T cells specifi c for a small number of 
CMV epitopes can represent up to 27 % of the total CD8+ pool [ 259 ], with these 
cells typically being dysfunctional and exhibiting an immunosenescent phenotype 
[ 260 ]. CMV seropositivity has also been associated with an increased risk of age- 
related diseases such as cardiovascular disease [ 261 ]. 
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 CMV disease is a signifi cant cause of morbidity and mortality in HIV-infected 
individuals with AIDS and/or severe immunodefi ciency [ 262 ], while asymptomatic 
CMV infection also appears to potentiate immunosenescence in HIV-infected indi-
viduals. CMV infection is almost ubiquitous in the HIV-infected population with 
seropositivity rates of approximately 95 % [ 263 ] and the presence of IgM antibodies 
suggests viral reactivation/reinfection commonly occurs [ 264 ]. Levels of CMV- 
specifi c CD8+ T cells are up to twice as high in HIV-infected as in uninfected indi-
viduals and persist in ART-treated individuals despite long term virological 
suppression [ 265 ], which is consistent with reactivation and impaired immune con-
trol [ 263 ]. HIV-infected/CMV seronegative subjects show higher CD4:CD8 T cells 
ratios and less phenotypic evidence of immunosenescence than HIV/CMV sero-
positive individuals [ 266 ] whilst serum CMV IgG levels, which are increased in 
HIV-infected individuals, correlate with infl ammatory markers [ 267 ]. Taken 
together, these observations suggest that CMV seropositivity may potentiate HIV- 
related immunosenescence and infl ammation and hasten the aging process. 

 Although ART reduces HIV viral load to near undetectable levels in the plasma, 
residual HIV replication (up to 20 copies/mL) can be detected in the plasma of the 
majority of virologically suppressed individuals using ultra-sensitive assays [ 268 ]. 
In addition, ongoing HIV replication may persist at higher levels within anatomical 
sites such as lymphoid tissue where antiretroviral drugs may fail to penetrate to 
effective therapeutic concentrations. Reactivation/replication of other latent viruses 
including Epstein–Barr virus (EBV) and Herpes Simplex Viruses (HSV) also appears 
to be heightened in HIV-infected individuals, likely due to increased immune activa-
tion. HSV-2 reactivation occurs frequently in HIV-infected individuals, is positively 
associated with HIV viral load [ 269 ] and is shed more frequently in HIV-infected vs 
seronegative individuals [ 270 ]. EBV viral loads in HIV-infected individuals are 
reportedly greater than those in EBV+ HIV-uninfected individuals [ 271 ]. 

 Human endogenous retroviruses (HERVs) are a family of replication defective 
viral elements which comprise up to 8 % of the human genome. Although thought 
to be largely silent, increased transcription of HML-2 RNA (a member of the 
HERV-K family) has been demonstrated in PMBCs from HIV-infected individuals 
[ 272 ] and has also been detected at increased levels in plasma in some [ 273 ] but not 
all [ 272 ] studies. Increased HERV transcription may be due to heightened immune 
activation and/or the ability of the HIV Tat protein to activate endogenous retroviral 
transcriptional elements [ 274 ]. Although cause and effect are diffi cult to delineate, 
it is clear that heightened infl ammation/immune activation and reactivation of latent 
viral infections may constitute a self-perpetuating cycle contributing to immune 
exhaustion and immunosenescence in many PAWH.  

6.1.3     Concurrent Infections 

 The development of age-related morbidities in HIV-infected individuals can be 
infl uenced by concurrent infection with a range of pathogens. Co-infection with 
HCV can be up to 90 % in certain high risk HIV+ groups, and is associated with an 
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increased risk of coronary heart disease [ 275 ], osteoporotic fracture [ 276 ], and neu-
rocognitive impairment [ 277 ], suggesting hepatitis C infection may potentiate the 
pathogenesis of these conditions. The mechanism of this is unclear, although a 
potentiation of infl ammation and immune activation is likely, and increased levels 
of pro-infl ammatory factors such as IL-6 have been demonstrated in HIV/HCV co- 
infected, as compared to mono or uninfected individuals [ 278 ]. Active HCV infec-
tion is also associated with shorter leukocyte telomere length in those with HIV 
[ 279 ]. Taken together, these data suggest that HCV co-infection may further 
heighten infl ammation/immune activation and associated immunosenescence in 
HIV-infected individuals and potentiate the development of age-related diseases. 

 HIV-infected individuals co-infected with tuberculosis (TB) have signifi cantly 
increased pro-infl ammatory cytokine production [ 280 ] and ART initiation in highly 
immunocompromised HIV+/TB+ individuals often results in TB-associated 
immune reconstitution infl ammatory syndrome, which results in signifi cant 
 pro- infl ammatory cytokine production [ 281 ]. Heightened CD4+ T cell activation 
and pro-infl ammatory cytokine production also occurs in malaria co-infection 
[ 282 ]. These observations suggest concurrent infections may further potentiate 
infl ammation due to HIV and aging in co-infected individuals, however further 
studies are required to elucidate the full impact of these effects on age-related dis-
ease outcomes.    

7     Potential Treatments/Interventions to Alleviate the Effects 
of HIV on Aging/SNAEs 

 The immunological similarities between HIV infection and aging (particularly 
chronic infl ammation and its consequences) suggest that addressing mechanism of 
aging may alleviate premature aging and disease pathogenesis in HIV-infected indi-
viduals. A large number of preliminary trials are underway to address immune acti-
vation, infl ammation, microbial translocation and other mechanisms of enhanced 
aging in PAWH, but none has yet demonstrated effi cacy in defi nitive clinical trials 
[ 283 – 287 ]. If this is accomplished in PAWH, it will have vast implications for aging 
in general and may be applicable to a much broader population.  

8     Concluding Remarks 

 The success of antiretroviral therapy in preventing AIDS and extending the life span 
of HIV-infected people has revealed unexpected parallels between the impact of 
HIV infection and aging on immune function. Current research is only beginning to 
uncover how HIV may be potentiating age-related changes and the consequences of 
this for premature aging and increased risk of age-related comorbidities in those 
living and aging with HIV. It is still unclear whether HIV-associated ‘aging’ is the 
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result of chronic infection, or whether those infected with HIV at an older age may 
experience similar effects. Furthermore, the impact of long-term ARV drug use on 
age-related process remains to be fully elucidated. HIV infection further compli-
cates the many health challenges experienced by aging individuals including multi- 
morbidity, polypharmacy, impaired physical and mental health and reduced quality 
of life. Uncovering the critical processes which drive age-related changes and iden-
tifying therapeutic strategies to ameliorate the residual effects of HIV will be impor-
tant for ongoing management of the increasingly aging HIV-infected population.     
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1            Introduction 

 Pain, especially chronic pain, arguably represents the most prevalent and costly public 
health condition in the United States. The Institute of Medicine (IOM) noted that 
chronic pain affects 100 million U.S. adults with costs exceeding $600 billion annu-
ally [ 1 ,  2 ]. While pain affects individuals throughout the lifespan, older adults are at 
increased risk for chronic pain and pain-related disability [ 3 ]. Despite the greater 
prevalence and adverse impact of pain among older adults, the relationship between 
pain and aging remains a surprisingly underexplored area of inquiry. This chapter 
provides a broad overview of past and current research regarding chronic pain in older 
adults, including a discussion of biopsychosocial mechanisms contributing to age-
related infl uences on pain. First, we will describe fi ndings from epidemiologic and 
clinical studies examining age differences in pain prevalence and impact. Then, after 
briefl y reviewing the impact of aging on biological processes that contribute to pain 
we will discuss the biopsychosocial model of pain. Next, we discuss human labora-
tory studies examining age-related changes in pain processing, followed by consider-
ation of psychosocial factors that contribute to pain perception among older adults. 
Finally, we review the impact of aging on medical and non-medical therapies. We 
conclude the chapter with a discussion of future directions for pain and aging research.  

2     Epidemiological and Clinical Aspects of Pain and Aging 

 Epidemiological studies emphasize pain prevalence in the population, which is subject 
to all of the methodological vagaries inherent in such research (e.g., case defi nition, 
sampling strategies). However, prevalence alone inadequately captures the overall bur-
den of pain; and for this reason it is critical to characterize the impact of pain through 
measures of pain severity, impact on physical function and disability, quality of life, 
and psychological morbidity. Below we address the infl uence of aging on these issues. 

 Several studies have investigated the prevalence of chronic pain across the lifes-
pan. For example, Blyth and colleagues [ 4 ] surveyed more than 17,000 Australians 
and found that chronic pain (i.e., pain experienced daily for three of the previous 6 
months) frequency increased with age, though sex differences emerged in the pat-
tern of pain prevalence (see Fig.  18.1 ). Other studies show a similar pattern of 
increases in chronic pain prevalence until approximately age 70, at which point pain 
prevalence plateaus or even declines slightly [ 5 – 7 ].
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2.1       Specifi c Pain Conditions Associated with Aging 

 The fi ndings summarized above relate to chronic pain in general; however, age- 
related infl uences on chronic pain prevalence vary across different pain conditions. 
Specifi cally, compared to younger people, older adults are more likely to experience 
musculoskeletal pain, including pain of the joints, lower extremities and back [ 7 ]. A 
recent systematic review based on data from more than 116 thousand elderly 
Brazilians reported that lower limb and spine pain were the most common pain 
conditions, reported by over half of the sample [ 8 ]. Similarly, the incidence of 
osteoarthritis (OA) of the knee, hip, and hand all increase through seventh decade of 
life and then decrease above age 80 [ 9 ]. In fact, a recent analysis from Sweden esti-
mates that the odds of developing musculoskeletal pain become one and a half times 
greater for each decade of increased age [ 10 ]. In contrast, the prevalence of abdomi-
nal pain, migraine headache, and pain due to temporomandibular disorders peak in 
the third to fi fth decade and decrease thereafter [ 11 ,  12 ]. Below we discuss the 
impact of age-related infl uences on pain in several specifi c clinical conditions. 

2.1.1     Osteoarthritis Pain 

 OA represents one of the most common sources of pain and disability in the 
elderly [ 13 ]. The knee is the most frequently affected joint, with the lifetime risk 
of symptomatic knee OA estimated to be 40 % for men and 47 % for women [ 9 ]. 
In one study, the prevalence of symptomatic knee OA increased from 16 % at age 
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55 to more than 30 % at age 80 [ 14 ], emphasizing the importance of age as a 
strong risk factor for OA. The cumulative wear and tear on joints over time has 
been the suspected culprit in driving age-related increases in symptomatic 
OA. However, the poor correspondence between measures of disease severity and 
symptoms suggests that factors beyond peripheral tissue damage must contribute 
to OA-related pain [ 15 ]. Indeed, as discussed extensively in the Chapter on 
Osteoarthritis, many other age-related changes in physiology of joints also play a 
role in the age dependency of the disease. Moreover, increasing evidence impli-
cates altered central nervous system (CNS) pain processing in symptomatic OA 
[ 16 ,  15 ].  

2.1.2     Low Back Pain 

 Low back pain (LBP) is the leading cause of disability both in the US and world-
wide [ 17 ,  18 ]. Confl icting data exist regarding age-related changes in the preva-
lence of LBP. In a study of nearly 35,000 Danish twins, LBP prevalence peaked 
around age 45 and declined thereafter for both women and men [ 19 ]. Others have 
reported that prevalence increases with age until age 60–65, gradually declining in 
subsequent years [ 20 ,  21 ]. A systematic review found that the prevalence of  severe , 
but not “benign or mixed,” back pain increases with age [ 22 ]. Thus, while overall 
back pain prevalence may decline slightly in older age groups, more severe pain 
increases in frequency, suggesting a greater burden of back pain among older 
adults.  

2.1.3     Neuropathic Pain 

 Neuropathic pain refers to “pain arising as direct consequence of a lesion or disease 
of the somatosensory nervous system [ 23 ].” Common neuropathic pain conditions 
include diabetic neuropathy, post-herpetic neuralgia, and central post-stroke pain. 
Because the medical conditions producing these neuropathies are more common in 
older adults, the prevalence of these neuropathic pain conditions increases with age 
[ 24 ]. However, age can increase the risk for neuropathic pain independent of its 
effects on the parent medical condition. For example, among patients with acute 
herpes zoster, age represents a risk factor for progression to post-herpetic neuralgia 
[ 25 ]. Moreover, risk of diabetic neuropathy increases with age, thereby increasing 
the likelihood of painful diabetic neuropathy in older adults [ 26 ]. Less commonly 
studied neuropathic pain conditions that show increased prevalence with advancing 
age include trigeminal neuralgia and glossopharyngeal neuralgia, both of which 
show peak incidence in the seventh decade [ 27 ]. Among patients with multiple 
sclerosis, central neuropathic pain is also more prevalent with age, peaking around 
age 60 [ 28 ]. Also, older age increases risk for HIV-associated sensory neuropathy 
[ 29 ]. Thus, older adults are at substantially greater risk for many forms of neuro-
pathic pain.  
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2.1.4     Visceral Pain 

 Pain emanating from internal organs (e.g., gut, heart, bladder) represents a consider-
able problem. Evidence suggests, however, that older adults experience reduced 
visceral pain relative to their younger counterparts [ 30 ]. For example, prevalence of 
irritable bowel syndrome declines after the fi fth decade [ 31 ]. Also, older adults are 
more likely to experience silent myocardial ischemia and painless myocardial 
infarction [ 32 ]. Similarly, visceral conditions, such as peptic ulcer disease, pneumo-
thorax, and intestinal blockage are characterized by reduced or absent pain in older 
compared to younger adults [ 33 ]. Although the reduction of visceral pain might be 
considered a positive aspect of aging, pain from internal structures often signals the 
presence of a potentially life threatening condition. Therefore, the decreased ability 
to detect visceral pain may increase older adults’ risk for morbidity and mortality.  

2.1.5     Pain in the Cognitively Impaired 

 Cognitive impairment represents an enormous public health issue in the elderly. 
Importantly, pain and cognitive impairment may be reciprocally related. Several 
studies have demonstrated reduced cognitive performance in chronic pain popula-
tions [ 34 ,  35 ]. There is confl icting evidence regarding whether dementia is associated 
with altered prevalence and severity of pain [ 36 ,  37 ], because the ability to self-report 
pain is often compromised [ 37 ]. In fact, from a clinical perspective, pain among older 
adults with dementia presents management challenges due to the diffi culty of assess-
ing pain and determining treatment effectiveness. Among non- demented individuals, 
cognitive performance is inversely correlated with pain severity and mediates the 
infl uence of pain on physical performance [ 38 ]. Thus, cognitive impairment may be 
a risk factor for increased pain and pain-related physical dysfunction.   

2.2     Symptoms and Impact of Chronic Pain in Older Adults 

 The burden of chronic pain on older adults extends well beyond age differences in 
pain prevalence. Several aspects of the severity of pain differ across the lifespan, 
and multiple clinical features that are comorbid with chronic pain can dispropor-
tionately impact older adults. 

2.2.1     Pain Characteristics 

 Chronic pain is characterized not only by the intensity of the pain, but also by other 
pain characteristics (e.g., pain quality, temporal pattern, locations) and interference 
with daily living. Confl icting evidence exists regarding age-related infl uences on the 
intensity of pain. As noted above, studies of severe LBP (e.g., LBP interfering with 
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daily activities) reported a higher prevalence in older versus younger adults, while 
studies of back pain in general (e.g., LBP lasting 1 day or longer in the past 4 weeks) 
reported decreased LBP frequency after middle age [ 22 ]. In contrast, in a sample of 
mixed chronic pain conditions, no age differences in numerical pain ratings 
emerged; however, older adults reported lower sensory and affective (i.e., the emo-
tional component of pain, which includes how unpleasant or bothersome the pain is) 
pain scores on the McGill Pain Questionnaire (MPQ) [ 39 ]. Also, older adults with 
metastatic cancer reported lower pain intensity ratings than their younger counter-
parts [ 40 ], although a more recent study showed no age-related differences in MPQ 
scores among patients with cancer pain [ 41 ]. Regarding pain duration, some evi-
dence links increased age with persistence of pain [ 42 ]; however, age appears to be 
protective against development of chronic postoperative pain [ 43 ,  44 ]. In terms of 
body dispersion of pain, both regional and widespread pain conditions increase 
from early adulthood to middle age, and prevalence seems to peak in the fi fth or 
sixth decade, declining slightly thereafter [ 45 ,  46 ]. Thus, there are inconsistent 
associations of age with various pain characteristics, and additional research is 
needed to clarify these fi ndings and elucidate their mechanisms.  

2.2.2     Pain, Quality of Life, and Function 

 Chronic pain is commonly associated with activity limitations and symptoms that 
negatively impact quality of life, including fatigue and sleep disturbance, and these 
issues may represent particular problems in older adults. For example, pain is asso-
ciated with mobility impairment among older adults [ 6 ,  47 ], and the association of 
musculoskeletal pain with activity interference and disability increases with age 
[ 48 ,  49 ]. As described below, falls are a major clinical concern among the elderly, 
and pain signifi cantly increases fall risk among older adults [ 50 ]. 

 Fatigue is associated with aging, is an important symptom of frailty, and predicts 
functional limitations, disability, and mortality in older adults [ 51 ]. Because pain 
and fatigue often coexist, fatigue is a particularly pertinent clinical issue among 
older adults with chronic pain. Indeed, independent of pain, fatigue is a signifi cant 
negative predictor of physical activity in older adults with OA [ 52 ]. Further, sleep 
disturbance increases signifi cantly with age [ 53 ], and sleep disturbance confers 
increased susceptibility to chronic pain, and vice versa [ 54 ]. Thus, sleep disturbance 
may be an age-related risk factor for development and/or exacerbation of pain. 
These fi ndings suggest that while chronic pain severity is not consistently greater 
among older adults, pain nevertheless predicts substantially diminished quality of 
life and mobility and increased fall risk in the elderly.    

3     Aging and Pain Biology 

 Aging is a complex, multifactorial process occurring across many different levels of 
functional organization – psychological, physiological, and molecular events that 
occur with the passage of time [ 55 ]. Similarly, chronic pain is recognized as a 
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multifactorial experience driven by complex interactions among multiple biopsy-
chosocial processes [ 56 ]. Important characteristics of aging include a declining 
ability to respond to stress, increasing homeostatic imbalance, and an increase in the 
risk for onset of pathological changes, which parallels descriptions of chronic pain. 
The overlapping mechanisms contributing to aging and chronic pain provide a 
broad foundation for future study, as demonstrated by the examples presented 
below. 

 Multiple biological systems, including the nervous, endocrine, and immune sys-
tems, are responsible for the maintenance of homeostasis and for the activation of 
defense responses. Environmental exposures can produce a dysregulation of these 
systems, resulting in maladaptive changes that contribute to both aging and chronic 
pain. For example, leukocyte telomere length is a marker of cellular aging that is 
also associated with the intensity and persistence of stress. Shorter leukocyte telo-
meres have been associated with age-related diseases, as well as chronic mental 
and physical health conditions, while longer telomeres are associated with a healthy 
life [ 57 ,  58 ]. Recent reports have linked chronic pain with shorter telomeres, par-
ticularly among individuals with chronic pain and high stress, supporting a poten-
tial link between cellular aging and chronic pain [ 59 ,  60 ]. Historically, this 
relationship has been overlooked; recently however, it is attracting attention and 
providing a new perspective on the overlapping mechanism(s) of aging and chronic 
pain [ 61 ]. 

 Another factor common to the biology of aging and chronic pain is the role of 
free radicals. Free radicals have been suggested to be involved in the development 
and maintenance of capsaicin-induced hyperalgesia through central sensitization 
and the elevation of spinal reactive oxygen species due to the increased production 
of mitochondrial superoxides in dorsal horn neurons [ 62 ,  63 ]. It may be argued that 
oxidative damage is linked to aging in a universal manner and that changes in endo-
crine function are secondary to changes in oxidant production in endocrine cells 
[ 64 ,  65 ]. Thus, similar cellular mechanisms (free radical production) may broadly 
affect aging and simultaneously contribute to the development of pain. 

 Another example of the overlap in the biology of chronic pain, and aging is in the 
case of central pain resulting from spinal cord injury. Specifi cally, neuronal injury 
and changes in neuronal excitability have been shown to involve the extracellular 
signal-regulated kinases (ERK) cellular signaling pathway [ 66 ,  67 ]. Similar changes 
in neuronal function are commonly observed in uninjured older animals, suggesting 
an overlap in the cellular mechanisms responsible for neuronal changes in excitabil-
ity resulting from injury and aging. Similarities in cellular mechanism(s) underlying 
pain and aging can also be found with the results of the drug rapamycin, initially 
developed as an antifungal agent and found to have immunosuppressive properties 
[ 68 ]. Rapamycin has been shown to extend the lifespan of mice by affecting a large 
number of processes regulated by the Target of Rapamycin (TOR)  signaling path-
way [ 69 ]. A rapamycin sensitive signaling pathway was also shown to be essential 
for the expression of persistent pain states [ 70 ], and rapamycin reduces clinical 
signs of neuropathic pain in a model of experimental autoimmune encephalomyeli-
tis [ 71 ]. These examples of overlapping mechanisms reveal the need for collabora-
tive efforts between the fi elds of pain and aging research to more fully explore the 
biological processes that contribute to both senescence and chronic pain. 
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3.1     Age-Related Changes in the Somatosensory System 

 Understanding the impact of advancing age on pain-related biological systems rep-
resents a major challenge in the fi eld of pain research [ 72 ,  73 ]. Age-related anatomi-
cal and functional changes have been described in both human and non-human 
studies of the somatosensory system [ 74 ]. For example, peripheral nerves show an 
age-related reduction of both myelinated and unmyelinated fi bers [ 75 ,  76 ] as well as 
signs of Wallerian degeneration [ 77 ,  78 ]. The number and size of sensory neurons 
in dorsal root ganglia (DRG) also decreases with age [ 79 ,  80 ]. Reduction in the 
number of peripheral afferents, the presence of demyelination, together with 
increasing infl ammation are similar to the cascade of pathological events associated 
with nerve and tissue injury-induced pain in younger animals, thereby suggesting a 
common pathway between the events associated with neuropathic pain and those 
common to age-related changes in nociception [ 81 ,  82 ]. 

 In addition to peripheral changes, central changes in the expression of neu-
rotransmitters and receptors may contribute to age-related alterations in somatosen-
sation. The decreased presence of calcitonin gene-related peptide (CGRP), substance 
P, nitric oxide, and somatostatin in the dorsal horn of aged rats has been reported 
[ 83 – 87 ], and loss of serotonergic and noradrenergic terminals in the dorsal horn also 
suggests the potential for age-related changes in descending pain modulatory path-
ways [ 81 ,  86 ,  88 ]. A decrease in the number of opiate receptors and decreased 
effi cacy of opiate-mediated antinociception may also contribute to age-related 
changes in the processing of nociceptive information [ 89 – 91 ]. Finally, age-related 
altered gene expression for trophic factors, neuropeptides, cell adhesion molecules, 
ion channels, and genes related to mitochondrial function and calcium handling, as 
well as changes in the functional state of spinal and supraspinal glial cells may drive 
enhanced pain sensitivity with aging [ 92 ].  

3.2     Effects of Age on Autonomic Function: Impact on Pain 
Sensitivity 

 Age-related changes in autonomic function may contribute to the changing pain 
sensitivity in older adults [ 93 ]. Experimental evidence has shown that tonic whole- 
body sympathetic nervous system (SNS) activity increases with age [ 94 ]. Further, 
autonomic dysfunction can be instrumental in the generation and maintenance of 
chronic pain. Two reviews summarize an extensive literature supporting the follow-
ing relationships: (1) psychological stress activates limbic structures projecting to 
the hypothalamo-pituitary axis (HPA), resulting in an increase in sympathetic tone; 
(2) activation of stress circuitry increases pain sensitivity by central actions leading 
to stress-induced hyperalgesia; (3) chronic sympathetic activation and associated 
peripheral vasoconstriction produces muscular ischemia and a microenvironment 
conducive to myofascial pain; and (4) nociceptors in deep tissues are particularly 
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sensitive to sympathetic induced ischemia and are potent generators of central sen-
sitization when tonically active [ 95 ,  96 ]. Thus, older adults may experience mal-
adaptive physiological responses to stressors, including psychosocial and 
environmental events, as well as infl ammation and pain, which can potentiate 
hyperalgesia thereby exacerbating pain. 

 Aging is associated with changes in the sympathetic nerve supply to a number of 
targets, and quantitative changes in sympathetic nerve fi bers result in changes in 
transmitter expression [ 97 ]. Although the exact relationship between pain and the 
sympathetic nervous system remains unclear, the sympathetic nervous system is 
known to be involved in maintaining protective body reactions associated with pain. 
Moreover, in certain pathological conditions, the SNS may be involved in the gen-
eration of pain. For example, SNS activity can elicit spontaneous pain and enhance 
pain evoked by mechanical and cold stimulation [ 98 ,  99 ]. Clinical and preclinical 
studies have documented that physiological activation of sympathetic neurons can 
enhance pain and blockade of sympathetic activity can relieve pain. The SNS also 
contributes to the generation of pain during infl ammation [ 100 ]. Given age-related 
changes in SNS structure and function and that the SNS infl uences the generation 
and maintenance of chronic pain, sympathetic function represents an important 
potential mediator of age-related changes in pain.  

3.3     Aging, Pain and Immune Function 

 Changes in immune function, including microglial responses, may contribute 
importantly to age-related increases in chronic pain. The glial response to injury 
contributes to neuronal hypersensitivity leading to the production of infl ammatory 
mediators such as cytokines and chemokines. This “glia cascade” has been related 
to the regulation of synaptic strength and plasticity and the generation of central 
sensitization [ 101 ,  102 ]. However, the contribution of glia to the induction or main-
tenance of chronic pain in aged rats is unknown. Stuesse and colleagues [ 103 ] found 
that ligation-induced hyperrefl exia was correlated with increased staining for acti-
vated microglia regardless of age. Activated microglia have also been implicated in 
the initiation of chronic pain via the local release of neuroactive substances, includ-
ing cytokines, ATP, substance P, reactive oxygen species, nitric oxide, arachidonic 
acid, fractalkine, and nerve growth factors [ 104 ,  105 ]. Selective inhibition of acti-
vated microglia can alleviate acute and chronic pain behaviors [ 105 ], though clini-
cal evidence of a benefi cial effect of microglia inhibition in persistent pain conditions 
is lacking [ 106 ,  107 ]. 

 The microglia-to-neuron signaling link has also been shown to involve a molecu-
lar pathway in the spinal cord that includes Toll-like receptors, phosphorylated 
mitogen-activated protein kinase and purinergic P2X4 receptors on microglia [ 108 , 
 109 ]. Interestingly, the microglia-to-neuron signaling pathway involving prosta-
glandin E2 (PGE2) is involved in producing excitability changes underlying chronic 
pain following spinal cord injury [ 110 ]. This same pathway could contribute to the 
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emergence of age-related chronic pain conditions. Thus, substantial evidence exists 
that immune responses elicit a well-orchestrated temporal pattern of activation of 
different immune cells, including microglia and astrocytes, which may contribute to 
chronic pain development. At present the involvement of glia in the induction or 
maintenance of chronic pain in aged rats is an evolving story. However, age-related 
morphological changes in microglia may refl ect an important mechanism mediating 
age-dependent increases in pain sensitivity.  

3.4     Effects of Age on Pain Sensitivity: Pre-clinical Studies 

 Pre-clinical studies examining the effects of age on pain sensitivity have resulted in 
confl icting observations that include increases, decreases, or no change in nocicep-
tive responses with advancing age [ 88 ]. It is important to point out that the majority 
of these studies employed refl ex-based behavioral measures to determine changes 
in thermal and/or mechanical sensitivity. The execution of these refl ex-based mea-
sures do not require cerebral processing for the conscious perception of sensory 
events and are subsequently thought to be less relevant to clinical pain [ 111 ]. In 
order to address these defi ciencies an operant escape task was developed to evaluate 
thermal nociceptive sensitivity in awake, unrestrained rats [ 112 ]. This test over-
comes the limitations inherent with refl exive responses by providing a measure of 
 pain sensitivity  and  affective response  to nociceptive stimuli. Use of operant 
(learned) tests provides a measure of pain involving neuronal pathways extending 
throughout the neuraxis. Importantly, refl ex-based and operant assays often yield 
substantively different results [ 113 – 115 ], and the fi ndings from operant assays are 
typically more consistent with predictions from available human reports than are the 
results from refl ex-based tests [ 111 ]. 

3.4.1     Findings from Refl ex-Based Assays 

 A review of studies using refl ex-based strategies to examine age-related changes in 
pain sensitivity reveals inconsistent and confusing results. Using paw lick and tail 
fl ick latencies in young (2–3 months), adult (6–12 months), and aged (24 months) 
rats, Hess et al. [ 90 ] described a decrease in sensitivity to thermal and electric shock 
with increasing age. These results correlated with a decrease in the number of opiate 
receptors in the frontal poles, striatum, and hippocampus. Another evaluation of 
thermal response latencies showed that young mice (6–8 weeks) had signifi cantly 
shorter latencies than animals 24 months of age [ 116 ]. The decreased sensitivity in 
older animals was greater for females and correlated with a decrease in the expres-
sion of Nav1.8 sodium channels. Similarly, Wang and Albers [ 92 ] showed that aged 
male and female mice had decreased sensitivity to thermal stimuli, accompanied by 
a decrease in receptor expression for the growth factor artemin and the ion channel 
TRPV1. In contrast, Chan and Lai [ 117 ] showed decreased hot plate response laten-
cies (i.e., increased sensitivity) for 11.2 versus 1.6 month old rats. 
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 In contrast to the above fi ndings, age-dependent increases in sensitivity to 
mechanical [ 118 ] and thermal stimuli [ 119 ] in the rat have been reported. These latter 
results paralleled the response profi les of wide dynamic range and nociceptive spe-
cifi c neurons recorded in the spinal cord of adult versus aged animals [ 119 ]. 
Signifi cantly lower mean background activity and after-discharge responses were 
recorded in adult animals compared to those recorded in aged animals. Similar 
increases in neuronal excitability and receptive fi eld sizes for neurons recorded in the 
dorsal column nuclei in aged versus adult animals have also been reported [ 120 ]. In 
summary, the results of 25 studies addressing age-related changes in pain sensitivity 
using refl ex-based behavioral responses showed decreased sensitivity (9/25), 
increased sensitivity (12/25), or no changes (4/25) with advancing age. In addition to 
the behavioral assessment strategies used to evaluate responses to different stimulus 
conditions, there are many possible factors contributing to the variability of results, 
including the role of different sexes, species, and ages of animals when tested [ 121 ].  

3.4.2     Findings from Operant Assays 

 In a cross-sectional study with rats ranging in age from 8 to 32 months, both operant 
escape and refl ex testing methods were used to evaluate the effects of age on thermal 
sensitivity [ 122 ]. Operant measures of pain assessment revealed an increase in thermal 
sensitivity at older ages. By contrast, refl ex responding did not show any age-related 
differences in sensitivity to 44.5 °C. In the case of cold sensitivity, operant escape 
revealed increased sensitivity from 8 to 32 months. Decreased latencies for licking/
guarding responses to 1.5 °C were observed for animals ranging in age from 11 to 27 
months of age. Interestingly, there was an increase in lick/guard latencies (i.e., 
decreased sensitivity) when animals were tested at 35 months. Thus, when comparing 
the results obtained from different age groups using operant escape and a refl ex-based 
assessment task, consistent changes in thermal sensitivity were not observed. These 
results provide additional evidence that there are signifi cant differences when compar-
ing results of refl ex versus cortically dependent outcome measures [ 111 ].  

3.4.3     Infl ammatory Pain 

 An important factor leading to central sensitization is the change in excitability of 
peripheral nociceptors by chronic infl ammation [ 123 ]. The infl uence of injury- or 
age-induced infl ammation on pain sensitivity was evaluated by Zhang et al. [ 123 ] in 
a study evaluating hindpaw withdrawal latencies in adult and aged animals follow-
ing injection of complete Freund’s adjuvant (CFA). Aged animals had a signifi cant 
increase in nociceptive sensitivity after CFA compared to adult animals. Kitagawa 
et al. [ 120 ] showed greater excitability of dorsal horn nociceptive neurons with 
advancing age, but the excitability could not be further increased by infl ammation. 
Using a different infl ammatory agent, Gagliese and Melzack [ 124 ] showed that for-
malin injections elicited similar nociceptive responses in animals 3 and 24 months, 
which were signifi cantly lower than animals 18 months of age, suggesting that 
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sensitivity to infl ammatory pain may peak at mid-life. Formalin injections showed a 
larger number of c-fos (a marker of neuronal activation) positive cells in the medul-
lary dorsal horn of older rats compared to their younger counterparts [ 125 ], which 
correlated with increased nociceptive sensitivity in an older cohort of animals. 

 The effects of formalin injection on thermal sensitivity were also evaluated using 
an operant escape task over 5 weeks of testing [ 122 ]. A signifi cant formalin-induced 
increase in thermal sensitivity was obtained for cold and heat stimulation in animals 
16 and 24 months old, but not in 8-month old animals. Similarly, paw injections of 
complete Freund’s adjuvant increased thermal sensitivity and expression of the pep-
tide dynorphin (DYN), a pronociceptive peptide [ 126 ], in the spinal cords of 18 
month old rats, compared to 3 month old rats [ 123 ].  

3.4.4     Neuropathic Pain 

 Considerable evidence suggests that aging and nerve injury may elicit similar ana-
tomical, physiological, and behavioral changes. Age-dependent changes in pain 
sensitivity following nerve injury were evaluated following sciatic nerve ligation in 
young (4–6 months), mature (14–16 months) and aged (24–26 months) rats. This 
study observed prolonged increases in thermal sensitivity at 3 and 21 days follow-
ing injury. The effects were most pronounced in the oldest animals, lasting a period 
of 35 days [ 127 ]. In a comparison of chronic constriction injury (CCI) and partial 
sciatic nerve ligation (PSNL) Crisp et al. [ 128 ] showed aged (24–26 months) rats 
undergoing PSNL, but not CCI, developed a more vigorous and longer duration 
thermal hyperalgesia and tactile allodynia compared to their younger (4–6 months) 
counterparts. Chung et al. [ 129 ], using a model of L5/L6 spinal nerve ligation, 
showed a decrease in mechanical sensitivity in middle-aged (15 months) versus 
young (40 days) and mature (4 months) animals using refl ex based behavioral test-
ing. A decrease in sensitivity to neuropathic pain for senescent (37–39 months) 
animals compared to old (20–22 months) and young (4–6 months) animals was 
observed by Pickering et al. [ 118 ]. Others [ 130 ] found no differences in responses 
to thermal stimuli for animals 7–8 weeks versus 18 months of age following partial 
denervation of the tail, while older animals showed increased mechanical allodynia 
[ 130 ]. The variable results across studies may be due to the use of refl ex-based 
assays, different ages of animals, and differences in neuropathic pain models.    

4     The Biopsychosocial Model Applied to Pain and Aging 

 The biopsychosocial model has become a guiding framework for conceptualizing 
the experience of disease and illness, including chronic pain [ 131 ]. The biopsycho-
social model recognizes that while primary biological disease processes are impor-
tant in human health, our understanding of illness is enhanced by incorporating the 
additional contributions of psychological and social factors. Importantly, these 
three sets of factors interact to infl uence the development, manifestations, and 
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course of clinical conditions such as chronic pain. Moreover, the biopsychosocial 
model represents a more comprehensive approach for understanding health and 
disease in aging [ 132 ,  133 ]. Figure  18.2  depicts the biopsychosocial model as 
applied to pain and aging. By way of example, while disease processes in OA, 
including reductions in cartilage volume, bony changes (e.g., osteophytes, sub-
chondral bone cysts), and local infl ammation (e.g., synovitis) are clearly important, 
measures of joint damage are at best only modest predictors of OA-related pain and 
disability [ 15 ,  134 ]. Interestingly, psychosocial factors contribute signifi cantly to 
symptoms of OA. Indeed, recent systematic reviews found moderate to strong evi-
dence that psychological factors, including depression [ 135 ] pain coping, self-effi -
cacy, somatic symptoms, and catastrophizing, contribute to knee OA pain [ 136 ]. 
Further, social factors, including race and socioeconomic status, are also associated 
with OA-related pain and disability [ 137 – 139 ]. Hence, OA provides a prototypical 
example of the application of the biopsychosocial model’s relevance to an age-
related pain condition.

Biological factors

Social factors

Psychological factors

- Disease severity

- Race/ethnicity

- Socioeconomic
   factors

- Social support

- Coping

- Fear-avoidance

- Depression

- Catastrophizing

- Nociception

- Inflammation

- Brain changes

Chronic pain
and aging

  Fig. 18.2    The biopsychosocial model of pain and aging       
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5        Age-Related Changes in Neurosensory Pain Processing 

 As noted, multiple biological and psychosocial factors conspire to infl uence the 
perception and experience of pain, and many of these pain-related biopsychosocial 
factors change as a function of age. Thus, older adults may perceive pain differently 
than younger adults. Age-related changes in pain processing have been examined 
using quantitative sensory testing (QST), “a group of procedures that assess the 
perceptual responses to systematically applied and quantifi able sensory stimuli for 
the purpose of characterizing somatosensory function or dysfunction [ 140 ].” QST 
includes multiple stimulus modalities (e.g., heat, cold, pressure, electrical), stimu-
lation parameters (e.g., brief vs. prolonged stimuli), and measures of pain percep-
tion (e.g., threshold, tolerance, suprathreshold ratings), and the impact of age on 
QST responses varies importantly depending on these methodological issues. 

5.1     The Impact of Aging on Pain Threshold 

 Pain threshold refers to the minimum stimulus intensity required to elicit pain. One 
meta-analysis found that regardless of stimulus modality, pain threshold increased 
with age, suggesting age-related decreases in pain sensitivity [ 141 ]. Also, this age- 
related increase in pain threshold was slightly larger among women than men. 
Interestingly, a study of electric shock pain reported that age-related increases in 
pain thresholds emerged only if the painful stimulus was of short duration, suggest-
ing older adults are relatively more sensitive to prolonged stimuli that more robustly 
engage the somatosensory system [ 121 ].  

5.2     The Impact of Aging on Pain Tolerance 

 Pain tolerance refers to the maximum stimulus intensity that an individual is willing or 
able to withstand. Studies of pain tolerance have revealed no age differences in 
response to thermal and electrical stimuli, but decreased pressure pain tolerance with 
age [ 141 ]. In addition, although not included in the meta-analysis, one study demon-
strated dramatically lower tolerance for ischemic pain among older adults [ 142 ]. This 
fi nding is notable, because this experimental stimulus produces a sustained, deep mus-
cle pain that is qualitatively similar to some forms of clinical musculoskeletal pain.  

5.3     The Impact of Aging on Pain Facilitation 

 Temporal summation of pain refers to the increase in pain evoked by repeated rapid 
stimulation at a fi xed stimulus intensity, which refl ects a transient form of central 
sensitization and is therefore considered a measure of pain facilitation. In general, 
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temporal summation of heat pain is greater in older versus younger adults [ 141 ], 
suggesting an age-related increase in pain facilitation. Another form of pain facilita-
tion occurs in response to capsaicin, a chemical that selectively activates peripheral 
nociceptive neurons (e.g., c-fi bers). After the primary pain from capsaicin subsides, 
there remains an increased pain response to mechanical stimuli (i.e., mechanical 
hyperalgesia), which refl ects a reversible central sensitization. Zheng and col-
leagues [ 143 ] reported that capsaicin-induced mechanical hyperalgesia lasted sub-
stantially longer in older versus younger adults, which may indicate prolonged pain 
facilitation.  

5.4     The Impact of Aging on Pain Inhibition 

 Several QST methods have been used to investigate pain inhibitory function, the 
most common of which is conditioned pain modulation (CPM). CPM refers to the 
decrease in pain evoked by one stimulus (the test stimulus) produced by contempo-
raneous application of a second pain stimulus at a different body site (the condition-
ing stimulus). Consistent age differences have been observed in CPM, with older 
adults showing reduced pain inhibition [ 141 ]. In fact, some studies have found that 
older adults report pain facilitation in response to the conditioning stimulus. 
Importantly, a recent study found the age-related reduction in CPM was indepen-
dent of expectations and depression [ 144 ] suggesting that other central mechanisms 
are involved and need to be investigated. 

 Another measure of pain inhibition is offset analgesia. This occurs when a pro-
longed heat stimulus is delivered, in which the stimulus is slightly increased in 
intensity and then returned to the original temperature. This slight reduction in heat 
evokes a disproportionate decrease in pain [ 145 ]. A recent study reported that older 
adults showed reduced offset analgesia compared to younger adults [ 146 ]. Riley and 
colleagues [ 147 ] also reported that older adults showed a reduced decay of pain fol-
lowing offset of a prolonged heat pain stimulus, which may refl ect impaired pain 
inhibition.   

6     Cognitive Function and Pain Perception in Older Adults 

 Several QST studies have examined whether age-related declines in cognitive func-
tion infl uence pain processing. Benedetti and colleagues [ 148 ] reported that, com-
pared to cognitively intact older adults, those with Alzheimer’s disease showed 
similar pain thresholds but higher tolerance for electrical and ischemic pain, and 
pain tolerance was positively correlated with scores on the mini-mental status exam 
(MMSE). They reported similar fi ndings for patients with frontotemporal dementia 
[ 149 ]. Also, autonomic responses to painful stimuli were reduced in patients with 
Alzheimer’s as well as those with mild cognitive impairment [ 150 ,  151 ]. In contrast, 
Gibson and colleagues reported that patients with Alzheimer’s disease showed 
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similar pain thresholds and evoked potential amplitudes compared to cognitively 
intact older adults in response to laser-induced painful stimulation [ 152 ]. Marouf 
and colleagues [ 153 ] recently demonstrated that reduced CPM demonstrated by 
pain-free older adults was associated with poorer performance on a cognitive inhibi-
tion task (i.e., the Stroop task), suggesting that diminished cognitive function is 
associated with reduced pain inhibitory capacity. 

 The fi ndings from QST studies suggest that aging is associated with decreased 
sensitivity to mild painful stimuli (e.g., pain threshold) but increased pain in 
response to higher intensity pain stimuli. Moreover, dynamic QST measures reveal 
increased pain facilitation and reduced pain inhibition among older adults. While 
dementia appears to be associated with attenuated pain responses, cognitive perfor-
mance in cognitively intact older adults may positively predict pain inhibitory func-
tion. Yarnitsky and colleagues [ 154 ] recently suggested the concept of a pain 
modulation profi le, which refl ects an individual’s balance of pain inhibition versus 
pain facilitation. This profi le can be ascertained through QST measures such as 
CPM and temporal summation, and those who show a pro-nociceptive imbalance 
(i.e., high pain facilitation, low pain inhibition) are at increased risk for adverse pain 
outcomes. Based on the studies described above, aging is characterized by a pro- 
nociceptive pain modulation profi le that may contribute to the increased risk of 
certain clinical pain conditions or of more severe or widespread pain in older adults. 
The factors driving these age-related changes in pain modulation are largely 
unknown, but are likely to include multiple biological (e.g., infl ammation, endoge-
nous opioid function, changes in brain structure and function) and psychosocial 
(e.g., mood, cognition, coping) processes and their interactions.  

7     Neurobiological Factors Contributing to Age-Related 
Changes in Pain Processing 

7.1     Brain Structure and Function 

 Aging is associated with global reductions in grey matter and white matter volume, 
though some brain regions are more affected than others [ 155 ,  156 ]. While these 
brain changes have been linked to declines in cognitive function, it seems plausible 
that aging effects on the brain could also impact pain processing. Indeed, chronic 
pain has been associated with decreases in grey and white matter volume [ 157 –
 159 ]. Also, some evidence links structural brain changes to QST measures of pain 
perception. For example, total grey matter volume in fi bromyalgia patients was 
negatively correlated with sensitivity to digital palpation [ 160 ]. Also, in pain-free 
adults, grey matter volume in several brain regions has been inversely associated 
with visceral sensitivity [ 161 ] and heat pain sensitivity [ 162 ]. While no study has 
yet linked changes in brain structure with age differences in pain processing, a plau-
sible hypothesis is that age-related changes in brain morphology contribute to the 
enhanced pain facilitation and/or reduced pain inhibition observed in older adults. 
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 Painful stimuli elicit patterns of neural activity in a variety of brain regions, and 
age differences in this pain-evoked cerebral activation could help explain age- related 
changes in pain perception. Two studies using heat pain showed reduced pain-
evoked brain activity among older compared to younger adults. In response to pain-
ful heat older adults showed lower activation in several cortical regions, including 
somatosensory cortex, anterior insula, and supplementary motor area [ 163 ]. More 
recently, age was inversely associated with pain-related activation in somatosensory, 
insular, and premotor cortices [ 164 ] and grey matter volumes in the anterior and 
mid-cingulate cortex were positively correlated with pain ratings. Both of these 
studies showed decreased pain-related cerebral activation evoked by mild to moder-
ate heat pain, which older adults typically report to be less painful. In contrast, Cole 
and colleagues [ 165 ] examined brain responses to pressure pain, to which older 
adults were more sensitive compared to their younger counterparts. While no age 
differences emerged in response to a mild pressure pain stimulus, younger adults 
showed greater activation in the contralateral putamen and caudate nucleus in 
response to moderate pressure pain. The authors suggested that these age differences 
may refl ect an impairment of endogenous pain modulation among older adults.  

7.2     Infl ammation and Age Differences in Pain Processing 

 Aging is characterized by increases in systemic infl ammation (i.e., “infl ammaging”), 
which could contribute to increases in pain sensitivity. Systemic infl ammation could 
infl uence pain processing via both peripheral and CNS mechanisms, as systemic 
infl ammation can sensitize nociceptors [ 166 ,  167 ], and increasing evidence demon-
strates that systemic infl ammation can alter brain structure and function [ 168 ,  169 ]. 
Indeed, induction of systemic infl ammation in humans reliably increases functional 
activation in several brain regions implicated in pain processing, including the brain-
stem, amygdala, anterior and posterior cingulate, and the insula [ 170 ]. Recent stud-
ies have reported that inducing systemic infl ammation via endotoxemia in humans 
signifi cantly increases pain sensitivity in response to visceral and somatic stimuli 
[ 171 ,  172 ]. Thus, age-related increases in systemic infl ammation could contribute to 
the imbalanced pain modulatory profi le that has been observed in older adults.   

8     Psychosocial Factors Contributing to Pain Perception 
and Response in Older Adults 

8.1     Beliefs/Attitudes About Pain 

 Regardless of age, people’s beliefs and appraisal processes contribute to the exacer-
bation, attenuation, or maintenance of chronic pain, and to behavioral responses 
including affective distress, adjustment, health care seeking, response to treatment, 
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and disability (i.e., [ 173 ,  174 ]). Furthermore, people’s expectations about the impact 
of their pain and the likelihood of recovery following a painful injury have been 
shown to be more predictive of long-term disability than objective levels of physical 
pathology [ 175 ,  176 ]. Consequently, pain that persists over time should not be 
viewed as solely physical or solely psychological. Rather, as described earlier, per-
sistent pain is a complex, biopsychosocial phenomenon that results from the recip-
rocal interactions between psychological, social, as well as physiological 
components. 

 Individuals’ perceptions and responses have important implications for the 
persistence of pain and associated disability across the life cycle. However, 
some beliefs, expectations, and responses are particularly prevalent and impor-
tant for older adults experiencing pain. For example, community-dwelling older 
adults often restrict their activity in response to pain [ 177 ,  178 ]. People may 
reduce their activities as a direct attempt to diminish the pain but also may 
reduce activity because they believe that pain is a signal of harm and wish to 
prevent further tissue damage or exacerbation of their pain. For example, a study 
of older adults reported that  all  study participants changed their activity in 
response to the experience of persistent pain by deliberately substituting activi-
ties perceived as physically demanding with more passive ones or stopping cer-
tain activities altogether [ 178 ]. Activity restriction was viewed as a way of 
safeguarding function and avoiding conventional treatments, such as medica-
tions and surgery [ 178 ]. Paradoxically, although activity restriction was 
approached strategically to preserve function and avoid medical interventions, 
the associated physical constraints, and loss of social contact were emotionally 
distressing [ 178 ]. Moreover, reduction in activity may reduce muscle strength, 
endurance, and fl exibility, thus contributing to deconditioning, increased activ-
ity-related pain, and ultimately further disability. These fi ndings highlight the 
trade-off that many people with chronic pain, older persons included, face 
between wanting to participate in valued activities and safeguarding function 
through reduced activity.  

8.2     Emotional Distress – Anxiety/Fear, Depression 

 The sequelae of chronic pain include depression, anxiety and impaired cognitive 
function, as well as reduced socialization, compromised sleep and ambulation [ 35 , 
 179 ]. These consequences are particularly important for older adults as they may 
contribute to falls, hospitalization, and increased dependence. Emotional distress 
may be a precipitant of symptoms, be a modulating factor amplifying or inhibiting 
the severity of pain, be a consequence of persistent pain, or a perpetuating factor. 
Moreover, these potential roles are not mutually exclusive and any number of them 
may be involved in a particular circumstance interacting with cognitive appraisals. 
For example, the literature is replete with studies demonstrating that current mood 
state modulates tolerance for acute pain (e.g., [ 180 ]). Levels of pre-surgery anxiety 
have been shown to infl uence not only pain severity, but also complications and 
length of stay following surgery [ 181 ,  182 ]. 
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 Fear of movement and fear of (re)injury are better predictors of functional limita-
tions than biomedical parameters or even pain severity and duration [ 183 ,  184 ]. For 
example, Crombez et al. [ 185 ] reported that approximately two-thirds of individuals 
with chronic LBP (CLBP) avoid back-straining activities because of fear of (re)
injury. Further, pain-related fear was the best predictor of behavioral performance in 
trunk-extension, fl exion, and weight lifting tasks, even after separating out the 
effects of pain intensity. Moreover, fear of movement/(re)injury was the best predic-
tor of self-reported disability among CLBP patients, and sensory perception of pain 
and biomedical fi ndings did not add any predictive value [ 186 ]. Interestingly, reduc-
tion in pain-related anxiety predicted improvements in functioning, affective dis-
tress, pain, and pain-related interference with activity [ 187 ]. Pain-related fear of 
movement can be an important issue among older adults and may be further com-
plicated by fear of falling. Clearly, fear, pain-related anxiety, and concerns about 
harm-avoidance all play important roles in age-related chronic pain and need to be 
assessed and addressed in treatment. 

 Falls are a common, costly, and often devastating problem among older people, 
causing a signifi cant amount of morbidity, use of health care services, and increased 
risk of loss of independent living status, premature nursing home admissions, and 
mortality [ 188 – 190 ]. Analysis of a large national sample of Medicare benefi ciaries 
found the prevalence of falls and the fear of falls that limits activity are three times 
higher in older adults with pain than in those without pain [ 191 ], and longitudinal 
studies of older adults show that chronic pain is associated with decreased mobility 
function and increased falls over time [ 192 ]. Importantly,  concerns  about falls [ 193 ] 
may be a crucial determinant of activity limitations, regardless of the objective fall 
risk [ 194 ,  195 ]. Indeed, fear of falling itself may become a risk factor, as it contrib-
utes to deconditioning, loss of fl exibility, weakness, and abnormal gait, and in the 
long run may increase risk of falls [ 196 ,  197 ]. 

 Depression represents another pain-related concern among older adults. A large 
survey of community-dwelling older adults found that baseline depression symp-
toms increased the odds of disabling LBP after two years, independent of sociode-
mographic characteristics and functional status. Conversely, disabling LBP at 
baseline also increased the odds of depressive symptoms after 2 years to a similar 
degree [ 198 ]. Depressed mood is quite common in OA, and is associated with 
increased pain sensitivity and disability [ 199 ]. Williamson and Schulz [ 200 ] found 
that activity restriction mediated the relationship between pain and symptoms of 
depression, and accounted for differences in pain intensity between non-depressed 
people and those at risk for developing depression. More recently a longitudinal 
study in older adults with OA found that pain interference in activity was a risk fac-
tor for developing depressive symptomatology [ 201 ].  

8.3     Family and Other Social Supports 

 Consistent with the biopsychosocial model, persistent pain occurs in a social con-
text. Social support, relationships with others, and resources can be defi ned as the 
availability of tangible (e.g., help with meals, transportation, assistance with 
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personal care), affectionate (expressing love and affection), emotional (empathic 
understanding), informational (e.g., advice), and positive social interaction support 
(sharing of activities, companionship) [ 202 ]. Older adults with chronic health con-
ditions often have diffi culty participating in everyday activities [ 203 ,  204 ], thus 
affecting their quality of life and ability to participate in their communities. 

 Social isolation has an especially important impact on pain and disability in older 
adults. The elderly often face signifi cant social losses (e.g., death of loved ones, 
reduction in social status, loss of independence) and diffi culty maintaining social 
relationships, which can contribute to the exacerbation of persistent pain conditions 
and can negatively impact adherence and response to treatments [ 205 ]. In turn, per-
sistent pain contributes to increased social isolation, as older adults with chronic 
pain spend less time in previous social roles and experience greater restrictions in 
social and leisure activities [ 206 ,  207 ]. 

 Variations in the family, community, home, and healthcare environments can 
play important roles in how older adults adjust to pain. Signifi cant others may 
express sympathy and excuse the individual from responsibilities, and encourage 
passivity, thereby fostering further functional impairment. Nursing homes are often 
perceived as coercive settings, promoting non-autonomous orientation that restricts 
activities. When events are objectively coercive, people may perceive a lack of 
autonomy and hence be at greater risk of depression. What may really be important 
to emotional well-being is not so much pain itself, but the way in which pain alters 
older people’s lives.   

9     Treatment of Pain in Older Adults 

 A substantial armamentarium is available to treat patients with chronic pain. These 
can be grouped into several general classes: (1) educational, (2) pharmacological, 
(3) activation (physical exercises), (4) psychological (e.g., cognitive-behavior ther-
apy (CBT), (5) surgical, (6) neuroaugmentative, and (7) a variety of complementary 
health approaches and modalities. This chapter will focus on some of the most com-
monly studied and prescribed – medication, physical activation, complementary 
medicine, and CBT. Although we discuss these separately, they are often used in 
combinations (e.g., multidisciplinary programs). 

9.1     Pharmacological Treatments 

 The fi rst-line treatment for pain, regardless of age, is analgesic medication either 
over-the-counter or prescribed. The most commonly used and prescribed analgesic 
medications include nonsteroidal anti-infl ammatory agents (NSAIDs) such as acet-
aminophen, opioids, antidepressants (e.g., amitriptyline, duloxetine, milnacipran) 
and anticonvulsants (calcium channel alpha2-delta ligands; gabapentin, pregabalin). 
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There are also a plethora of newer agents prescribed (sodium channel modulators 
[Lidocaine patch 5 %; mexiletine]; alpha 2 -receptor agonists [clonidine, tizanidine], 
NMDA receptor antagonists [ketamine, memantine], cannabinoid receptor agonists, 
and vanilloid receptor ligands [topical capsaicin]) .  Each of these classes of medica-
tions may provide some level of pain relief, but often there are signifi cant limita-
tions and some adverse effects associated with each of them, particularly when used 
in older adults. For example, NSAIDS have known gastrointestinal and nephrotox-
icities [ 208 ,  209 ]; NSAIDS and opioids have cardiotoxic and problematic hormonal 
effects [ 210 ,  211 ]; opioids, antidepressants, and antiepileptic drugs are all associ-
ated with increased susceptibility to falls and fractures [ 212 ,  213 ]; and opioids have 
potential for abuse (see Table  18.1  for a summary of the advantages and limitations 
of the most commonly prescribed medications).

   Medical comorbidities are an important consideration in treating pain in older 
persons. Older adults often have several medical conditions in addition to the par-
ticular pain diagnosis (e.g., cardiac diseases, diabetes, cancer, dementia, osteoporo-
sis). Aging itself and associated diseases affect gastrointestinal and physiological 
processes including motility, secretions, blood fl ow, and absorptive surface [ 214 ], 
and these changes can affect drug absorption, bioavailability, and transit time, as 
can reductions in plasma albumin, increased fat to lean mass ratios, and decreased 
total body water [ 214 ,  215 ]. In addition, liver mass, liver blood fl ow, and the glo-
merular fi ltration rate of kidneys decrease with age. Of particular clinical impor-
tance, reduced renal clearance leads to a decline in the excretion of water-soluble 
drugs [ 215 ]. Lowered activities of most of the cytochrome P450 enzymes reduce the 
drug-elimination clearance rate of the liver, especially in the presence of chronic 
disease [ 216 ]. The potential for drug accumulation and increased CNS sensitivity 
increases the risks for cognitive impairment and respiratory depression in conjunc-
tion with concomitant CNS medication or with underlying pulmonary conditions 
[ 217 ]. 

 In a United States study published over a decade ago, 50 % of patients aged 65 
or older consumed fi ve or more prescription drugs and 10 % were using ten or more 
medications [ 218 ]. Polypharmacy can be a confounding risk factor when prescrib-
ing pain medications as there are both known and unknown drug-drug interactions 
that need to be considered. For example, individuals aged 60 or older are provided 
with an average of 40.8 prescriptions per year according to a study conducted in the 
United Kingdom [ 215 ]. With polypharmacy, dose-limiting adverse effects of pain- 
relieving medications may limit the potential achievable effi cacy. Because of the 
increased likelihood of drug-drug and drug-disease interactions, as well as the 
 pharmacokinetic and pharmacodynamic challenges associated with polypharmacy 
in older adults, frequent monitoring is critical when analgesic medications are 
prescribed. 

 Age-related changes in body composition and organ function can also alter 
metabolic and pharmacokinetic responses to medications. These changes along 
with medical and psychiatric comorbidities and concomitant polypharmacy (see 
also [ 219 ,  220 ]), suggest that conventional pharmacological therapies may not 
always be appropriate for older adults and should be used with caution [ 221 – 224 ]. 
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   Table 18.1    Common treatment options: advantages and limitations with elderly populations   

 Treatment  Advantages  Limitations 

  Pharmacologic treatments  
 Analgesics in general  Pain relief  Age-related physical changes 

 Interactions with comorbidities/frailty 
 Drug-Drug interactions 
 Adverse events (AEs) 

 NSAIDS/acetaminophen  Pain relief 
 Reduced 
infl ammation 

 AEs (e.g., Gastrointestinal, cardiac and 
nephrotoxicities, immune function, 
increased bleeding) 

 Opioids  Pain relief  Societal stigma 
 Acceptance 
 AEs (e.g., constipation, sedation, 
hormonal balance, dizziness, increased 
fall/fracture risk, cognitive impairment, 
cardiotoxicity) 
 Interaction with alcohol 
 Misuse potential 

 Anticonvulsants  Pain relief 
 Improved sleep 

 Avoid in renally impaired 
 AEs (e.g., sedation, cognitive 
impairment, weight gain, increased fall/
fracture risk) 

 Antidepressants  Pain relief 
 Improved mood 

 AEs (e.g., impact on blood pressure, 
dizziness, increased fall/fracture risk, 
nausea, sleep disruption) 

  Nonpharmacologic treatments  
 Information/education  Prevention of 

falls 
 Cognitive limitations 
 Sensory limitations 
 Time intensive 

 Physical activation in general  Improved 
function 

 Acceptance 
 Generalizability 
 Adherence/maintenance 
 Time/effort 
 Motivation 

 Supervised exercise (e.g., 
EnhancedFitness) 

 Improved 
function 
 Possible pain relief 

 Possible increased fall risk 

 Home exercise  Improved 
function 
 Enhanced 
adherence 

 Possible increased fall risk 

 Tai Chi  Improved 
function 
 Improved balance 
 Reduced fall risk 

 Adherence/maintenance 
 Time/effort 

 Psychological treatments in 
general 

 Improved mood 
 Enhanced coping 

 Cognitive requirements 
 Acceptance 
 Motivation 
 Time/effort 

 Cognitive Behavioral Therapy 
(CBT) 

 Improved mood 
 Reduced fear of 
falls 

 Access/availability 
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Despite these cautions, older individuals are among the highest consumers of anal-
gesics [ 225 ] with up to 20 % of the elderly taking analgesics for more than 6 
months [ 226 ,  227 ]. 

 Analgesics are often inappropriately prescribed for elderly patients, failing to 
follow clinical practice guidelines [ 228 ,  229 ]. For example, one study of community- 
dwelling men over age 70 noted that 8.2 % reported regular NSAID use compared 
to 2.9 % who reported as-needed use. Furthermore, the mean treatment duration for 
regular NSAID use was 4.9 years, suggesting long-term rather than short-term use 
as is recommended by guidelines [ 219 ]. Opioids are poorly tolerated by elderly 
patients [ 228 ,  230 ], and antidepressants and anticonvulsants are limited due to their 
effects on hepatic and renal function that may already be compromised because of 
the aging process. As noted, opioids, anticonvulsants, and antidepressants all 
increase the risk of falls and are major contributors to morbidity, increased hospital-
ization, and mortality in the elderly. 

 In sum, although conventional pharmacological treatments for pain can pro-
vide some relief for symptoms, they have signifi cant hazards in older adults that 
need to be balanced in treatment decisions. Further, the long-term effectiveness of 
analgesic treatments for this population is unclear as few randomized controlled 
trials (RCTs) involve older adults with multiple morbidities [ 231 ,  232 ]. Moreover, 
in general, pharmacologic treatments provide only modest reductions in pain 
(30 % in fewer than 50 % of treated patients) and little impact on improving func-
tion [ 233 ]. There have been few studies that specifi cally address the issue of treat-
ment effectiveness with older adults. In view of the limited evidentiary base and 
well-established adverse effects of current analgesic medications, there is an 
urgent need to develop both safe and effective pharmacological and non-pharma-
cological therapies for the rapidly growing older population. Greater emphasis on 
non-pharmacological approaches, alone or in combination with lower doses of 
pharmacological agents, may be particularly important for older adults with 
chronic pain.  

9.2     Non-pharmacological Treatments 

 Clinical practice guidelines frequently recommend non-pharmacological interven-
tions for pain in older adults. For example, in the 2013 guidance on the management 
of hip and knee OA, the European League Against Rheumatism (EULAR; [ 234 ]) 
recommended that all patients should have an individualized management plan that 
includes information and education on all aspects of OA management, advice on 
how to maintain activity, an exercise program consisting of aerobic and muscle- 
strengthening exercises, advice on weight loss as necessary and advice on home 
adaptations, among others. 

 Exercise is widely recognized as an approach for reducing pain and improving 
physical function in patients with chronic pain regardless of age [ 235 ,  236 ]. Despite 
recommendations for exercise, several studies have shown that objectively mea-
sured levels of physical activity are signifi cantly lower in older chronic pain popula-
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tions [ 6 ]. Indeed, as noted, activity restriction is a commonly reported strategy older 
adults use to reduce pain [ 177 ]. An important target for physical activation in older 
adults is improved balance [ 237 – 239 ]. Two examples of activity-based programs 
that have been specifi cally developed or adapted for use with older adults include – 
EnhanceFitness TM  and Tai Chi (TC). The former is a more traditional approach to 
physical activity whereas TC makes use of complementary and alternative medicine 
modalities of relaxation and structured movements. Both approaches may be par-
ticularly useful when targeted to improve balance. 

 EnhanceFitness (EF) is a community-based multicomponent, supervised 
group physical exercise program for older adults, involving balance, strength, 
and endurance training that is widely disseminated throughout the United States 
[ 240 ]. Each EF class uses a standardized format that includes several phases: a 
warm-up, moderate- intensity aerobic conditioning/walking phase, progressive 
strength training, and a cool down. EF focuses on flexibility and static and 
dynamic balance exercises that are known to reduce falls risk. Two RCTs [ 241 , 
 242 ] have shown that EF modestly improves health-related quality of life, 
objective measures of balance, functional and gait performance, and reduce 
health care costs. However, in a large RCT, adherence to EF was variable with 
a median of 58 % (interquartile range: 15–75 %) of exercise classes attended 
over 12 months [ 241 ]. Unpublished exit interview data identified pain as a lead-
ing cause of non-adherence. Greater adherence may lead to better outcomes but 
as noted below, adherence with any self- management regimen is a significant 
concern. 

 Tai Chi (TC )  is a traditional Chinese martial art that incorporates aerobic activity, 
diaphragmatic breathing, relaxation, and meditation with postures that are designed 
to fl ow imperceptibly and smoothly through slow, gentle movements (low impact, 
low velocity) that are particularly appropriate for elderly adults. The slow speed and 
constant weight shifting associated with TC increases the load on the lower limbs in 
a gradual fashion and may have a direct effect on improving balance. TC enhances 
self-awareness of balance and thereby may contribute to the amelioration of fear of 
falling [ 243 ,  244 ]. It has emerged as a viable exercise intervention, and it is recom-
mended for older populations by the American Geriatrics Society [ 221 ]. TC 
improved function in people with knee OA [ 245 ], CLBP [ 246 ,  247 ], and improved 
balance and reduced risk of falls in older adults [ 238 ,  248 ]. It has been shown to be 
more effective than other exercises for improving mobility and reducing fear of fall-
ing in older adults [ 246 ,  249 ]. 

 In general, increasing exercise is a key challenge to address in the geriatric 
population as relatively few older adults use exercise and other behavioral strate-
gies to cope with pain [ 177 ,  250 ]. Instead, passive strategies and avoidant behav-
iors are more common and associated with increased disability [ 250 ]. Thus, efforts 
to increase physical activity in the geriatric pain population will require restructur-
ing maladaptive beliefs about exercise and fears of falling, which seems to occur 
with EF and TC, as well as addressing common comorbid symptoms that are prev-
alent and often contribute to activity limitation, such as diffi culty sleeping and 
depressed mood.  
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9.3     Psychological Treatments 

 Although there are a range of psychological approaches to managing pain, 
Cognitive-behavior therapy (CBT) is perhaps the most commonly prescribed and 
thoroughly investigated [ 251 ]. CBT is a generic term; there are many components 
(e.g., exposure, addressing maladaptive beliefs, skills training [ 252 ]). The primary 
assumptions shared by all CBT interventions are that: (1) people are active proces-
sors of information; (2) people are capable of gaining control over their thoughts, 
feelings, behaviors, and to some extent physiological processes; and (3) there are 
interrelationships among thoughts, feelings, behaviors, and physiological processes; 
changes in one or more of these factors may result in changes in the others. 

 Meta-analyses and systematic reviews have shown benefi cial effects of CBT for 
a number of pain conditions that often affect older adults (e.g., OA pain, cancer 
pain, CLBP) [ 253 – 255 ]. In general they demonstrate that CBT produce signifi cant 
decreases in pain (typically small to medium effect sizes) and signifi cant improve-
ments in indices of adjustment to pain (e.g., activity, depression, anxiety, self- 
confi dence, maladaptive beliefs). However the results are not consistent across 
studies, which may relate to the specifi c content, mode of delivery, duration of treat-
ment, and extent of therapist training. In designing CBT for older patients, clini-
cians should consider providing rationales, guided practice, experiential learning 
(more active, less didactic), home practice assignments in written and verbal forms, 
using audio recording to guide home practice to eliminate the need for memoriza-
tion, and possibly involving signifi cant others [ 256 ]. Of particular relevance, CBT 
has demonstrated signifi cant yet modest effi cacy in the treatment of fear of falling 
in older adults [ 257 ]. The results are comparable to those reported for exercise in 
community-dwelling older adults [ 249 ,  258 ]. CBT has been well received in small 
samples of older adults with chronic pain [ 259 ,  260 ]. Tailored CBT for older popu-
lations has included a set of components including:

•    Education about the long-term benefi ts of exercise for chronic pain  
•   Restructuring beliefs about activity and pain  
•   Teach coping skills to address pain and related symptoms including problem- 

solving skills to overcome barriers to exercise  
•   Foster activity pacing  
•   Set realistic goals for increasing activity incorporating any limitations in physi-

cal capacity to ensure safety and promote the adoption of a physically active 
lifestyle  

•   Expose participants to feared and avoided activities that are not restricted by 
physical limitations  

•   Address fear of falling by restructuring misconceptions to promote a view of 
falls risk as controllable  

•   Teach coping skills to address pain and related symptoms, including regulating 
daily activities and sleep schedule, and modifying cognitive and emotional 
responses to pain  

•   In general, emphasize self-control and self-effi cacy  
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•   Set realistic goals for activity and promoting the adoption of a physically active 
lifestyle  

•   Advise about the environment to reduce fall hazards     

9.4     Mechanisms of Psychological and CAM Interventions 

 With the advent of sophisticated imaging procedures such as fMRI, it has become 
possible to identify regions of the brain associated with self-reports of pain as 
described above. Recent studies using fMRI have been able to document unique 
physiological responses in the brain that are associated with prolonged pain, emo-
tional responses accompanying pain, attentional foci, and processing of noxious 
stimulation (e.g., [ 261 ,  262 ]). 

 Of particular interest is the use of neuroimaging technologies to identify changes 
in brain function that accompany alterations in pain perception and responses fol-
lowing pain treatments. Jensen [ 263 ] has hypothesized that different psychological 
pain treatments and changes in the psychological factors targeted by these treat-
ments (e.g., maladaptive cognitions, reassuring thoughts) could potentially have dif-
ferent effects on the activity of different brain structures and processes. CBT has 
been shown to produce structural and functional changes in pain related regions of 
the brain in several populations [ 264 – 267 ]. Non-pharmacological therapies, includ-
ing CBT, evoke increased activation of brain regions involved in executive cognitive 
function, while decreasing activity in regions associated with pain transmission 
[ 268 ]. In addition, neuroimaging studies suggest that non-pharmacological 
approaches may produce positive structural brain changes in areas that often decline 
with aging (i.e., cortical thickness in the prefrontal and right anterior insula and 
occipito-temoral region) [ 209 ]. Seminowicz and colleagues [ 269 ] reported increased 
prefrontal cortex gray matter volume following CBT for chronic pain, and greater 
reductions in pain catastrophizing after CBT were associated with greater increases 
in gray matter volume in several brain regions. The impact of CBT on brain struc-
ture and function in older adults with chronic pain represents an important yet unex-
plored area.  

9.5     Adherence to Prescribed Treatments 

 The non-pharmacological treatments described above require patient understand-
ing, motivation, and adherence. These may be of particular concern for older 
adults who have cognitive and sensory limitations. The impact of pain on cognitive 
functioning (e.g., memory) might impede following prescribed regimens. 
Treatments that were originally developed for younger individuals need to have 
appropriate adaptations and adjustments in content and format when prescribed 
for the elderly to accommodate any age-related limitations. Another impediment 
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to adherence is cost, which impacts adherence to prescription medications among 
older adults, especially among individuals who have poor health, multiple mor-
bidities, and limited drug coverage through insurance [ 270 ]. Successful treatment 
of older people with chronic pain will require that problems associated with 
 treatment adherence be addressed regardless of the intervention – pharmacological 
or non-pharmacological.   

10     Conclusions and Future Directions 

 Age-related changes in pain are complex and remain poorly understood. 
Epidemiological and clinical studies demonstrate that pain prevalence and impact 
change with age, although patterns vary for different types of pain; some pain con-
ditions increase while others decrease in prevalence with age. Preclinical models 
reveal confl icting fi ndings regarding age-related changes in nociceptive sensitivity, 
likely due to methodological variations. In humans, QST studies reveal an age- 
related pain modulatory imbalance, as older adults tend to show increased pain 
facilitation and diminished pain inhibition. Additional research is needed to more 
clearly defi ne the biopsychosocial factors that contribute to age-related changes in 
pain processing. Potential biological mechanisms include anatomical, physiologi-
cal, immune, neuroendocrine, infl ammatory, and autonomic changes. Likewise, 
multiple psychosocial factors infl uence pain experiences among older adults, 
including beliefs and perceptions, negative mood (e.g., fear, depression), and social 
changes and support (e.g., isolation, reduced social activity). However, limited 
information exists regarding the extent to which each of these factors individually 
contributes to age-related infl uences on pain, let alone their interactions. Likewise, 
aging complicates the treatment of pain. Pharmacologic therapies offer limited clin-
ical effi cacy and produce increased adverse effects in older adults, and non- 
pharmacologic treatments, while effective, are often underprescribed in elderly 
patients. 

 Based on the current state of the evidence, we recommend the following lines of 
investigation to move the fi eld of pain and aging forward.

•    Investigators should take a more systematic and standardized approach to char-
acterizing chronic pain in studies of pain and aging, including: increased consis-
tency in case-defi nitions for pain conditions (e.g., time-frame – pain lasting 
3 months, last 30 days), assessment of pain impact, pain severity, temporal 
 patterns, etc.  

•   Studies are needed to evaluate the interaction of how systems known to change 
as a function of age (immune, HPA-axis, autonomic nervous system) impact age- 
related changes in pain sensitivity and the prevalence of chronic pain 
conditions.  

•   Advancing age needs to be a relevant variable in preclinical models of pain. 
Specifi cally, additional cross-sectional and longitudinal studies comparing vari-
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ous pain models and assays (e.g., operant vs. refl ex-based, neuropathic vs. vis-
ceral) could help elucidate mechanisms underlying differential age-related 
patterns across different clinical pain conditions.  

•   Preclinical studies are needed in older animals to determine the effi cacy and 
drug-drug interactions of pain medications and the potential side effect profi le of 
drugs compared to those in younger animals.  

•   Studies are needed investigating how age may be protective against development 
or severity of certain pain conditions.  

•   There is a need for increasing the representation of older adults in clinical trials 
of pain therapies and for secondary analysis of age as a potential moderating fac-
tor for effi cacy in existing clinical trials.  

•   Given the modest outcomes for existing treatments, and currently limited treat-
ment armamentarium, evaluation of treatment combinations for pain in older 
adults requires investigation.  

•   Given the importance of self-management strategies in managing pain in older 
adults, research examining adherence and maintenance enhancement strategies 
is essential.  

•   Evaluation of changes in brain structure and function that may predict positive 
outcomes from non-pharmacological interventions in older adults is warranted.  

•   Investigators should explore adaptations to pain management approaches 
required to compensate for cognitive and sensory limitations associated with 
aging.    

 Addressing these issues and adopting these methodological enhancements 
should help reduce inconsistencies in the literature, thereby substantially improving 
our understanding of age-related infl uences on pain.     
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1            Introduction 

 Major age-related chronic diseases are the leading drivers of morbidity, loss of inde-
pendence, hospitalization, mortality, and health costs throughout most of the world. 
These include atherosclerosis, most cancers, mild cognitive impairment, dementias, 
Parkinson’s and other neurodegenerative diseases, type 2 diabetes, renal dysfunc-
tion, arthritis, blindness, frailty, chronic obstructive pulmonary disease, sarcopenia, 
and many others [ 1 – 4 ], as discussed throughout this book. For each of these condi-
tions, chronological aging is a major risk factor and for most, aging leads all other 
known predictors combined. Numbers of chronic disorders  per individual  increase 
with aging, associated with loss of independence, frailty, and increased risk of 
death. Although more epidemiological research is needed to be certain about this, it 
seems that while many elderly individuals are healthy, those who are not have mul-
tiple comorbidities that often begin around the same time. If true, this suggests there 
are shared pathogenic mechanisms. Also as discussed in the preceding chapters, the 
major age-related disorders often share the disturbances in tissue, cellular, and 
molecular function that occur with chronological aging. These include chronic 
“sterile” infl ammation, cellular senescence, macromolecular changes (DNA, pro-
teins, carbohydrates, and lipids), and stem and progenitor cell dysfunction. 

 Based on these points, the “geroscience hypothesis” has been proposed: by tar-
geting fundamental aging processes, it may be possible to alleviate the major age- 
related chronic disorders as a group, instead of one at a time. Therefore, as summated 
in the previous chapters of this book, targeting fundamental aging mechanisms may 
be a way to delay, prevent, alleviate, or treat chronic disorders as a group, instead of 
one at a time. Even if a single major chronic disease such as atherosclerosis were 
eradicated, as transformative as such an advance would be, it would only add 2–4 
years to life expectancy, only to be followed by another potentially fatal age-related 
chronic disease [ 5 ,  6 ]. However, targeting the intersection between fundamental 
aging mechanisms and processes that lead to chronic diseases could alleviate mul-
tiple age-related disorders and extend healthspan.  

2     Is Aging a Modifi able Risk Factor? 

 In the fi rst chapter of this book, Austad argues that nature has achieved changes in 
longevity multiple times and seemingly by independent, distinct mechanisms. 
Nevertheless, and although aging is the leading predictor for chronic diseases and 
disabilities, it has only recently become viewed as a potentially modifi able risk 
factor. Supporting the contention that aging can be modifi ed in several species in 
the laboratory ( i.e ., independently from evolution) are the fi ndings that: (1) maxi-
mum lifespan is extended and age-related diseases can be delayed in experimental 
animals by a number of single gene mutations [ 7 ], suggesting that pathways 
impacted by these mutations could be therapeutic targets. (2) Humans who live 
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beyond age 100 can have delayed onset of clinically overt age-related diseases, 
such as Alzheimer’s [ 8 ], contributing to compression of morbidity and enhancing 
healthspan. (3) As discussed below, a number of agents, including rapamycin, met-
formin, acarbose, 17α-estradiol, angiotensin converting enzyme inhibitors (ACEi), 
senolytic agents (a new class of drugs that selectively eliminate senescent cells 
[ 9 ]), fl avonoids, and others increase healthspan and/or lifespan in experimental 
animals [ 3 ,  10 – 13 ]. For example, rapamycin appears to delay age-related cognitive 
decline and cancers [ 14 ]. A pipeline is developing of yet more agents that show 
promise for enhancing lifespan and perhaps healthspan in experimental animals 
that have not yet been published. In general, these agents alleviate infl ammation, 
cellular senescence, metabolic dysfunction (in some cases by targeting pathways 
related to caloric restriction), macromolecular damage or processing, or stem cell 
and progenitor dysfunction. (4) Caloric restriction, which can increase maximum 
lifespan in some experimental animals, is associated with delayed onset of multiple 
chronic diseases [ 15 ]. (5) Factors in the circulation of young animals alleviate 
muscle, cardiac, brain, and potentially other forms of dysfunction in older animals 
[ 16 ,  17 ]. (6) Senescent cell accumulation is associated with many age-related 
chronic diseases and frailty [ 9 ,  18 ], and genetic or pharmacological senescent cell 
elimination enhances healthspan and delays age-related dysfunction, at least in 
mice [ 19 ,  13 ]. 

 Since interventions that increase lifespan and healthspan in mammals exist, it 
might be possible to circumvent an issue that has made studying the pathogenesis of 
many of these diseases in humans diffi cult: many of these chronic diseases, such as 
Alzheimer’s or atherosclerosis, occur only in humans or a very limited number of 
species. Furthermore, many of them become manifest clinically once the disease is 
advanced at the molecular and cellular levels. These issues make delineation of 
initiating mechanisms diffi cult because of the impracticality of obtaining tissue 
samples for analysis suffi ciently early during disease development in humans. By 
targeting upstream, fundamental aging processes that predispose to these human 
diseases, these diffi culties could be circumvented.  

3     Do We Have Interventions That May Work? 

 Recent, important advances have been made in our understanding of the basic biol-
ogy of aging. The fi eld has moved from an era of description to hypothesis-driven 
research with a focus on elucidating mechanisms and, most recently, into develop-
ing interventions that target fundamental aging processes. Modulators and interven-
tions that delay age-related changes in experimental animals include caloric 
restriction, several hundred single gene mutations across species, and, most recently, 
drugs. Among the alterations that extend lifespan or healthspan are mutations in the 
growth hormone (GH)/ insulin-like growth factor-1 (IGF-1)/ insulin signaling path-
way and pathways related to protein, carbohydrate, or lipid metabolism, caloric 
restriction, infl ammation, and the renin-angiotensin system. The NIA-funded 
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Interventions Testing Program (ITP) has been particularly effective in identifying 
drugs that extend lifespan in mice. Several are beginning to show promise in extend-
ing healthspan and delaying age-related chronic diseases as well. In general, these 
genetic and pharmacologic interventions are related to infl ammation, cell-survival, 
cellular senescence, macromolecular processing, fuel sensing and processing, stem 
and progenitor cell function, and integrity of the stem cell niche. Agents resulting 
from research conducted through the ITP that might be among the fi rst to be trans-
lated into humans are considered below. 

3.1     Rapamycin and Rapalogs 

 Rapamycin is an immunosuppressant approved by the FDA-for solid organ trans-
plantation, while derivative “rapalogs” are approved for treating particular can-
cers [ 20 ]. Rapamycin inhibits the eponymous mechanistic target of rapamycin 
(mTOR) kinase, which comprises two distinct protein complexes. The mTOR 
Complex 1 (mTORC1) is an integrative node for cellular energy signaling, acti-
vated by glucose and amino acids, IGF-1, insulin, and other growth signals. 
Accordingly, mTOR inhibition recapitulates some of the effects of caloric restric-
tion. Rapamycin extends lifespan in yeast, fl ies, and worms, as well as in C57BL/6, 
129/Sv, and genetically heterogeneous mice, even when started after mid-life, as 
found by the ITP [ 10 ,  21 ]. A net effect of mTOR inhibition by rapamycin is an 
increase in protein quality. Rapamycin has a number of effects in mice that might 
explain how it extends longevity, including modulating stem cell function and 
infl ammation, promoting autophagy and alleviating the pro-infl ammatory senes-
cence-associated secretory phenotype (SASP), thus resulting in improvements in 
cognitive decline, heart failure, and neurodegeneration [ 22 ]. It has side effects, 
including increased rates of kyphosis and cataracts in rodents and metabolic dys-
function, impaired wound healing, and aphthous ulcers in humans [ 22 ,  23 ]. 
Despite these challenges, rapamycin and rapalogs are currently being considered 
as an adjuvant to cardiac rehabilitation, to reduce cognitive impairment in 
Alzheimer’s disease [ 24 ], and to enhance infl uenza vaccine responses in the 
elderly [ 25 ].  

3.2     Metformin 

 Metformin is an approved fi rst-line drug for type 2 diabetes mellitus (T2DM). It 
has been used for over 60 years with an excellent safety record. Metformin can 
prevent the progression of impaired glucose tolerance to overt diabetes in over-
weight subjects [ 26 ], including overweight subjects older than 60 [ 27 ]. Metformin 
has been shown to be associated with increased longevity in rodents [ 28 – 31 ] as 
well as nematodes [ 32 ], suggesting evolutionarily conserved mechanisms. 
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Metformin reduces oxidative stress and infl ammation, with prolongation of both 
lifespan and healthspan in mice [ 11 ]. The mechanism of action in treating T2DM 
includes decreased hepatic glucose production through several mechanisms [ 33 , 
 34 ] and improved insulin action, leading to lower glucose and insulin levels. 
Metformin also decreases IGF-1 signaling and inhibits the pro-infl ammatory 
SASP [ 35 ]. Although the precise molecular target of metformin is not known with 
certainty, it inhibits mitochondrial complex 1, which is associated with activation 
of AMP-activated protein kinase (AMPK) and inhibition of mTOR. In the United 
Kingdom Prospective Diabetes Study and other studies, metformin was associ-
ated with a decreased risk of cardiovascular disease in human subjects compared 
to other anti-diabetes drugs [ 36 – 41 ]. In vitro studies have indicated that metfor-
min attenuates tumorigenesis [ 42 – 48 ], and epidemiologic studies have suggested 
an association between metformin use and decreased risk of cancer and cancer 
mortality [ 49 – 53 ]. The potential protective effect of metformin against cancer is 
being studied intensively, with over 100 studies registered at the Clinical Trials.
gov website. Data about effects of metformin on dementia are emerging, but con-
troversial [ 54 ,  55 ]. Importantly, a recent observational study indicated that met-
formin treatment of diabetics was associated with a 15 % increase in overall 
survival of subjects in their 70’s compared with matched control subjects without 
diabetes [ 56 ].  

3.3     Acarbose 

 Acarbose has been used for treating T2DM for over 15 years. It slows processing 
of starch into disaccharides by inhibiting intestinal α-glucosidases in the intestine, 
thus reducing peaks in glucose absorption [ 57 – 59 ]. Acarbose has an excellent 
safety record, although it frequently leads to minor gastrointestinal side effects, 
especially on North American diets. It was tested in the ITP based on the notion that 
post- prandial glucose spikes might contribute to aging [ 60 ]. Acarbose increased 
median lifespan by 22 % in male mice, but by only 5 % in females [ 12 ]. Conversely, 
acarbose increased maximum lifespan by around 10 % in both sexes. Despite 
increased food intake, acarbose led to decreased body weight and glucose, insulin, 
and IGF-1 levels [ 12 ,  61 ]. In humans, acarbose can prevent progression of impaired 
glucose tolerance to T2DM [ 62 ]. It was associated with a signifi cant decline in the 
risk for cardiovascular events, including myocardial infarction [ 63 ]. Acarbose was 
also associated with reduced incidence of hypertension and silent myocardial 
infarction [ 64 ]. Glucose-lowering efforts using classes of drugs (other than acar-
bose or metformin) in attempts to prevent cardiovascular effects associated with 
T2DM have failed. Thus, acarbose may impact aging processes through mecha-
nisms other than reduced postprandial glucose spikes, perhaps including effects on 
the intestinal microbiome, by inducing intestinal cells to release protective pep-
tides, or systemic absorption, perhaps leading to direct effects of acarbose on cel-
lular function.  
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3.4     17-α Estradiol 

 17-α-estradiol is a non-feminizing endogenous estrogen that has lower affi nity for 
estrogen receptors than its feminizing and more widely studied enantiomer, 
17-β-estradiol. For many years, it has been given to post-menopausal women as a 
component of Premarin [ 65 ].17-α-estradiol has neuroprotective properties in ani-
mal models of Parkinson’s disease through its anti-oxidative effects [ 66 ]. These 
effects do not seem to be mediated through estrogen receptors [ 67 ,  68 ]. 17-α-estradiol 
administration to mice in the ITP caused signifi cant extension (12 %) in median 
lifespan in male mice, but not in females, with wide variations in fi ndings among the 
three ITP test sites [ 12 ]. 17-α-estradiol appears to be safe in humans [ 66 ], and it is 
approved for topical use in Europe for treating alopecia, with few reports of side 
effects [ 69 ].  

3.5     Growth and Differentiation Factor Analogs 

 Stem cell and progenitor pools can become depleted or lose functionality with 
aging. Cell autonomous and non-autonomous changes can occur during aging that 
restrict cellular replicative potential, interfering with repair or regeneration follow-
ing injury or disease [ 70 ]. Non-cell autonomous changes in the stem cell niche or 
microenvironment can contribute to declines in adult stem cell recruitment. The 
chronic, low grade, sterile (non-microbial) infl ammation associated with aging may 
result in a toxic microenvironment that leads to stem cell or progenitor dysfunction, 
as can dysregulated crosstalk among organ systems, for example between adipose 
tissue and bone [ 71 ]. Findings from parabiosis experiments, in which old and young 
mice are joined surgically so that they share circulations for several weeks or 
months, implicate age-related changes of the progenitor cell microenvironment in 
the observed age-related decrease of tissue repair capacity [ 16 ]. For example, fol-
lowing skeletal muscle injury in the older animal, circulating factors from the young 
animal in the parabiotic pair lead to faster repair by the older animal’s progenitors 
than occurs in parabiotic pairs of old-with-old animals. Conversely, factors from old 
animals induce dysfunction and impede neurogenesis in young animals, compared 
to parabiotic pairs of young animals cross-circulated with young animals. Thus, tis-
sue environmental infl uences, potentially including infl ammation, SASP products, 
or circulating or paracrine factors, appear to contribute to age-related adult stem cell 
dysfunction, suggesting that aging progenitor cells may have at least a degree of 
preserved inherent function, which is suppressed by the aging environment. 
Provision of circulating factors from young animals to old animals, including 
growth and differentiation factor (GDF)-11 and oxytocin, enhances progenitor 
potential and repair capacity of the brain, heart, and muscle of old mice [ 72 ,  73 ], 
suggesting that pharmaceutical agents based on GDF-related factors or oxytocin 
might enhance regeneration in elderly humans.  
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3.6     Senolytics 

 Cellular senescence refers to the essentially irreversible cell cycle arrest induced by 
oncogenic and metabolic insults that appears to have evolved as a defense against 
tumor formation or to facilitate wound healing [ 18 ]. Senescent cells can develop a 
senescence-associated secretory phenotype (SASP), with release of pro- 
infl ammatory cytokines, chemokines, thrombotic factors, extracellular matrix pro-
teases and proteins, and growth factors [ 74 ,  75 ]. The pathogenic mechanisms 
promoted by senescence at the tissue level include infl ammation, loss of functional 
progenitor cells, clotting, extracellular matrix dysfunction, and altered tissue archi-
tecture. Senescent cells accumulate in multiple tissues with aging [ 9 ,  18 ,  76 – 78 ]. 

 Senescent cell burden is associated with lifespan. At 18 months of age, there are 
fewer senescent cells in fat tissue of long-lived Ames dwarf, Snell dwarf, and growth 
hormone receptor knockout mice than age-matched control animals, while short- 
lived growth hormone over-expressing mice have increased senescent cell burden 
[ 79 ]. Caloric restriction suffi cient to increase lifespan is associated with decreased 
expression of p16 INK4A , a cell senescence marker, in multiple tissues of mice com-
pared to ad libitum-fed controls [ 80 ]. Conversely, senescent cells accumulate in fat 
and other tissues in obesity, particularly when associated with diabetes [ 81 ,  82 ]. 
Senescent cell burden is also increased in several types of progeroid mice [ 13 ,  18 , 
 83 – 85 ]. In longer- compared with shorter-lived mouse cohorts, senescent cell bur-
den predicts mean and maximum lifespan [ 86 ]. 

 Cellular senescence contributes to age-related dysfunction and is frequently evi-
dent at the sites of pathology that underlie chronic, age-related diseases, including 
atherosclerosis, hypertension, dementias, other neurodegenerative diseases, can-
cers, arthritis, osteoporosis, chronic obstructive pulmonary disease, renal dysfunc-
tion, adverse effects of chemotherapy and radiation, diabetes, and many others [ 4 ,  9 , 
 18 ,  78 ]. The senescent cells at sites of pathology in these conditions might have 
systemic effects through the SASP that predispose to other pathologies. Genetically 
eliminating senescent cells by activating a drug-inducible “suicide” gene only in 
senescent cells enhances healthspan, at least in progeroid mice [ 19 ]. Genetically 
targeting senescent cells led to partial reversal of age-related lipodystrophy and 
delayed progression of frailty, sarcopenia, and cataracts [ 18 ,  19 ]. These fi ndings 
support a link between senescent cell burden and age-related dysfunction, raising 
interest in developing drugs that eliminate senescent cells –  senolytics  [ 9 ]. These 
drugs selectively eliminate senescent cells without clearing normal cells [ 13 ]. They 
do so without interfering with the mechanisms that permit generation of new senes-
cent cells when they are needed, for example as a defense against cancer or for 
wound healing [ 87 ]. The fi rst senolytic agents discovered act by interfering with the 
pro-survival pathways that confer resistance to apoptosis to senescent cells [ 13 ]. 
These agents enhance cardiac and carotid vascular function in old mice, reverse gait 
impairment due to radiation of a leg in younger mice, and delay development of 
frailty, neurological dysfunction, and osteoporosis in progeroid mice. Alleviation of 
senescence-related dysfunction by senolytic agents is sustained for many months 
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even after a single oral dose. Another strategy for reducing adverse effects of senes-
cent cells would be to target components of the SASP –  SASP protectors  [ 9 ]. 

 For senolytic agents, SASP protectors, or other drugs that target fundamental 
aging mechanisms to be translated into application in humans: (1) Better animal 
models of human age-related diseases need to be developed. (2) Models have to be 
developed in which it can be tested whether any benefi cial effects of candidate seno-
lytic drugs are caused directly by clearing senescent cells or targeting the SASP, 
rather than “off-target” effects of the drugs on non-senescent cells. One such model 
has been described: gait is improved for 7 months after a single dose of senolytic 
drugs in mice. These agents have a half-life of <12 h. The classes of drugs that have 
sustained effects after a single dose modify cellular or extracellular matrix composi-
tion of tissues, and include antibiotics, chemotherapy agents, or teratogens. Few, if 
any, other examples exist of drugs that have sustained effects after the drug is cleared 
from the system. Thus, the sustained effects of senolytic drugs are consistent with 
senescent cell ablation. (3) Models are needed to test for possible side effects of seno-
lytic agents. Even though continuous clearance of senescent cells from genetically- 
modifi ed mice did not lead to any overt side effects in over a year of observation [ 19 ], 
it has been shown that cellular senescence has benefi cial effects under some circum-
stances. Indeed, cellular senescence protects against cancer development, helps to 
resolve tissue fi brosis during healing, is involved in immune responses, promotes 
skin wound resolution, and can contribute to tissue remodeling [ 18 ,  87 – 89 ]. 

 There are potential important advantages of senolytics over other treatment 
approaches. It may be feasible to administer these agents intermittently, perhaps for 
a day or two every few months or once a year during periods of good health. 
Furthermore, unlike microbes or cancer cells, senescent cells do not divide, suggest-
ing that acquired drug resistance to senolytics is unlikely to occur. Finally, it has 
been shown that removing only a fraction of senescent cells can have benefi cial 
effects. Indeed, while only 30 % of senescent cells were removed from  INK- 
ATTAC;BubR1   H/H   mice treated with AP20187 to activate the “suicide” gene 
expressed in their senescent cells, healthspan was enhanced [ 19 ]. Similar dramatic 
improvements in age- and senescence-related dysfunction were found in mice 
treated with senolytic agents that remove from 20 to 70 %, but not all senescent cells 
from tissues [ 13 ]. Thus, senolytic agents hold promise for treating age-related dis-
eases and dysfunction.  

3.7     Angiotensin Converting Enzyme Inhibitors 
and Angiotensin II Receptor Blockers 

 Angiotensin converting enzyme inhibitors (ACEi) and angiotensin II receptor 
blockers (ARB’s) are widely used antihypertensive drugs. Independently from their 
antihypertensive effects, ACEi and ARB’s reduce mortality due to heart disease and 
protect the kidneys in subjects with diabetes [ 90 ]. ARB’s appear to be associated 
with reduced cancer risk and mortality [ 91 ,  92 ] and decrease incidence and 
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progression of dementia [ 93 – 95 ]. Genetic disruption of angiotensin II receptor 
expression prolongs mouse lifespan and variations in the angiotensin II receptor 
gene are associated with exceptional human longevity [ 96 ,  97 ]. ACEi increase lifes-
pan in healthy as well as hypertensive rodents [ 98 – 101 ]. ACEi and ARB’s increase 
lifespan and improve cardiovascular function in rats [ 102 ], as well as delaying age-
related decreases in renal and cognitive function [ 103 ]. Thus, ACEi and ARB’s alle-
viate a range of age-related disorders and phenotypes in humans and rodents, as 
well as increasing lifespan in rodents. How they impact molecular pathways tied to 
fundamental aging mechanisms remains to be elucidated.  

3.8     Sirtuin Activators and Flavonoids 

 Sirtuins are mammalian NAD-dependent deacetylases related to Sir2, one of the 
fi rst longevity genes discovered in yeast. Genetically enhancing the activity of Sir2 
or its homologs increases yeast and possibly fruit fl y and round worm lifespan 
[ 104 – 107 ]. There are seven mammalian Sir2 homologs. Overexpression of SIRT6 
increases longevity in male mice and protects against the deleterious effects of high- 
fat feeding, possibly due to repression of IGF signaling [ 108 ]. Overexpressing other 
mammalian sirtuins has not been found to increase lifespan, but does have benefi -
cial effects in physiology and a number of age-related diseases [ 109 ]. Mice overex-
pressing SIRT1 have reduced incidence of cancer and osteoporosis and enhanced 
wound healing and glucose tolerance [ 110 ]. Possibly, sirtuin activating compounds 
may phenocopy some of these effects. Resveratrol, a plant fl avonoid that leads to 
activation of sirtuin-related pathways, extends yeast and fl y but not mouse lifespan 
[ 111 – 113 ]. Newer sirtuin activators, including SRT1720 and SRT2104, extend 
healthspan and lifespan in non-obese mice [ 114 ,  115 ]. Sirtuin activators alleviate 
the effects of high-calorie feeding in mice, rhesus monkeys on a high calorie diet, 
and possibly humans [ 116 – 120 ]. However, it is unclear if sirtuin activators improve 
glucose tolerance in humans [ 121 ,  122 ]. Flavonoids related to resveratrol may even-
tually prove to be effective in targeting certain age-related disorders. 

 Flavonoids and pathways impacted by them are involved in cellular senescence. 
Interfering with sirtuin signaling by targeting the deleted breast cancer-1 gene prod-
uct protects against generation of senescent cells in obesity [ 123 ]. Quercetin, a fl a-
vonoid, is senolytic, particularly in combination with dasatinib, a tyrosine kinase 
inhibitor [ 13 ].  

3.9     Aspirin and Salicylic Acid 

 Aspirin is an analgesic, anti-infl ammatory agent and an anti-platelet thrombosis 
inhibitor. Aspirin appears to reduce cancer risk [ 124 – 126 ], and it was found in the 
Intervention Testing Program to increase median but not maximum lifespan in mice 
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[ 127 ]. Many of its clinical effects are due to irreversible acetylation of serine resi-
dues in the active site of cyclooxygenases. Salicylic acid, which is a metabolite of 
aspirin as well as the related anti-infl ammatory drug, salsalate, is an allosteric acti-
vator of AMPK [ 128 ]. Salicylic acid increases lipid utilization in mice through 
AMPK activation and also enhances glucose homeostasis through an independent, 
as yet uncharacterized mechanism [ 128 ]. Salsalate improves glucose control in dia-
betics [ 129 ]. Aspirin activates AMPK in human colorectal cancer cells [ 130 ]. It 
enhances lifespan though activation of AMPK and Daf-16/Foxo3 in worms [ 131 ]. 
These results from human and experimental animal studies indicate that aspirin and 
related drugs may affect fundamental aging processes and age-related diseases 
through several mechanisms, including infl ammation-related and nutrient 
processing- related pathways.  

3.10     Others 

 At least a dozen more agents that target basic aging mechanisms are being devel-
oped but are as yet unpublished. New rapalogs (analogs of rapamycin) are being 
developed that have lower side effect profi les than rapamycin, including less glu-
cose intolerance and gastrointestinal irritation [ 132 ,  133 ]. Drugs affecting mito-
chondrial function, drugs that target protein synthesis or enhance autophagy, and 
caloric restriction mimetics are among compounds that are currently under develop-
ment. No doubt, many other interventions are being developed or will be devised in 
the near future that will increase life- and/or healthspan in experimental animals and 
potentially humans. Some of the agents under development are already used clini-
cally for other conditions. Others are new chemical entities and new classes of com-
pounds. Pre-clinical and proof of concept clinical trials paradigms need to be 
developed to identify those compounds emerging from the expanding basic biology 
of aging pipeline that merit continued translational effort.  

3.11     Combinations 

 Agents that target diverse aging pathways are being combined to test if their effects 
are synergistic in experimental animals. New combinations will probably be devised 
in the near future. Using drug combinations follows the path used for developing 
clinical interventions in other emerging fi elds, such as for treatment-resistant can-
cers or viral diseases. In these cases, combinations are often used initially in order 
to enhance treatment effectiveness, reduce doses of each individual drug, and 
thereby minimize side effect severity. As more becomes known about interventions 
that target fundamental aging processes, next generation single drugs that are more 
precisely targeted could supplant combinations of earlier generation drugs. 
Alternatively, combination therapy involving multiple drugs with non-overlapping 
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mechanisms of action has remained a mainstay for treating many common diseases, 
including coronary artery disease, chronic obstructive pulmonary disease, tubercu-
losis, and most cancers, and could remain the strategy of choice for targeting funda-
mental aging processes and age-related chronic diseases.   

4     Translation 

 The promise of interventions that target fundamental aging mechanisms is that they 
could have a huge impact on important outcomes: independence, function, quality 
of life, and freedom from pain and disability through alleviating many different age- 
related diseases, conditions, and syndromes as a group. Data from preclinical exper-
imental animal studies and limited human studies of the interventions described 
above suggest they might be effective in slowing age-related decline in multiple 
organs, tissues, and functions, potentially shifting the curve of aging phenotypes 
and chronic disease predisposition to the right. If clinical trials of these interven-
tions broadly affect multiple age-related disorders, the implications for health care 
and society would be enormous [ 2 ,  9 ]. 

 The fi rst step in this path will be one or several focused, small, short term clinical 
trials with several objectives. Ideally, each of these trials would test proof of a prin-
ciple in a specifi c, but generalizable group of subjects. They would provide informa-
tion needed to design and scale-up for larger trials. They would also provide 
biological data that could spur reverse translational studies in preclinical animal 
models to dissect mechanisms and determine next steps in translating each aging 
intervention into humans. We consider here the potential proof of concept clinical 
trial strategies for studies of interventions that target basic aging mechanisms. 

 Successfully translating interventions that are effective in experimental animals 
into clinical application is diffi cult, lengthy, and expensive. It can take over 17 years 
to complete translation into clinical practice, even in areas with an established trans-
lational tradition, such as infectious diseases or oncology. The needed steps include 
pre-clinical studies to test effi cacy, safety, and pharmacokinetics in mammals, usu-
ally in at least two species and following good laboratory practices, as stipulated by 
regulatory agencies [ 134 ]. For pharmaceutical interventions that target basic aging 
mechanisms and that are intended to treat age-related chronic diseases, it would 
make sense to conduct these safety studies in old animals, rather than the young 
mice that are currently commonly used. 

 Before preclinical animal studies begin, the nature and goals of clinical studies 
need to be planned so that the preclinical test program can be designed to yield data 
useful for designing and refi ning the clinical trials. Even for preclinical studies in 
animals, it is important to select outcome measures that have been validated, are 
reproducible, can be measured in a short time-frame, are as non-invasive as possi-
ble, are accepted by regulators, and are related to the outcomes to be tested in sub-
sequent clinical trials. Iterative bench-to-bedside coupled to reverse translational 
bedside-to-bench developmental phases are generally necessary, particularly for 
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investigational new drugs (IND’s). This requires a close partnership between basic 
biologists and clinicians with a strong basic biology background. While it is feasible 
to repurpose existing agents not covered by patent protection by conducting pub-
licly funded trials in academic settings, without early attention to protecting intel-
lectual property, the chances of getting a treatment to patients through commercial 
partnerships are reduced. On the other hand, commercial entities might fi nd attrac-
tive the possibility that seeking FDA approval for adding a label indication to an 
existing drug might require less effort and take fewer years than a de novo drug 
approval. Early attention to marketing and the potential interest of payers for inter-
ventions can motivate commercialization and moving treatments into the clinic. 

4.1     Potential Clinical Trial Scenarios 

 Elderly subjects have generally been excluded from clinical trials, especially those 
involving new formulations. Since several interventions that target basic aging 
mechanisms and extend lifespan appear to be effective in mice, there is an opportu-
nity to select those that are more readily translatable. Some interventions, such as 
lifestyle modifi cations, are particularly challenging (e.g., caloric restriction in the 
face of an obesity epidemic). Desirable characteristics of interventions suitable for 
translation include: (1) low toxicity and few side effects, (2) effectiveness of oral as 
opposed to parenteral administration, (3) low dosing frequency (i.e., relatively long 
half-life), (4) stability, (5) scalability and low manufacturing cost, (6) detectability 
in blood, and (7) importantly, effectiveness if initiated in later life or once symptoms 
have started to develop. Interventions that need to be applied in earlier life while 
subjects are still asymptomatic with an expectation of affecting health much later in 
life would be diffi cult to translate into humans, particularly if they exhibit virtually 
any side effects. 

 It will of course be impractical to study the success of experimental strategies to 
extend lifespan in humans within a reasonable time frame. Therefore, feasible and 
clinically relevant trials paradigms must be devised to test if agents that target fun-
damental aging processes can be translated into clinical use by developing more 
rapidly detectable outcomes. Short-term clinical trials in symptomatic individuals 
are feasible, and some early clinical trials have already commenced using some of 
the drugs discussed above that enhance life- or healthspan in rodents. For example, 
trials of rapamycin in Alzheimer’s disease are currently underway or about to begin 
and a trial of rapalogs on enhancing immune responses of elderly subjects to vac-
cination has already been reported [ 25 ]. Resveratrol congeners are being developed 
to treat type 2 diabetes [ 135 ]. Collection of ancillary biological data would help 
inform later studies by providing additional ways to predict risk, response to the 
intervention, and data examining effects on basic aging mechanisms. 

 At least six potential drug development scenarios can be envisaged in which 
agents that target basic aging processes might fi rst be tested. These include treat-
ment of: (1) multiple co-morbidities, (2) otherwise fatal conditions, (3) frailty and 
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geriatric syndromes, (4) resilience enhancement, (5) localized diseases related to 
fundamental aging processes, and (6) accelerated aging-like states. 

4.1.1     Multiple Co-morbidities 

 Most clinical trials have been focused on younger subjects with a single target con-
dition and have excluded older subjects with co-morbidities. However, multiple 
age-related chronic diseases often occur within the same older individuals. 
Therefore, agents that target basic aging processes might simultaneously alleviate 
several age-related chronic diseases within the same older subjects or delay the 
appearance of new chronic diseases in subjects who have already developed their 
fi rst age-related chronic disease. Such scenarios will require novel clinical study 
designs. A potential scenario for initial small-scale proof-of-principle trials of can-
didate drugs would be to study their effect in elderly subjects with combinations of 
two or more of: atherosclerosis, hypertension, memory impairment, diabetes, 
chronic obstructive pulmonary disease, renal dysfunction, or other age- or 
senescence- related conditions. Outcomes could be surrogate endpoints already rec-
ognized by regulatory agencies, such as blood pressure, psychometric indices of 
cognitive function, fasting glucose or HbA 1 C, circulating lipids, left ventricular 
function or hypertrophy, pulmonary function tests, etc. The endpoints could be 
combined into a composite score, although this carries the risk that an effective drug 
may appear less than effective if one of the composite endpoint components is 
affected in a direction opposite to that expected. For example, rapamycin may lead 
to improvements in several age-related measures of function, but also causes 
decreased glucose tolerance [ 136 ].  

4.1.2     Otherwise Fatal Conditions 

 Another scenario for initial proof-of-concept trials of agents that target basic aging 
processes may be to test their impact on otherwise fatal conditions for which either 
very invasive or no effective treatments are available. In the case of senolytics, these 
include certain cancers, cancer predisposition syndromes, idiopathic pulmonary 
fi brosis, chronic obstructive pulmonary disease, and primary biliary cirrhosis, 
among others [ 3 ,  9 ,  137 ]. In some cancers, caloric restriction, senolytics, or other 
approaches that target fundamental aging mechanisms might facilitate use of higher 
chemotherapy or radiation doses or enhance effectiveness of these treatments.  

4.1.3     Frailty and Geriatric Syndromes 

 Frailty is an age-related syndrome that involves weakness, loss of function, and 
decreased resilience [ 138 – 147 ]. It can be diagnosed through clinical scales that are 
moderately sensitive and specifi c, involving assessments of a combination of weight 
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loss, decreased activity, weakness, fatigue, and burden of chronic disease and dis-
abilities [ 144 ,  146 ,  148 ,  149 ]. The prevalence of frailty increases with aging [ 138 –
 149 ], and it is associated with chronic diseases, loss of independence, high mortality, 
and the “geriatric syndromes” of sarcopenia, immobility, falling, cachexia, depres-
sion, and confusion, as well as chronic infl ammation. 

 Subjects with mild or moderate degrees of frailty or sarcopenia would likely be 
better candidates for initial trials of agents that modulate fundamental aging pro-
cesses, especially sterile infl ammation and perhaps cellular senescence, than sub-
jects with advanced, potentially irreversible frailty. Effects of agents that target 
fundamental aging processes could be studied on outcomes indices that are related 
to frailty, predictive of mortality, and are recognized or close to being recognized by 
drug regulators [ 18 ,  150 ,  151 ]. These include timed walking distances, strength 
measurements, infl ammation-associated and SASP markers such as circulating 
IL-6, MCP-1, or PAI-1, pulmonary function (e.g., VO 2 ), renal function tests, among 
others.  

4.1.4     Resilience Enhancement 

 Resilience in this context refers to the ability to recover from perturbations such 
as surgery, anesthesia, chemotherapy, radiation, a heart attack, fracture, or 
stroke. Resilience declines with aging and is associated with concurrent or sub-
sequent overt frailty. Studies involving a stressor and relevant outcome mea-
sures could be a means for testing proof of principle for interventions targeting 
aging processes to determine if they enhance resilience and impact multiple 
clinically relevant outcomes in relatively short clinical trials. The stressor tested 
could be major, such as hip fracture after a fall, or minor, such as routine vac-
cination. The stressor could be elective and planned, such as elective surgery, 
chemotherapy, therapeutic radiation, or immunization, or unplanned, for exam-
ple an acute illness, such as pneumonia, a heart attack, or a stroke. In the case of 
elective stressors, the drug could be administered before the stress occurs and in 
the case of either elective or unplanned stressors, during recovery after the 
stress-inducing event. 

 Some of these types of clinical resilience trials have already been reported. For 
example, the response to infl uenza immunization is improved a few weeks fol-
lowing a brief course with low doses of a rapalog [ 25 ]. Responses to chemother-
apy are enhanced and its side effects reduced if the chemotherapy is preceded by 
a brief caloric restriction [ 152 ]. The effects of candidate agents that target basic 
aging mechanisms could be tested in multiple clinical trial scenarios, for exam-
ple: (1) strength, endurance, nausea, and appetite after chemotherapy; (2) time 
needed for return of function, wound healing, incidence of delirium, or discharge 
disposition after elective surgery; or (3) recovery after myocardial infarction in 
elderly subjects. Secondary outcomes of these types of studies could include mea-
sures of function, comorbidity, and blood or tissue biomarkers of basic aging 
mechanisms.  
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4.1.5     Localized Diseases Related to Fundamental Aging Processes 

 Certain localized disorders involve operation of pathogenic processes shared with 
those that are associated with chronological aging. These conditions might be allevi-
ated by local administration of agents that target those basic aging processes, such as 
aerosols, local injections, or topical skin solutions. For example, idiopathic pulmo-
nary fi brosis is associated with accumulation of senescent cells in the lung [ 153 ,  154 ]. 
Subjects with this potentially fatal condition that lacks effective treatment options 
might benefi t from aerosol delivery of senolytic or SASP-protective agents. This 
would need to be tested fi rst in animals, for example in mice with pulmonary fi brosis 
induced by aerosolized bleomycin [ 155 ] crossed with animals from which senescent 
cells can be cleared genetically or treated with senolytic drugs. A similar strategy 
could be used for chronic obstructive pulmonary disease, which is associated with 
senescent cell accumulation in the lungs, following cigarette smoke exposure. Another 
example is osteoarthritis, an infl ammatory condition that can affect multiple joints 
and becomes increasingly common in old age, and which is at least partially associ-
ated with accumulation of senescent cells and SASP factors (infl ammatory cytokines, 
matrix metalloproteinases) in joints [ 156 ]. Currently, this disorder is treated with oral 
analgesics, anti-infl ammatories, and intra-articular steroid injections. The oral agents 
have to be administered frequently, often at least daily. Steroid injections have effects 
that last for weeks, but often have to be administered repeatedly. Unfortunately, 
repeated steroid injections eventually contribute to worsening joint damage. 
Potentially, injected or systemic agents that target basic aging processes would have a 
more sustained effect and fewer adverse effects than currently used treatments.  

4.1.6     Accelerated Aging-Like States 

 Several conditions have features resembling an accelerated aging-like state, includ-
ing obesity and diabetes, long term effects of chemotherapy or radiation, HIV or 
side effects of the drugs used for treating it, and progeroid syndromes [ 3 ,  9 ,  18 ]. 
These conditions represent a potential scenario for proof-of-principle studies of 
candidate agents that target basic aging processes. Obesity and diabetes are associ-
ated with accelerated onset of other age-associated conditions, including atheroscle-
rosis, vascular dysfunction, sarcopenia, early menopause, cancers, cognitive 
impairment and dementia [ 81 ,  157 ,  158 ]. Survivors of cancers who were treated 
during childhood with chemotherapy or radiation can develop frailty and sarcope-
nia, diabetes, cardiac disease, cognitive impairment (“chemo-brain”), and second, 
unrelated cancers by mid-adulthood [ 159 ,  160 ]. Progeroid syndromes with pheno-
types resembling an accelerated aging-like state have been associated with increased 
senescent cell burden and accentuation of other fundamental processes that are also 
associated with chronological aging [ 161 ]. Short term effects of candidate agents on 
muscle strength, metabolic, cardiovascular, cognitive, or other functional measures 
in these subjects could be tested in initial proof-of-principle trials. For example, tri-
als of rapalogs for Hutchinson-Guilford progeria are currently being planned.   
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4.2     Preclinical Studies 

 Animal models refl ective of the potential indications for agents that target aging 
mechanisms in humans are needed to facilitate the preclinical studies required before 
proceeding to proof-of-principle human trials. An advantage to the aging biology fi eld 
is that because aging is not a disease, unlike disease-focused studies, it is not neces-
sary to ‘model’ aging: natural aging occurs in virtually all species as a natural model 
that does not need to be modelled. Mortality can be followed in animals that are oth-
erwise ‘normal’, not genetically or otherwise modifi ed. For studying some age-related 
diseases, relevant genetically modifi ed mice are available or disease-inducing phar-
macological or dietary manipulations have been devised. However, in many cases 
there are either no models of age-related chronic diseases or only models that are 
imperfect. Some mouse models are available that are reasonably close approxima-
tions to human progerias that result from single gene mutations [ 18 ,  83 – 85 ]. Drug 
candidates need to be tested in such mice before human subjects with these diseases. 
In addition to helping in devising interventions for these diseases, such studies would 
indicate if the drug candidates can resolve aging- like or healthspan phenotypes, such 
as impaired glucose homeostasis, grip strength, exercise endurance, activity, cardiac, 
or neurological or cognitive dysfunction. Senolytic agents have been reported to alle-
viate frailty, neurologic dysfunction, and osteoporosis in progeroid mice [ 13 ]. 

 For multifactorial polygenic human diseases that become clinically manifest in 
later life, animals with single gene mutations that develop superfi cially similar syn-
dromes in early life have drawbacks for drug development. For example, single 
gene mutations that lead to phenotypes resembling Alzheimer’s disease in young 
mice do not fully phenocopy human Alzheimer’s disease. Animals with dysfunction- 
provoking mutations that are inducible in later life may be better for testing agents 
that target basic aging mechanisms. An aging tissue microenvironment would be 
recapitulated in such mice. Furthermore, a range of mammalian species beyond 
mice is needed to test generalizability and meet regulatory requirements, especially 
for investigational new drugs. 

 Manipulations can be used in experimental animals to model human age- 
associated disorders or clinical stresses, including high fat feeding, localized or sys-
temic radiation, pharmacological interventions ( e.g ., chemotherapy, streptozotocin, 
Parkinson’s-inducing agents), localized pharmacological interventions ( e.g ., inhaled 
bleomycin or cigarette smoke), cancer xenografts, skin wounding, or surgically- 
induced arthritis. Effects of candidate agents on a panel of such models could be 
helpful in selecting potential clinical applications for each new drug, as long as the 
test animals are of the appropriate ages. In some cases, such as Alzheimer’s disease, 
screening for agents might be more practical in human cell culture systems that 
mimic disease pathology more faithfully than currently available animal models 
[ 162 ]. Also, for investigational new drugs, systems for medicinal chemical optimi-
zation and testing toxicology and pharmacokinetics (absorption, distribution, 
metabolism, and excretion) need to be developed using aging cell culture and ani-
mal models, rather than young cultures or animals.  
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4.3     Clinical Trials 

 Clinical trials are prospective human studies used to determine whether new bio-
medical or behavioral interventions are safe, effi cacious, and effective. Clinical tri-
als are generally categorized in phases. Phase 0 studies are used to determine if 
investigational new drugs act in humans as expected from preclinical animal stud-
ies, to acquire preliminary data about their pharmacokinetics or pharmacodynam-
ics, to select the most promising lead candidates, or to determine biodistribution 
characteristics. Phase 1 trials are used to provide information about the metabolism 
and pharmacologic actions of the candidate drug in humans, side effects associated 
with escalating doses, and early evidence for effectiveness. These trials may include 
healthy participants or patients with the disease under study. Phase 2 studies are 
controlled clinical trials that evaluate the effectiveness of the candidate drug for a 
particular indication in subjects with the disease or condition under study and to 
identify the most common short-term side effects and risks. Some trials are combi-
nations of Phases I and II, investigating both effi cacy and toxicity. Phase 3 studies 
are expanded controlled or uncontrolled trials that follow the acquisition of prelimi-
nary evidence about the candidate agent in Phases 0–2, and are designed to provide 
additional information about overall risk-benefi t relationships as well as for drug 
labeling. Generally, these trials compare new candidate drugs to drugs already in 
use for that condition. Phase 4 studies are conducted after clinical use at the popula-
tion level has begun. They provide additional information about the risks, benefi ts, 
comparative effectiveness, and optimal use of the drug. These studies monitor effec-
tiveness of the approved drug in the general population and provide data about any 
adverse effects that become apparent with widespread use. 

 Information collected during proof of concept and later phase trials can be used 
for following subjects to determine long-term clinical outcomes. Long-term out-
comes can provide useful information about whether the agent also delays or pre-
vents other chronic diseases, functional pre-frailty or frailty, loss of resilience, or 
loss of independence.   

5     Biomarkers 

 There are three types of biomarkers that can catalyze clinical trials: surrogate end-
point biomarkers, drug activity biomarkers, and biomarkers related to mechanisms. 
Surrogate endpoint biomarkers are those that can be substituted for a clinical event 
endpoint as the outcome of a clinical trial. An example is fasting blood sugar as a 
surrogate outcome for a drug treating diabetes, as opposed to hard clinical endpoints 
such as weight loss, polyuria, or diabetic crises. Another surrogate biomarker is 
hypertension as a predictor for risk of stroke. These types of surrogate endpoints 
take years or decades to achieve acceptance by the medical community and regula-
tors, for usage in place of the hard clinical event endpoints that the drug is expected 
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to affect. There is a lack of surrogate biomarkers that: (1) predict lifespan or health-
span in humans, (2) have been demonstrated to vary in the same direction as lifes-
pan or healthspan in response to interventions, and (3) are generally accepted as 
potential endpoints for clinical studies. It could take decades to do the studies that 
would convince the medical community and regulators that a surrogate biomarker 
reliably predicts and tracks longevity in humans and would be an acceptable clinical 
trial primary outcome endpoint. Some work has begun to validate surrogate out-
comes for studies of frailty or age-related disability, such as clinical frailty scales 
involving physical function tests or assays of circulating cytokines. Although frailty, 
healthspan, and resilience biomarkers are some way from gaining regulatory accep-
tance and need further refi nement in experimental animals and human studies, they 
are more within reach for use in clinical trials than biomarkers predictive of human 
longevity. 

 The second types of biomarker are those that refl ect drug delivery, activity, or 
effi cacy. As an example, in the case of rapamycin or related agents, assays of blood 
levels of the drug would be useful to ensure compliance. Assays of cellular S6 
kinase activity in blood cells or tissue biopsies could be used to follow drug delivery 
and mTOR pharmacodynamic activity and would be useful in adjusting dose inten-
sity of the intervention. 

 The third type of biomarkers includes those that test the mechanism of action in 
humans. In studies of candidate agents that are intended to target fundamental aging 
mechanisms, it would be desirable to measure a range of parameters suspected of 
being associated with aging processes to test if this is really how the drug could 
work. These biomarkers can be helpful, but it should be noted that precise informa-
tion about the mechanism of action is not always needed for drug development. 
Indeed, for many drugs currently in widespread use in humans, the molecular mech-
anism of action was not determined before clinical use. Metformin is an example of 
this: its molecular mechanism of action is still not precisely understood. On the 
other hand, knowledge of the mechanism of action might help to predict side effects, 
although for many side effects this knowledge has not helped. Nevertheless, mark-
ers related to molecular aspects of aging might help to defi ne the mechanism of 
action of the intervention in humans. This may stimulate reverse translational labo-
ratory studies that could inform future clinical trials, spur discovery of new drug 
targets and development of new agents, and lead to optimization and refi nement of 
preclinical animal models.  

6     Personnel Needed 

 There is a divide between biologists studying aging processes and clinicians treat-
ing the elderly. Geriatricians rarely have basic biology training. Few geriatricians 
have investigational new drug (IND) experience. In the US, there are 7,000 Board- 
certifi ed geriatricians. Only around a dozen have R01 grants from the Division of 
Aging Biology at the National Institute on Aging. Worldwide, there are few 

J.L. Kirkland and T. Tchkonia



611

geriatricians who are also basic aging researchers. This is unlike most other bio-
medical fi elds, such as endocrinology or hematology, in which academic clinicians 
frequently conduct laboratory research. Few geriatricians attend meetings in the 
basic biology of aging. Conversely, basic biologists only rarely attend clinical geri-
atrics meetings. Unlike in other areas of medicine, such as infectious diseases or 
oncology, few geriatricians have experience in translating IND’s into clinical appli-
cation. Thus, there is a shortage of investigators with the combination of basic bio-
logical, geriatric medical care, and human trials skills needed to design and conduct 
the pre- clinical and clinical studies and navigate the regulatory framework neces-
sary to translate recent advances from the basic biology of aging into clinical prac-
tice. A new group of investigators needs to be trained in the basic biology of aging 
who have a thorough grasp of translational strategies and clinical geriatrics, as well 
as a group of geriatricians with suffi cient understanding of the fundamental biology 
of aging and clinical trials methodology, to spearhead the process of taking IND’s 
through pre-clinical studies, clinical trials, and regulatory approval. This could take 
well over 5 years, even if we begin training these investigators right away. In the 
meantime, we need to encourage collaborative strategies that bring teams of basic 
biologists, geriatricians, and clinical trials investigators together to translate agents 
that target fundamental aging mechanisms into the clinic. We also need to develop 
clinical trials networks, perhaps emulating successful approaches taken by the net-
works in the cancer fi eld.  

7     Conclusions 

 We are on the verge of a new era in the basic biology of aging. There is tremendous 
potential for drugs that target aging fundamental mechanisms to prevent or treat 
age-related disorders as a whole, rather than one at a time. We are at the point where 
it seems increasingly likely that interventions targeting aging mechanisms could 
begin to be tested to delay, prevent, alleviate, or reverse multiple age-related chronic 
diseases and disabilities that affl ict the elderly. If true, and if the interventions effec-
tive in targeting fundamental aging mechanisms in mice can be translated into 
humans, geriatrics practice and all of medicine as we know it would be transformed. 
Despite this, fi nancial, infrastructure, and personnel resources are insuffi cient to 
expand or even sustain the important discovery, mechanistic, and interventional 
basic biology of aging pipeline, let alone to fuel translation of promising drug can-
didates into clinical practice. Creation of new experimental paradigms, develop-
ment and validation of relevant, measureable outcomes, suffi cient funding, and 
training of investigators with new skills are necessary. A strategy to increase 
resources and personnel and to optimize existing resources is needed to accelerate 
progress and avoid duplication without depriving the basic biology pipeline. 

 While it seems possible that drugs acting on basic aging processes will alleviate 
many age-related conditions, it is unlikely that it will be feasible to reverse every 
age-related change in the foreseeable future, if ever. Some age-related changes 
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involve progenitor cell depletion, some infl ammation, others extracellular matrix 
and structural changes ( e.g ., cataracts, osteoporosis), and yet others involve macro-
molecular dysfunction. Different fundamental age-related disruptions are impli-
cated to different extents in different organs and cell types. This suggests that several 
strategies will need to be combined to be maximally effective: no one strategy is 
very likely to be a panacea. A process involving at least two overall steps may ulti-
mately be needed, based on the longstanding principle of fi rst removing damaged 
tissues and then replacing them with good tissue. The fi rst step may involve elimi-
nating damaged or senescent cells, blunting the senescence-associated secretory 
phenotype, reducing infl ammation, and removing cytotoxic lipids and lipofuscin, 
protein aggregates, damaged macromolecules, and advanced glycation endprod-
ucts. The second step may involve transplanting stem cells, differentiated cells, tis-
sues, or organs or restoring endogenous stem cell or progenitor function to repopulate 
damaged organs. Advances are being made in each of these areas, and effective 
combined approaches may one day be feasible. If any or all of this comes to fruition, 
if we are able to push back age-related diseases as a group and extend healthspan, 
and if this can be translated into clinical treatments, health care as we know it would 
be transformed with myriad economic and social consequences and benefi ts.     
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