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  Age-related macular degeneration (AMD) is the leading cause of permanent, irreversible, central blindness (sco-
toma in the central visual field that makes reading and writing impossible, stereoscopic vision, recognition of 
colors and details) in patients over the age of 50 years in European and North America countries, and an im-
portant role is attributed to disorders in the regulation of the extracellular matrix (ECM). The main aim of this 
article is to present the crucial processes that occur on the level of Bruch’s membrane, with special consider-
ation of the metalloproteinase substrates, metalloproteinase, and tissue inhibitor of metalloproteinase (TIMP).

  A comprehensive review of the literature was performed through MEDLINE and PubMed searches, covering 
the years 2005–2012, using the following keywords: AMD, extracellular matrix, metalloproteinases, tissue in-
hibitors of metalloproteinases, Bruch’s membrane, collagen, elastin.

  In the pathogenesis of AMD, a significant role is played by collagen type I and type IV; elastin; fibulin-3, -5, and 
-6; matrix metalloproteinase (MMP)-2, MMP-9, MMP-14, and MMP-1; and TIMP-3. Other important mecha-
nisms include: ARMS2 and HTR1 proteins, the complement system, the urokinase plasminogen activator sys-
tem, and pro-renin receptor activation.

  Continuous rebuilding of the extracellular matrix occurs in both early and advanced AMD, simultaneously with 
the dysfunction of retinal pigment epithelium (RPE) cells and endothelial cells. The pathological degradation 
or accumulation of ECM structural components are caused by impairment or hyperactivity of specific MMPs/
TIMPs complexes, and is also endangered by the influence of other mechanisms connected with both genetic 
and environmental factors.
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 Abbreviations: AMD – age-related macular degeneration; ARMS2 – age-related maculopathy susceptibility 2; 
BLamD – basal laminar deposits; BLinD – basal linear deposits; BM – basic membrane; 
BrM – Bruch’s membrane; CEP – carboxyethylpyrrole; CNV – choroidal neovascularization; 
DHA – docosahexaenoic acid; ECM – extracellular matrix; GA – geographic atrophy; HTRA1 – high tem-
perature requirement factor A-1; MAC – membrane attack complex; MMP – matrix metalloproteinase; 
MT-MMP – membrane-type metalloproteinase; PRR – pro-renin receptor; RPE – retinal pigment epitheli-
um; SD – soft drusen; TIMP – tissue inhibitor of metalloproteinases; uPAR/uPA – urokinase plasminogen 
activator receptor/urokinase plasminogen activator; VEGF – vascular endothelial growth factor
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Bacground

The extracellular matrix (ECM) is composed of stromal sub-
stance (stroma) and basement membranes that are stretched 
along the border between this matrix and the tissues, that is, 
between the epithelium and the endothelium. The ECM rep-
resents a supportive frame for the cells (tissues and organs) 
and creates the internal environment for nutrient transport, 
product metabolism, and signal conduction (for proper func-
tioning and protection against outer undesirable factors). The 
ECM also takes part in regulating the physiological process-
es of differentiation, proliferation, migration, and cell adhe-
sion [1–4]. The physiological balance between synthesis and 
disintegration of the ECM components allows for both cre-
ation and maintenance of proper tissue architecture. The key 
role in the continuous rebuilding of connective tissue, both 
physiological and pathological (processes of growth and re-
construction), is played by endopeptidases, also called me-
talloproteinases, or matrix metalloproteinases (MMPs), which 
are able to degrade all of the structural elements of the ECM: 
basement membranes, cytokines, growth factors, chemokines, 
and receptors on the cell membranes [1–6]. MMPs are syn-
thesized and secreted as latent enzymes; they become active 
in the presence of zinc and calcium ions and act on the sur-
face of the cell or in the area around it. MMPs can be divid-
ed into several types on the basis of the decomposition of 
substrates: collagenases, gelatinases, stromelysin, elastase, 
and membrane metalloproteinase [1–3,5]. The production 
and secretion of metalloproteinases is controlled genetically 
[1–3,5]. The activity of MMPs is strictly regulated by tissue-
inhibitor metalloproteinases (TIMPs), with the 4-endogenic 
TIMPs comprising TIMP-1, -2, -3, and -4 [1–3,5,6]. MMP/TIMP 
complexes are responsible for regulating the cascade of en-
zymatic reactions occurring in embryogenesis, morphogene-
sis, cell apoptosis, inflammatory reaction, angiogenesis, and 
other processes [1–8].

Disorders of regulation of the substrate complex/MMPs/TIMPs 
(impairment or hyperactivity) leads to general pathological 
conditions such as rheumatoid arthritis, heart diseases, blood 
vessel diseases, atherosclerosis, ulcers, multiple sclerosis, me-
tastasis, and autoimmune diseases [1–3,5,7,8], as well as eye 
diseases such as retinal dystrophy [9–11], age-related macu-
lar degeneration (AMD) [12–17], pseudoexfoliation syndrome 
[18–20], fibrosis of the lenticular capsule after phacoemulsi-
fication treatment [21–25], diabetic retinopathy [26,27], pro-
liferative diabetic vitreoretinopathy [16], and epiretinal mem-
brane of proliferative diabetic retinopathy [28].

AMD can be caused by many factors, but advanced age and 
its related physiological cell apoptosis and tissue involution, 
together with genetic predisposition, are the strongest risk 
factors [9,12,14,29–34]. Other important factors include sex 

[35], environmental influences such as smoking cigarettes [36], 
heart and vascular disorders, hypertension, dyslipidemia/hy-
percholesterolemia, diabetes, obesity, improper diet, and sed-
entary lifestyle [37–42]. The pathological area involved in AMD 
is represented by photoreceptors, the retinal pigment epitheli-
um (RPE), ECM (Bruch’s membrane [BrM]), and the choriocap-
illaris [12,17,33]. The pathological features of AMD are trig-
gered by the deregulation of metabolic processes on the level 
of RPE cells; however, the area of disorders lies within the ECM 
[12–14,29,43–45].

The most significant symptom of early AMD is the presence of 
inflammatory deposits, the soft drusen that appear in the area 
of the BrM, but which are larger than 125 µm and confluent; 
these in turn represent an important risk factor for further de-
velopment of AMD [44,46–48]. Most patients with advanced 
AMD have dry AMD in the form of geographical atrophy of the 
central retina covering the photoreceptors/RPE cells/BrM/cho-
riocapillaris complex [14]. About 10–15% of all patients with 
advanced AMD have the wet, or neovascular, form (choroidal 
neovascularization, CNV) [14], which occurs in 4% of patients 
who are over 75 years old [34]. As a result of pathological an-
giogenesis, the vessels from the choroid appear to proliferate 
– after crossing the ECM border, they penetrate under the ret-
ina and their immaturity and the leakiness of their vascular 
walls causes multiple leaks of serum and lipoproteins to oc-
cur, as well as numerous hemorrhages [8,14,49,50]. The over-
all process finally results in scarring and irreversible loss of 
central vision.

Molecular Character of Changes in the ECM in 
AMD

The 2–4 µm-thick BrM [17] is the ECM and acts as a frame 
for the metabolically active RPE cells, as well as a physical 
barrier for their passage and that of the endothelial vessels; 
moreover, it regulates the diffusion of nutrient molecules 
between the retina and the choroid [17,51–53]. The BrM is 
composed of 2 basement membranes – 1 for the RPE cells 
and 1 for the endothelium of the choriocapillaris – which are 
rich in collagen type IV (non-fibrillar), fibronectin, and lam-
inin. Between the basement membranes are 2 layers (inner 
and outer) of structural collagen, composed of collagen type 
I and type III (fibrillar). Both of the collagen layers embrace 
the middle layer of the BrM, like a sandwich built mainly of 
elastin [14,15] (Figure 1).

RPE cells control the synthesis of all the structural elements of 
the BrM, mainly the most abundant proteins – collagen type I, 
collagen type IV, and laminin (which is not a collagen) – as well 
as the metalloproteinases and their tissue inhibitors [54]. The 
synthesis of metalloproteinases undergoes complex regulation 
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by growth factors, cytokines, endothelins, interleukins, pros-
taglandins, and growth hormones [1,55]. There are 2 forms 
of secreted metalloproteinases: free or anchored in the cell 
membrane (membrane-type metalloproteinases; MT-MMPs) 
[1–3,5]. The role of MMPs is not limited to the degradation 
of the BrM; growth factors are secreted from cell membranes 
that increase the accessibility of MMPs and strengthen their 
activity [1–3,5]. Increased activity of MMPs stimulates the se-
cretion of TIMPs, which bind to inactive pro-MMPs or active 
metalloproteinases. TIMP-1 inhibits the activity of MT-MMPs; 
TIMP-2 and -3 can bind to all types of MMPs; and TIMP-4 in-
hibits MMP-1, -2, -3, -7, and -9 [2,5,56] (Table 1).

The elastic layer of the BrM plays a key role in the pathogen-
esis of advanced neovascular AMD [87,88]. With increasing 
age, the number of basophilous fibers increases, which in 
turn leads to calcification and synchronously to the loss of 
elasticity of the BrM [14]; the developing destruction of the 
elastic fibres releases proteins, which are strong pro-angio-
genic factors [89,104]. Regardless of an individual’s age, the 
elastic layer is 3 to 6 times thinner and 5 times more porous 
in the area of the macula than it is on the rim of the retina 
[87]. The thinner and more porous elastic layer causes the 
BrM to become a weaker frame for the RPE cells and may 
trigger CNV development in this part of the retina [87,88]. 
Some researchers [87,105,106] suggest that the defects in 
the BrM are essential factors – whereas others [107] main-
tain that they are not – for the CNV to enter the area of the 
ECM of the macula. Elastin has strong structural and func-
tional connections with fibulins [92–95] and enters into a 
reaction with the age-related maculopathy susceptibility 
2 (ARMS2) protein (see below) [9]. Elastin is degraded by 
(metallo)elastase MMP-12, and gelatinase A (MMP-2) and B 
(MMP-9) [1,2,5,108,109]. Smoking cigarettes is thought to 
be a strong stimulator for the destruction of elastic fibers; 
this key modifiable environmental risk factor for the devel-
opment of AMD also triggers auto-immunological processes 
against elastin [110,111].

Metalloproteinases of the ECM and Their 
Tissue Inhibitors are Important for the 
Pathogenesis of Both Dry and Wet AMD

In AMD, RPE cell dysfunction results in disorders in the activity 
of MMPs/TIMPs and their substrates. MMP-2 and MMP-9, be-
ing regulated by TIMP-2 and TIMP-1, respectively [2,5,8], play 
a key role in the pathogenesis of AMD [43,45,112,113] and in 
both early dry AMD [13,43,45] and advanced wet (neovascu-
lar) AMD [4]. MMP-2 and MMP-9 can digest the main struc-
tural elements of the ECM: collagen IV, collagen V, fibronectin, 
and laminin [1,2,5]. Loss of MMP-2 activity leads mainly to an 
increase in collagen IV, as well as to an accumulation of de-
posits under the RPE layer [114]. MMP-2 is the most abundant 
enzyme synthesized by RPE cells [43,45,113]. The disordered 
activity of MMP-2 is the main cause of early AMD development 
[13,43,45]. MMP-2 is secreted as an inactive pro-enzyme that 
is activated by MMP-14 near the pro-MMP-2/TIMP-2/MMP-
14 complex [2,35,115]. The activation process takes place ex-
clusively when the TIMP-2 level is low in relation to that of 
MMP-14 in this 3-element complex [2,115]. MMP-14 indirect-
ly influences collagen by activating MMP-2, but also directly 
influences it by causing an increase in collagen I and III [35].

MMP-1 and TIMP-3 also have important roles in the develop-
ment of AMD. MMP-1 degrades collagen I, II, III [1,2,5] and the 
decrease in its activity favors the development of soft drusen. 
In AMD-prone eyes (family history, influence of crucial environ-
mental risk factors), the activation of MMP-1 by lysosomal en-
zymes in ageing and dysfunctional REP cells, together with the 
simultaneous effect of the MMP-9 and urokinase plasminogen 
activator receptor/urokinase plasminogen activator (uPAR/uPA) 
system (activated by interleukin-1), leads to the development 
of advanced neovascular AMD [15,116,117]. TIMP-3 strongly 
binds to glycosaminoglycans in basement membranes [44] and 
has a role in cell apoptosis [10,118,119]. RPE cells, when ex-
posed to blue light (relative AMD risk factor), diminish TIMP-
3 production, which consequently causes an increase in the 

Figure 1.  The composition of regular human 
extracellular matrix (Bruch’s 
membrane). E/N – entactin/nidogen, 
PGs – proteoglycans, HSPGs – heparan 
sulphate proteoglycans.
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Substrate Localization/Biological Function
Substrate-digesting 

MMPs
Role in 

development

Basement membranes (BMs)

Collagen IV Main, and most abundant element, of the BM RPE (a3a4a5 
molecule – is responsible for fluid/membrane barrier) and 
the endothelium (a1a1a2 molecule) [57–63]. Stabilizes and 
integrates BM and takes part in the process of angiogenesis and 
haemostasis [59,61]. Despite its prevalence and abundance, it is 
not required for initiating the BM process [62]

-2, -9 [2,8] SD/CNV [54,59,61]

Laminin(s)
(12 isoforms)
LAMA(a),
LAMB(b),
LAMC(g)

“Big” non-collagen element of BM – proteoglycan [64–68]. 
Initiates and is necessary for the BM process [64,65,69,70] and 
binds to collagen directly or by means of entactin/nidogen – 
see below [59,71]. Supports the structural integrity of the BM 
and adhesion of the RPE and endothelium. Also mediates signal 
transmission by means of the following cell receptors: integrins, 
proteoglycans, and glycoproteins (e.g., dystroglycan) – see below 
[59]

-2, -9, -7, -19, 
MT1-MMP [2,5]

Entactin/Nidogen
2 isoforms:
(E/N-1, -2)

“Small” components of BM – proteoglycans [68]. Necessary for 
membrane formation and binding of laminin to collagen and 
fibulins – see below [59,72–74]. Responsible for adhesion by 
mediation of integrins or other receptors [59,75]

-3, -13 [2,5]

Proteoglycans (PGs) Chondroitin/dermatan sulphate and mainly heparan sulphate. 
With proteins of PGs, glycosaminoglycans create strong 
hydrophilic and water-absorbing gel-like structures, in which 
collagen fibres are drowned [76]. Support the histo-architecture, 
regulate adhesion and differentiation of cells and the activity of 
growth factors, and play a key role in selective ultrafiltration of 
the ECM [47,58,77–80]

-3, -10, -11 [2,5]

ICL, EL, OCL 

Collagen I Main element of the ICL and OCL [59,81]. Renovation of fibres, 
adhesion of cells, interactions in the ECM [82-84]

-1, -2, -8, -9, -13, 
-18, MT-MMPs: -14, 
-15, -16, -24 [2,5,8]

SD/CNV 
[54,8,85,86]

Elastin Main structural element of the EL. Influences the elasticity and 
endurance of the ECM [87-89]

-2, -9, -12 [2,8] CNV [87,88]

Fibronectin Proteoglycan. Shapes and degrades collagen [84] and facilitates 
adhesion of the RPE and the endothelium by binding integrins 
to collagen (see below) [58,76]. Also necessary for the formation 
of choroid vessels [85]

-2, -9, -7 [2,5,8]

Fibulins
(mainly-3, -5, -6)

“Small” components of the BM, ICL, EL, and OCL. Form, stabilize, 
and anchor elastic fibres to the BM by binding elastin and 
laminin to integrins [9,68,90–92]

FBLN-3 inhibits the CNV by limiting secretion of MMP-2, -3, and 
-9 [92]

SD/*GA, *CNV
[9,92–96]

Integrins 2 isoforms:
(ITG-A, -B)

Next to dystroglycan, they are the main surface receptors of 
the RPE and endothelium for collagen, laminin, and fibronectin 
[97–102]. Polygonal network of laminin appears as a result 
of the binding of neighbouring cells, anchored to integrins or 
dystroglycans. The process is steered by cellular actin [103]

Table 1.  Structural elements of the ECM crucial in the development of early and/or advanced age-related macular degeneration: their 
characteristics, biological function, and digesting matrix metalloproteinases (MMPs).

BM – basement membrane; ICL – internal collagenous layer; EL – elastic layer; OCL – outer collagenous layer. * Familial.
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amounts of various collagens and in the development of early 
dry AMD [15,120]; on the other hand, TIMP-3 demonstrates a 
protective influence, since it inhibits the development of neo-
vascularization [121] (Figure 2).

Histological and Clinical Aspects of Changes 
in the ECM and Other Mechanisms (Apart 
from MMP/TIMP Complexes) That Regulate 
the ECM in Both Early and Advanced AMD

As a result of RPE cell ageing and disorders in their function-
ing, the structure of the ECM changes [82]. The amount of col-
lagen I [122], III, IV, and V increases [123], as does the amount 
of non-soluble collagen (responsible for facilitating the accu-
mulation of metabolic waste and lipoproteins, growth fac-
tors, and cytokines [123]), and the network of collagen fibers 
in both collagen layers of the BrM becomes irregular [124]. An 
increase in glycosaminoglycans is partially responsible for the 
changes in the metabolism of collagen [78]. The elastic layer 
of the BrM loses its flexibility and becomes porous and fragile 
[125]. In addition, the amount of collagen increases, mainly in 
the internal collagenous layer [78,122,123]; basal laminar de-
posits (BLamD) [126–128] and drusen [126,128] are formed; 
and fats accumulate [129–131]. All of these factors cause a 

minimum triple thickness of the BrM [78,126,128], which wors-
ens filtration to and from the retina [78,132]. The situation is 
further worsened by the decrease in blood flow caused by the 
diminishing vascular lumen and the amount of choriocapillar-
ies [133–136] (Figure 3).

The symptoms of RPE and ECM change disorders in early AMD 
are crucial for the pathogenesis, invisible clinically, of early and 
advanced BLamD and basal linear deposits (BLinD) [125,137–
139]. BLamD are stored and accumulated between the cytoplas-
mic and the basement membrane of RPE cells [125,137,140], 
whereas BLinD are stored and accumulated in the ECM between 
the RPE basement membrane and the internal collagen layer of 
the BrM [125,137,138]. BLamD comprise membrane proteins 
and fibrous long-spacing collagen, with cyclic repeatability of 
the collagen polymer every 100 to 120 nm [125,137], which 
react together with antibodies against elements of the base-
ment membrane such as collagen type IV, proteoglycans, and 
laminin [125,137]. The early BLamD does not cause separation 
of the RPE cells from the internal collagen layer of the BrM, but 
accumulated, advanced, and thick BLamD can cause the sepa-
ration of the RPE from the ECM. This separation, together with 
the decrease in permeability of the BrM (which becomes thick-
er and hydrophobic), simultaneous with the worsened blood 
supply caused by the choroid’s capillary vessels, worsens the 
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metabolism of the RPE cells, affecting the ability of these cells 
to supply the photoreceptors [141–144]. Both BLamD and BlinD 
are an index of the degree of degeneration of photoreceptors 
and RPE cells, which correlates positively with a decrease in vi-
sual acuity and clinically visible pigment changes in the mac-
ula [125,139,140]. The deposits in question also influence the 
development of advanced forms of AMD [139]. The accumu-
lated basal deposits may trigger disorders caused by changes 
in the ECM and deepen the process of lipofuscinogenesis, an 
accumulation of lipofuscin that takes place in the RPE; ie, age 
pigment, which develops from fully or partially digested outer 
segments of photoreceptors as a result of the gradual failure 
of liposomal enzymes in the RPE [145–147]. In the basal de-
posits, present in patients with neovascular AMD, 2 new forms 
of collagen aggregates, from untypical collagen polymerization, 
have been reported. The first form appears as parallel stripe-
shaped structures, singly and/or in clusters, and is stretched 
from the internal surface of BLamD to the ECM; this form is 
morphologically similar to the collagen of the short-chained 
type. The second form appears as aggregates, similar to long-
fiber collagen, and is periodically separated with characteris-
tic dense strands [148]. According to the authors, the leakage 
of various factors from the neovascularization that trespass-
es into the area of the BrM and from the basal deposit may 
both induce physico-chemical changes in the ECM, which in 
turn may trigger untypical polymerization of the collagen mol-
ecules into aggregates similar to the stripes and long fibers 
of collagen [148]. Deposition of these new structures increas-
es the BLamD thickness to a high degree and simultaneous-
ly worsens the nutrient and oxygen supply of the RPE/photo-
receptors, which in turn maintains neovascularization [148].

The basal deposits, with diameters of over 25–30 µm, turn into 
clinically visible soft drusen, which are conducive to serous sep-
aration of the RPE from the ECM [9,139,149–151]. They are a 
risk factor for developing advanced forms of AMD during the 
next 5 to 10 years [152,153]; i.e., the geographical atrophy or 
neovascular form of AMD [139,154–157]. Eyes without drusen 

and with only the pigment changes (resulting from the elim-
ination from the ECM of the RPE cells, which are loaded with 
lipofuscin and have lost their microvilli and ability to adhere 
to the ECM) [141–144,158], show a slower AMD process and 
have a lower risk of developing the advanced form of AMD dur-
ing the next 5 to 10 years [152,153]. Drusogenesis takes place 
and lasts in the ECM for many years. It is a complex and mul-
tifactorial process, as evident from the composition of drusen: 
phospholipids, glycolipids, saturated and unsaturated fatty ac-
ids, cholesterol, approximately 130 various kinds of proteins, 
carbohydrates, fibronectin, ubiquitin, vitronectin, integrins, 
apolipoproteins, and immunoglobulins. Drusen also contains 
components of the complement complex, including, among 
others, the membrane attack complex (MAC), adducts of the 
carboxyethylpyrrole (CEP) protein (see below), MMPs, TIMPs, 
and others [14,114,149,159–162]. Drusogenesis is a side effect 
of both dysfunction and degeneration of RPE cells; however, it 
may also indicate a chronic para-inflammatory (which in some 
aspects is similar to inflammation, but not classic inflamma-
tion) and immunological condition in the ECM [163–169]. The 
phagocytes (leukocytes, lymphocytes, and macrophages) and 
complement system attempt to clear the ECM of the accumu-
lated metabolic waste of the RPE [170–172].

The classic and alternative pathways of the complement system 
(which does not require the presence of a typical pathogen), 
activated by factors that are dependent on and independent 
from lipofuscinogenesis (an oxidized albuminous element of 
lipofuscin, bis-retinoid pyrimidine A2E, is one of the strongest 
cytotoxic stimulants of the alternative pathway, and is only ex-
ceeded by CEP and isolevuglandin), lead to the creation of the 
MAC and the destruction (lysis) of the aggressor’s cells after 
the spontaneous hydrolysis of the C3 factor (classic pathway) 
or the C3b factor (alternative pathway) [170,172–177]. The 
complement system is an integral element of the inborn (not 
specific) immunological response, and it supports phagocyto-
sis and controls the inflammatory reaction process [170,172]. 
However, in conditions of insufficient control in the AMD, the 

Figure 3.  Pathological changes in the retinal 
pigment epithelium, extracellular 
matrix, and choroid in age-related 
macular degeneration. PED - pigment 
epithelial detachment. * Programmed 
cell death – apoptosis; ** cell death 
caused by separation from its BMs 
– anoikis [14].
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complement system starts to attack both the drusen materi-
al and its own RPE cells, especially in patients with the Y402H 
gene polymorphism, which causes hypofunction or lack of the 
protective complement factor H, which in turn slows down the 
cascade of reactions connected with an increase in MAC, espe-
cially within the range of the alternative pathway. This leads to 
deep disintegration of the ECM [178–181]. Apart from comple-
ment factor H, other serum (plasmatic) suppressors of the ac-
tivity of the complement system are important, including the 
family of factor H-like proteins 1–5, C4-binding proteins, and 
surface protein such as membrane decay-accelerating factor 
CD55, membrane cofactor protein CD46, and receptors of the 
complement system CR1, CR2, and CR3 [177,182]. In the mo-
bilization of the immune system and the auto-aggressive re-
sponse regarding RPE cells and the ECM, a pivotal role is also 
played by the CEP protein and its adducts, which are gener-
ated in blood as a result of CEP conjugation with circulating 
proteins such as plasma albumin [149,183]. CEP is a derivative 
of the free-radical oxidation of phospholipid docosahexaenoic 
acid (DHA), which is the main representative of polyunsaturat-
ed fatty acids, which are abundant in plasmatic membranes of 
photoreceptors digested by the RPE cells [183,184]. DHA is es-
pecially prone to the oxidation process, which is also favored 
by relatively high oxygen partial pressure in the central part of 
the retina [184–186]. Oxidized DHA-CEP products and CEP ad-
ducts are present in the lipofuscin of RPE cells, the drusen of 
the ECM, and systemic circulation [149,183]. They are strong-
ly immunogenic, and therefore constitute a target for the im-
mune system and stimulate the production of anti-CEP anti-
bodies and anti-CEP auto-antibodies (because the adducts are 
endogenic compounds with antigen features) [149,183]. CEP 

adducts caused the development of human AMD (drusen, geo-
graphical RPE atrophy, neovascularization) in immunized ani-
mals [187, 188]. They also stimulate angiogenesis independent-
ly from vascular endothelial growth factor (VEGF; see below) 
[189]. In the neovascular type of AMD, the ECM is affected by 
the influence of the pro-angiogenic forces (generated by the 
RPE) on the choroid and therefore becomes the area of neo-
vascularization invasion. Hypoxia, but also hyperactivity of the 
complement system, together with the inflammatory process, 
leads to disturbances in the pro/anti-angiogenic balance. The 
increased RPE expression of the angiogenesis-stimulating fac-
tors (mainly VEGF-A, -B, -C, and -D and platelet-derived growth 
factors PDGF-A and B) over the anti-angiogenic factors (main-
ly pigment epithelium-derived factor) causes the expansion of 
the pathological vessels from the choroid to the area of the 
BrM [49,50,107,190]. Hypoxia-inducible factor-1 is a key sub-
stance in activating the transcription of the pro-angiogenic fac-
tors, including VEGF [107,190]. RPE is the main source of pig-
ment epithelium-derived factor, and its decreased expression 
derives from the degeneration of the RPE cells [190] (Figure 4).

In the degradation of the ECM proteins (as well as in the case 
of cell growth and survival processes), a crucial role is played 
by the serine protease HTRA1 (high temperature requirement 
factor A 1), also called the heat shock protein, which is secret-
ed in stress-related conditions. Expressions of HTRA1 are pres-
ent in RPE cells, endothelium cells of the choroid, drusen, and 
subretinal neovascular membranes. HTRA1 is related to early 
and advanced neovascular AMD and causes an increase in the 
secretion of metalloproteinases and/or binding the pro-angio-
genic factor transforming growth factor-b [191–193] (Figure 5).

Figure 4.  Schematic presentation of the 
mechanisms causing early and 
advanced forms of age-related 
macular degeneration. 
A2E – bis-retinoid pyrimidine, 
CEP – carboxyethylpyrrole protein, 
ILG – isolevuglandin, 
CFH – complement factor H, 
FHL – family of factor H-like proteins, 
DAF – membrane decay-accelerating 
factor, MCP – membrane cofactor 
protein, CR – complement receptor, 
MAC – membrane attack complex, 
GA – geographical atrophy, 
PED – pigment epithelium detachment, 
VEGF – vascular endothelial growth 
factor, PEDF – pigment epithelium-
derived factor, HIF-1 – hypoxia-
inducible factor-1.
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Proteins coded by the genes connected with the development 
of maculopathy (genetically conditioned) include MMP-9 [112]; 
TIMP-3 [194]; fibulins -3, -5, and -6 [93,95,96,195]; and elastin 
[17,88], as well as ARMS2 protein [9,196]. The secretory cyto-
solic (but not the mitochondrial) ARMS2 protein [196] regulates 
the ECM [9]. It is present in the retina and the RPE; however, 
it mainly accumulates in the intercapillary spaces of the cho-
roid, where it interacts with elements of the basement mem-
branes, including collagen type IVa2 (COL4A2) and fibulin-1 
and -6 (FBLN-1, -6), as well as with ECM proteins, collagen type 
Ia1 (COL1A1) and fibronectin1 (FN1) [9,90,91]. Homozygous 
patients, having no ability to synthesize the ARMS2 protein 
[198], show a higher susceptibility to the development of dru-
sen and AMD [9]. ARMS2 shows functional interaction with the 
protein network of the ECM; many of these proteins are pres-
ent in the development of maculopathy [90,91,195,198,199]. 
The importance of ARMS2 in the pathomechanism of AMD un-
derlines, as pointed out by researchers [9], the direct relation-
ship of ARMS2 to fibulin-6, mutations of which lead to dam-
age in the elastic fibers of the BrM (Figure 6).

The uPAR/uPA system influences the development of advanced 
neovascular AMD [15]. Both RPE cells and the choriocapillaris 
epithelium secrete uPAR and inactive uPA [116]. Activated uPA 
causes the conversion of inactive plasminogen into plasmin 
(i.e., the protease), which degrades laminin, fibronectin, and 
other proteins of the ECM [200]. Moreover, uPA also reduces 
cell adhesion and decreases cellular mobility [98]. uPA, stim-
ulated by, among others, interleukin-1 and other cytokines, 
synergizes with MMP-9 and elastase in collagen VI and elas-
tin degradation, which in turn enables CNV and the RPE cells 
to enter the area of the ECM [15]. uPA activity is blocked by 2 
endogenous inhibitors (plasminogen activator inhibitors PAI-
1 and PAI-2) [200] (Figure 7).

Activation of the pro-renin receptor (PRR), the pivotal element 
of the renin-angiotensin system, causes an increase in colla-
gen I accumulation, with the level of collagen IV and laminin 
unchanged, in an animal model [54]. Activation of the PRR re-
ceptors does not influence the MMP-2/MMP-14/TIMP-2 com-
plex and therefore does not cause an increase in the levels of 
collagen IV and laminin, which are the main cause of the de-
velopment of drusen [54]. As was hypothetically assumed by 
the authors, activation of PPR may influence the development 
of early AMD because the increase in collagen I leads to the 
growth of deposits and to the thickening of the BrM, which 
together represent early signs of AMD [54]. The increase of 
PPR expression and collagen I, with unchanged levels of col-
lagen IV and laminin, were also observed in the retinas of pa-
tients with hypertension who were untreated during their life-
times [54]. On the other hand, in the retinas of patients with 
AMD who were treated for hypertension, an increase in PRR 
expression and in the amount of collagen I, but a decrease 
in collagen IV and an unchanged level of laminin, have been 
demonstrated [54]. Changes in the amounts of collagen I and 
IV and an unchanged level of laminin are probably induced 
by drugs that block angiotensin II receptors [54]. In the sit-
uation in which AMD occurs simultaneously with hyperten-
sion, the crucial pathological regulator of the ECM is angio-
tensin II. Tests on animals have shown that angiotensin II 
stimulates the RPE cells to a higher expression of mRNA for 
the production of the AT1 receptors of angiotensin, the acti-
vation of which leads to a greater release of the active form 
of MMP-2 by the RPE [41]. MMP-2 plays a key role in the ear-
ly development of AMD as a result of the enhancement of 
the deposits stored under the RPE layer [41,54]. It has also 
been shown that in the pathway in which the AT2 receptors 

Figure 5.  The relation of high-temperature requirement factor 
A 1 (HTRA 1) to early and advanced age-related 
macular degeneration. TGFb – transforming growth 
factor b.
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Figure 6.  Protective influence of the age-related maculopathy 
susceptibility 2 protein (ARMS 2) on the structural and 
functional elements of the extracellular matrix. 
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Figure 7.  The relationship between the 
urokinase plasminogen activator 
receptor/urokinase plasminogen 
activator system and the development 
of choroid neovascularization/age-
related macular degeneration. 
IL-1 – interleukin-1, LAMs – laminins, 
FN1 – fibronectin1.
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effect on AMD by favoring accumulation of coll I, but not by stimulating activity of MMP-2; ** when degrading activity 
of MMP-2 stays unchanged, the synthesis of coll I increases; *** � activation of PRRs do not stimulate the pro-MMP-2/
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of angiotensin are activated, angiotensin II stimulates the 
RPE cells to collect collagen IV [41]. In the case of early AMD 
occurring together with hypertension, drug-induced block-
ing of angiotensin II receptors may be of therapeutic impor-
tance and at the same time protect against AMD degenera-
tion [41] (Figure 8).

Conclusions

In both early and advanced AMD, the ECM is the area of dy-
namic changes connected with the activity of its specific regu-
lators – metalloproteinases and their tissue inhibitors. However, 
it is also under the positive and negative influence of other 
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regulatory systems. The importance of the ECM can be seen by 
the fact that transplants of RPE cells exclusively, without the 
BrM, do not bring about the required results because, apart 
from the immunological problems connected with transplant 
rejection, there also occurs the problem of the ground matrix; 
the cells are unable to adhere to the age-changed and insuffi-
cient BrM and/or are iatrogenically damaged during the surgi-
cal removal of the CNV [110]. The ECM has a crucial influence 
on both the survival and functioning of the transplanted RPE 

cells [99,110]. We are not able to treat the atrophic form of 
AMD, and the therapies applied in neovascular AMD (ie, treat-
ing neovascularization by means of photodynamic therapy, or 
blocking its stimulants by drugs injected into the vitreous cam-
era of the eye (pan anti-VEGF Lucentis® or off ophthalmolog-
ical label pan anti-VEGF Avastin®) may only slow down AMD 
advancement [201–204]. Better insight into the pathological 
mechanisms acting in the area of the ECM may lead to the de-
velopment of new and improved strategies for AMD treatment.
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