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Abstract Visual perception by photoreceptors relies on the

interaction of incident photons from light with a derivative

of vitamin A that is covalently linked to an opsin molecule

located in a special subcellular structure, the photoreceptor

outer segment. The photochemical reaction produced by

the photon is optimal when the opsin molecule, a seven-

transmembrane protein, is embedded in a lipid bilayer of

optimal fluidity. This is achieved in vertebrate photore-

ceptors by a high proportion of lipids made with

polyunsaturated fatty acids, which have the detrimental

property of being oxidized and damaged by light. Pho-

toreceptors cannot divide, but regenerate their outer

segments. This is an enormous energetic challenge that

explains why photoreceptors metabolize glucose through

aerobic glycolysis, as cancer cells do. Uptaken glucose

produces metabolites to renew that outer segment as well

as reducing power through the pentose phosphate pathway

to protect photoreceptors against oxidative damage.
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Abbreviations

6PGD 6-Phosphogluconate dehydrogenase

ADIPOR1 Adiponectin receptor protein 1

AMD Age-related macular degeneration

BSG1 Basigin-1

BSG2 Basigin-2

DHA Docosahexaenoic acid

DHAP Dihydroxyacetone phosphate

F6P Fructose-6-phosphate

FABP Fatty acid-binding proteins

FAD Flavin adenine dinucleotide

FBP Fructose-1,6-bisphosphate

G3P Glyceraldehyde-3-phosphate

G6P Glucose-6-phosphate

G6PDH Glucose-6-phosphate dehydrogenase

GAPDH Glyceraldehyde-3-phosphate dehydrogenase

GLRX Glutaredoxin

GLUT1 Facilitated glucose transporter SLC2A1

GPX Glutathione peroxidase

GSH Glutathione

GSR Glutathione reductase

HK Hexokinase

HMGCS2 HMG-coenzyme A-synthase 2

HNE Hydroxy-2-nonenal

IFT Intra-flagellar transport

Ig Immunoglobulin domain

IPM Inter-photoreceptor matrix

IRBP Inter-photoreceptor retinoid-binding protein

MCT1 Monocarboxylate transporter 1 SLC16A1

MCT3 Monocarboxylate transporter 3 SLC16A8

MDA Malondialdehyde

Met-SO Methionine sulfoxide

MFSD2A Sodium-dependent lysophosphatidylcholine

symporter 1

MSR Methionine sulfoxide reductases
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NADH Nicotinamide adenine dinucleotide

NADPH Nicotinamide adenine dinucleotide phosphate

NO Nitric oxide

NXNL1 Nucleoredoxin-like-1 gene

OPN1LW Long-wave-sensitive opsin 1

OPN1MW Medium-wave-sensitive opsin 1

OPN1SW Short-wave-sensitive opsin 1

PDE6B Phosphodiesterase-b subunit

PEP Phosphoenolpyruvate

PKM Pyruvate kinase isoform M

PPP Pentose phosphate pathway

PRDX Peroxiredoxin

PRPH2 Peripherin-2

PUFA Polyunsaturated fatty acids

R5P Ribose-5-phosphate

rd1 Retinal degeneration 1 mouse

RdCVF Rod-derived cone viability factor

RdCVF2 Rod-derived cone viability factor 2

RdCVF2L Rod-derived cone viability factor 2 long

RdCVFL Rod-derived cone viability factor long

RHO Rhodopsin

RNS Reactive nitrogen species

ROS Reactive oxygen species

RPE Retinal pigmented epithelium

RPIA Ribulose-5-phosphate isomerase

Ru5P Ribulose-5-phosphate

SLC Solute carrier family of transporters

SLC16A Monocarboxylate transporter family 16

SRXN Sulfiredoxin

TAU Microtubule-associated protein TAU

TCA Tricarboxylic acid

TPI Triose phosphate isomerase

TXN Thioredoxin

TXNRD Thioredoxin reductase

Upside down: considerations of the inverted
camera type eye

The vertebrate retina, the light sensitive part of the eye, is

composed of three layers of neurons and of radial Muller

glial cells. The photoreceptor layer, which includes rods

and cones, is located in the farthest position with respect to

the incidence of light; their nuclei form what we call the

outer nuclear layer as observed on retinal sections (Fig. 1).

The other layers are composed of interneurons, such as

bipolar cells that relay light-dependent electrochemical

signals, transmitted through the photoreceptor synapses, to

neurons of the ganglion cell layer. The axons of these later

neurons form the optic nerve. Within the circuit, other

neurons intercalated into the retina modulate the signal.

The biological rational of this counterintuitive optic setting

is explained by the chemical properties of the photore-

ceptor cellular substructure that captures the photon, the

photoreceptor outer segment [1]. Most engineers would

place the photoreceptors of the retina to the nearest from

the incident light. The high sensitivity of the retina requires

that the number of light sensing molecules, the opsins, be

very high. Both for vertebrates and invertebrates, the opsin

molecules are seven-transmembrane domains proteins

coupled to G protein, alternatively named G protein-cou-

pled receptors. Opsins establish a covalent link through an

intra-membranal lysine residue with a chromophore

derived from vitamin A. Retinal exists as two stereoiso-

mers, 11-cis-retinal and all-trans-retinal. Upon absorption

in the visible range, a photon triggers cis–trans isomer-

ization; the chromophore is converted from a bent

molecule to a straight one by the energy provided to pass

the thermodynamic barrier separating the two stereoiso-

mers. The straightening of the chromophore within the

hydrophobic pocket formed by the seven-transmembrane

a-helix induces a conformational change that is sensed by

an intra-cellular G protein, the transducin. This molecular

rearrangement is optimal within a lipid bilayer of high

fluidity [2]. The fluidity of the lipid bilayer of the pho-

toreceptor outer segment is conferred by its high proportion
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Fig. 1 Architecture of the retina of vertebrates. a Mouse adult retinal

section with nuclei labeled with 40,6-diamidino-2-phenylindole

(DAPI). OS outers segment, ONL outer nuclear layer, INL inner

nuclear layer, GCL ganglion cell layer. b Schematic drawing of the

retinal cells and their functional relations. RPE retinal pigmented

epithelium, BC bipolar cell, GC ganglion cell, M Muller glial cell
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of lipids made of polyunsaturated fatty acids (PUFA). In

mammals, docosahexaenoic acid (DHA, 22:6, n-3), an

essential omega-3 fatty acid, accounts for 80 % of the

PUFAs of photoreceptor outer segment. Polyunsaturation is

the existence of several double bonds (C=C), which are

chemically rigid. Nevertheless, C=C bonds of PUFA are

flanked by two saturated bonds (C–C) forming a regular

pattern of one non-rotating (C=C) and two rotating bonds

(C–C). This arrangement reduces the energy of rotation

that increases the fluidity of the lipid membrane [3]. It is

also a double bond (C=C) of the chromophore that is

subject to cis–trans isomerization. Lipids of the photore-

ceptor outer segment are prone to oxidation. Reactive

oxygen species (ROS) drive lipid peroxidation, a chain

reaction, in which one ROS can induce the oxidation of a

large number of lipid molecules-containing PUFA [4].

Fatty acid hydroperoxides are finally decomposed into

reactive aldehydes, such as 4-hydroxy-2-nonenal (HNE)

and malondialdehyde (MDA). Monounsaturated and satu-

rated fatty acids are much less reactive and do not usually

participate in lipid peroxidation. The end-products of lipid

peroxidation (MDA and HNE) cause protein damage by

reacting with chemical groups within certain amino acids

as cysteines, lysines, and histidines [5] (Fig. 2a). The

nucleophilic thiol side chain in cysteine participates in

many enzymatic reactions and the irreversible formation of

HNE adduct with photoreceptor proteins is detrimental to

their function [6] (Fig. 2b). Photoreceptors are post-mitotic

neurons that do not regenerate, at least in mammals. The

damaged lipids are eliminated from vertebrate photore-

ceptors by phagocytosis of disks by the retinal pigmented

epithelium (RPE). This process is regulated by the circa-

dian clock, so that 10 % of rod photoreceptor outer

segment is daily engulfed in phagosomes of RPE cells.

Phagosomes are moved from the apical membrane toward

the basal membrane where their contained in proteins and

lipids are degraded [7]. To maintain its length, the pho-

toreceptor outer segment is renewed from its base, a

process that involves protein and lipid synthesis in the

inner segment of photoreceptor, a cellular substructure just

beneath the outer segment. Contrarily to the cones, the rod

outer segments are made up of a stack of individualized

membranal disks unconnected to the plasma membrane of

the inner segment. Consequently, lipids are transferred

from the plasma membrane to the disks [8–10].

The renewal of rod outer segments was elegantly dis-

covered by Young [11]. In rods, most of the new proteins

are first concentrated at their base, where they are used in

the assembly of new disk membranes. After a single

injection of 3H-methionine, he observed by autoradiogra-

phy, labeled disks progressively displaced along the outer

segment due to the repeated formation of newer disks. A

similar observation was made using tritium-labeled fatty

acids [12]. Most likely, it is this mechanism of disk shed-

ding and renewal that imposed the upside down positioning

of the photoreceptors and their outer segments in the most

distal part of the retina from the incident light. One could

argue that this is not the only possible organization of

photoreceptors in the eye, since cephalopods have an

everted retina, so that the distal end of rhabdomeric pho-

toreceptors is pointing toward incoming light [13].

The life of photoreceptors: a challenging task

The renewal of photoreceptor outer segment in vertebrate

retina is energetically demanding and biologically chal-

lenging. The outer retina formed by photoreceptors is

avascular, in contrast to the inner retina. Exchanges

between the retina and the circulation are controlled at two

levels: the blood-retinal barrier in the inner retina, made up

of retinal vessels surrounded by pericytes and glial cells,

and the outer retinal barrier, which is constituted by the

RPE adherent junctions (Fig. 3). All nutrients, including

glucose, vitamin A, and fatty acids, are provided to pho-

toreceptors by choroidal blood flow behind the RPE, one of

the highest rates of blood flow of the whole body [14]. The
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Fig. 2 Lipid peroxidation chain reaction. a Chemical structure of

4-hydroxy-2-nonenal (HNE). The carbon at position C3 targets

cysteine modification. The aldehydes group targets lysine and

histidine modifications. b Modification of a cysteine residue (SH) in

a protein by HNE through thiol Michael addition at position C3
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blood supply to photoreceptors must be transported through

RPE cells that form an epithelium with adherent junctions.

Good fats: supplying fatty acids to photoreceptor
cells

It is broadly accepted that in mammals, unsaturated fatty

acids are not synthesized in the retina but originate from

blood supply. The essential fatty acids, among which DHA

(C22:6, n-3) and its precursor, a-linolenic acid (18:3, n-3)

are hydrophobic molecules transported by serum albumin

from the liver to the basal side of the RPE cells where they

are transferred to photoreceptors through the apical side

(Fig. 4). Two distinct molecules have been implicated in

the transport of DHA through the RPE, the major facilitator

superfamily domain-containing protein 2a (MFSD2A) and

the adiponectin receptor 1 (ADIPOR1) [15–17]. MFSD2A

is a typical 12 transmembrane domains transporter, while

ADIPOR1 is an atypical 7 transmembrane domains

receptor of adiponectin, an essential hormone secreted by

adipocytes that regulates glucose and fatty acid metabo-

lism. The mechanisms that link the two transporter proteins

are unknown.

Transport of insoluble fatty acids from basal to apical

surfaces of the RPE certainly involves transient interac-

tions with fatty acid-binding proteins (FABP) to allow

intra-cellular translocation of hydrophobic molecules in the

aqueous cytosol.

Essential fatty acids as DHA retrieved from shed pho-

toreceptor apical disk membranes are recycled back to the

photoreceptor inner segment and further incorporated into

phospholipids of renewed photoreceptor outer segments.

The recycled fatty acids are transferred from the RPE to

photoreceptors through the inter-photoreceptor matrix

(IPM), in the extracellular space between the photoreceptor

outer segments and the RPE, in the absence of albumin, the

inter-photoreceptor retinoid-binding protein (IRBP) binds

to fatty acids [18, 19]. Since the expression of MFSD2A by

photoreceptors was not reported, it is still unclear how

essential fatty acids are taken up by photoreceptors, but

pulsed-labeling experiments with radiotracers
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Fig. 3 Exchanges between the retina and the blood circulation. Blood

circulation is controlled at two levels (red arrows): a blood-retinal

barrier in the inner retina and an outer retinal barrier, which is

constituted by the RPE. RPE retinal pigmented epithelium, BC

bipolar cell, GC ganglion cell, M Muller glial cell, AJ adherent

junction, OLM outer limiting membrane, P pericyte

ABL

MFSD2A ADIPOR1

CHOROID

RPE
FABP
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IPM
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Fig. 4 Transport of essential fatty acids from the blood circulation to

photoreceptors. RPE retinal pigmented epithelium, ABL albumin,

ADIPOR1 adiponectin receptor 1, MFSD2A fatty acid transporter,

IPM inter-photoreceptor matrix, FABP fatty acid-binding protein,

IRBP inter-photoreceptor retinoid-binding protein
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demonstrated that this happens in vitro and in vivo [20]. To

be incorporated into the renewing photoreceptor outer

segments, non-polar fatty or aliphatic acid tails part of the

amphiphilic phospholipid must be linked to a polar head

derived from glycerol-3-phosphate for glycerophospho-

lipids [21]. This is taking place at the surface of the

endoplasmic reticulum in the inner segment of photore-

ceptors. Intra-cellular fatty acid transport proceeds through

binding to FABP.

Quite interestingly, a yet unknown fraction of the satu-

rated fatty acids from photoreceptor outer segments is

recycled to provide energy instead of structural compo-

nents to photoreceptors. They are metabolized by RPE cells

from the phagosome by the high levels of mitochondrial

HMG-coenzyme A (CoA)-synthase 2 (HMGCS2) into

ketone derivatives (C=O), then enzymatically processed

into b-hydroxybutyrate by fatty acid b-oxidation pathway

[22] (Fig. 5). b-Hydroxybutyrate is then released prefer-

entially into the apical compartment through the

monocarboxylate transporter isoform 1 (SLC16A1), facing

photoreceptor cells that internalize it through the mono-

carboxylate transporter isoform 7 (SLC16A6). b-
Hydroxybutyrate is oxidized by the tricarboxylic acid

(TCA) cycle to produce energy and glutamate (E), a

neurotransmitter involved in the vertical transmission of

the signal from photoreceptors to bipolar cells [23]. The

contribution of this cycle to the enrichment of photore-

ceptor outer segments into PUFAs is presently unknown.

Renewing proteins of photoreceptor outer
segments

Rhodopsin represents 80 % of total protein content in rod

outer segments and a density of 25,000 molecule/mm2 on the

disk membrane forming a supramolecular organization of

tracks of rhodopsin dimers [24–26]. The pace of renewal of

photoreceptor outer segment imposes that a high level of

protein biosynthesis occurs on daily basis. Disk assembly at

the base rod outer segment is estimated to be 80 disks per day,

which requires the synthesis of*1000 rhodopsin molecules

per minute [27]. This requires efficient mechanism of tran-

scription and translation. Integral transmembrane proteins

and peripheral membrane proteins are then crossing the

connecting cilium to reach photoreceptor outer segment.

Transport of proteins and lipids through the cilium is medi-

ated by the intra-flagellar transport (IFT) machinery.

Natural history of cones and rods

As explained previously, in pulse-chase experiments,

newly radiolabeled proteins migrate toward the connecting

cilium and are incorporated into nascent disks of rod

photoreceptors that move progressively toward the RPE

[28]. In the cones, the radiolabeled proteins diffuse

throughout the entire outer segment, because of the absence

of disks; the outer segment membrane of cones is in direct

continuation of the plasma membrane [29]. The difference

in the morphology of the two classes of vertebrate pho-

toreceptors was originally described by Max Schultze in

1866 [30]. In most vertebrates, vision is based on a dual

system of photoreceptors. The rods are responsible for

scotopic vision, in conditions of low luminosity, and the

cones are responsible for photopic vision, in conditions of

high luminosity, for color vision and high-acuity. Color

vision is the process by which information is extracted

from a visual stimulus based on its wavelength composi-

tion. It is based on differences in spectral sensitivities of

visual pigments, or opsins. In general, these opsins are

expressed in a specific type of photoreceptors, in accor-

dance with the principle of one receptor–one neuron that

applies to most sensory systems. The different groups of

cone opsins are defined in terms of the spectral sensitivity:

cluster S (blue, ultraviolet\440 nm), clusters M1 and M2

(440–510 nm), and cluster L (red [500 nm) [31]. Most

mammals have a retina, in which rods predominate.
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Fig. 5 Recycling of saturated fatty acids by photoreceptors. RPE

retinal pigmented epithelium, SFA saturated fatty acid, HMGCS2

mitochondrial HMG-coenzyme A (CoA)-synthase 2, SLC16A1

monocarboxylate transporter isoform 1, SLC16A6 monocarboxylate

transporter isoform 7, TCA tricarboxylic acid, E glutamic acid
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Nonetheless, despite this predominance of photoreceptors

designed for night vision, many mammals have developed

a diurnal lifestyle, in which vision is essentially dependent

on cone activity. This paradox of a rod-dominated retina in

animals adapted to diurnal activity applies to humans and

other primates. High-acuity vision, in particular, is

dependent on the presence of the fovea, a specialized

region in the centre of the retina constituted exclusively of

cones in its most central part. The absence of M1 and M2

opsin genes in all sequenced mammalian genomes led to

the hypothesis that the common ancestor of all mammals

probably had a nocturnal lifestyle not requiring complex

color vision. The selection pressure exerted on the first

mammals by contemporary diurnal sauropsids forced

primitive mammals to adopt a nocturnal lifestyle relying on

scotopic vision and explains the loss of M1 and M2 opsin

genes. The sudden extinction of the dinosaurs enabled

mammals to colonize the vacated diurnal ecological niches,

a mechanism known as nocturnal bottleneck [32]. Con-

temporary birds, which belong to the sauropsids, have a

retina dominated by cones as presumably that of dinosaurs

and contrarily to mammals [33, 34]. Primitive primates

(prosimians) with a nocturnal life style, such as many

lemurs, have only dichromatic vision. Humans and other

old world apes (Cercopithecidae) have trichromatic vision,

due to duplication of the L-opsin gene on the X chromo-

some. Humans thus have four visual pigments: rhodopsin

(RHO), S-(OPN1SW, 425 nm), M-(OPN1MW, 530 nm),

and L-opsins (OPN1LW, 560 nm), expressed by rods and

the blue, green and red cones, respectively. Nevertheless,

L-opsin duplication is not specific to Cercopithecidae, it

also occurred in a family of platyrrhines, the howler

monkeys (Alouatta caraya) [35]. This duplication is an

independent event and more recent than that in the Cer-

copithecidae. The evolutionary history of color vision of

primates illustrates the importance of the cone in the

acquisition of complex behaviors.

The most ancient ciliary photoreceptors in Cnidarians

(corals, sea anemones and jellyfishes) share with vertebrate

cones a low sensitivity to light and are adapted primarily

for diurnal vision [36]. This observation asks the question

of the origin of the rods. A major step in the evolution of

the vertebrate eye was the emergence of rods in addition to

cones to produce a duplex retina [37]. In a duplex retina,

rods are functional for dim light vision with great sensi-

tivity, and when the light intensity increases, the rods are

saturated and turned off, leaving the cones to function in

bright light, greatly reducing energy required for vision.

Functional rods evolved before the split between the jawed

and jawless vertebrates. Sea lamprey (Petromyzon mari-

nus) has two types of photoreceptors, the short and the long

both with a cone-like morphology of outer segment, but the

short photoreceptors have a single-photon sensitivity

similar to that of rods in other vertebrates [38–40]. The

typical rod outer segment morphology with segmented

disks was acquired later during evolution, probably

because it allows only the removal of the oldest macro-

molecules during outer segment disk shedding contrarily to

cones. An increased metabolic rate, along with changes in

energy allocation, was crucial in the evolution of human

brain size and life history [41]. One could speculate that the

reduction in energy requirement for vision had permitted

energy allocations in favor of cephalization and cognitive

functions during evolution of jawed vertebrates [42]. Citing

Spinoza ‘‘Living organisms are designed with an ability to

react emotionally to different objects and events’’, we

could propose that the light perception by photoreceptors

and cognitive functions are parallel attributes of the same

substance [43]. Intriguingly, in all conditions where the

rods are destroyed, the cones degenerate secondarily. This

is particularly well established in rod-dominated mam-

malian retina, but was also observed in retina with an equal

proportion of rods and cones [44]. Ablation of rod pho-

toreceptors in Xenopus laevis results in outer segment

degeneration and cone cell death. In such retina, there are

evidences that rods also need cones to survive [45]. A

mutation in the cone-specific phosphodiesterase zebrafish

gene (pde6c) triggers cone death followed by rod degen-

eration in areas of the retina that was originally rich in

cones. In mouse models of rod-to-cone degeneration, it was

proposed that glucose uptake by cones and/or its intra-

cellular concentration in cones may be compromised [46].

The cones need the rods to survive [47].

Cones got married to rods for life

In patients suffering from retinitis pigmentosa, the most

common form of inherited retinal degeneration, the vision

loss develops in two successive steps. Early in their adult

life, these patients lose ability to see in dim light conditions

that refers to a night vision lost and corresponds to the loss

of function and degeneration of rod photoreceptors. This is

felt as a minor handicap, especially in individuals affected

by congenital stationary night blindness, another type of

inherited retinal disease characterized exclusively by lack

of rod function; in our current well-illuminated environ-

ment, these people retain an almost normal way of life [48].

For those patients affected with rod-cone dystrophy, the

disease then progresses through another debilitating step

resulting from loss of function and degeneration of the

second class of photoreceptors, the cones that dominate at

the centre of the retina. Cones represent only 3–5 % of all

photoreceptors in most mammals, but their role for vision

is essential. This secondary event leads to central vision

loss and potentially complete blindness. Because the cones
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underlie all visual functions in lighted environment, cone

rescue was deemed to be a clinically relevant target

[49, 50]. Widespread cone death in the naturally occurring

rd1 mutant mouse, a model of retinitis pigmentosa, is well

described [51]. The degeneration does not arise in this

model through a mutation within cone photoreceptor cells,

but as a result of a recessive mutation in the rod photore-

ceptor-specific cGMP phosphodiesterase-b subunit

(PDE6B), and is consequently non-cell autonomous [52].

This mutation also leads to rod-cone degeneration in

humans [53]. Grafting normal photoreceptors (97 % rods)

into the eye of the rod-less rd1 mouse before the cones

degenerate exerts a positive effect on the host retina cones

[54]. Co-culture studies demonstrated that such trophic

effect on cone photoreceptors might be mediated through a

diffusible factor [55]. Rod death in the first phase of the

disease is triggered by the loss of expression of rod-derived

cone viability factor (RdCVF), a truncated thioredoxin-like

protein encoded by the nucleoredoxin-like-1 gene (NXNL1)

[56, 57]. The inactivation of the Nxnl1 gene in the mouse

triggers an age-dependent loss of cones even with the

potential complementation of its paralog Nxnl2 [58–60].

RdCVF is a translation product made from an alternatively

spliced mRNA encoding the exon 1 and retaining the fol-

lowing intron that contains an in-frame stop codon (Fig. 6).

The other product (RdCVFL), made by splicing intron 1 of

the NXNL1 gene, is an active thioredoxin enzyme that

protects rod and cone photoreceptors against photo-

oxidative stress [61–64]. NXNL2, the paralog of NXNL1,

also encodes for at least two proteins: RdCVF2, a trophic

factor produced by the rods and active on cones, and the

thioredoxin protein RdCVF2L by alternative splicing

[60, 65]. The administration of RdCVF protein would

restore rod-to-cone signaling preventing the secondary

degeneration of cones and thus transforming retinitis pig-

mentosa in a type of night blindness associated with

moderate visual impairment, independent from the causa-

tive mutations in any of the 60 known genes [66–68].

Injection of RdCVF in animal models of retinitis pigmen-

tosa prevents the shortening of cone outer segments, which

precedes cone loss [69]. The secondary degeneration of

cones in retinitis pigmentosa patients occurs over a period

of more than a decade with an average loss of 4 % of visual

acuity per year [70]. Preventing the secondary loss of cone

by the administration of RdCVF is medically rational, since

most patients that consult an ophthalmologist have already

lost most of the rods, while visual acuity is only reduced

when 50 % of the cones become non-functional [71].

Rods feed the cones

RdCVF binds basigin-1 (BSG1), its cell-surface receptor

on cones [72]. BSG1 is a photoreceptor-specific alternative

spliced isoform of the BSG gene, which has three extra-

cellular immunoglobulin (Ig) domains contrarily to BSG2,

the other product of the same gene more broadly expressed

that possesses only two Ig domains [73]. RdCVF binds to

BSG1, but not to BSG2. BSG1 forms a complex with the

glucose transporter GLUT1 at the cone surface, whose

transport activity is increased by RdCVF binding. Glucose

is metabolized by cones via aerobic glycolysis to produce

metabolites necessary for renewing cone outer segments

(Fig. 7). Cone survival relies on the ability of RdCVF to

stimulate aerobic glycolysis [74, 75]. GLUT1 catalyses the

rate-limiting step in supplying cells of the central nervous

system. The trophic effect of RdCVF via aerobic glycolysis

is thus mediated by a three proteins complex-containing

RdCVF, basigin-1, and GLUT1. This is distinct from the

effect of insulin on cones that is mediated by the insulin

receptor [46, 76–79]. GLUT1 exists in equilibrium between

homodimeric and homotetrameric forms [80]. Each subunit

of GLUT1 contains an extracellular disulfide bridge (C347

and C421) that stabilizes the tetrameric structure and

thereby accelerates transport function by increasing the

Vmax of transport and decreasing the dissociation constant,

Km [81]. GLUT1 reduction causes GLUT1 tetramers to

dissociate into dimers. RdCVF binding to basigin-1 may

somehow displace the equilibrium toward the tetramer,

accelerating GLUT1 transport function and stimulating

glucose uptake by cones acting in this scheme as an

NXNL1

RdCVFL

Splicing

Thioredoxin

TGA

Intron retention

enzyme

RdCVF Trophic 
factor

RdCVFL

Fig. 6 Genomic organization of the bifunctional gene nucleoredoxin-

like 1. NXNL1 nucleoredoxin-like 1, RdCVFL the thioredoxin enzyme

rod-derived cone viability factor long, RdCVF the trophic factor rod-

derived cone viability factor, TGA stop codon
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allosteric modulator of GLUT1. When Otto Warburg

described aerobic glycolysis as a hallmark of cancer cells

in 1922, he also identified the retina as an exception to this

observation even if he thought that could be an artifact of

tissue preparation [82]. Aerobic glycolysis in mammalian

retina is providing carbohydrates metabolite used for the

daily renewal of 10 % of the outer segments of photore-

ceptors [83]. Similarly, cancer cells proliferate and rely on

the production of carbohydrate intermediates at a high rate

[84, 85]. Metabolic reprogramming of cancer cells to

Warburg effect is a primary transformation occurring prior

to the activation of proto-oncogenes and inactivation of

tumor suppressor genes [86]. Pyruvate is at a crucial

metabolic branch point [87]. When transported into mito-

chondria by the mitochondrial pyruvate carrier, a

heterodimer composed of MPC1 and MPC2, pyruvate is

oxidized to Acetyl-CoA by the multi-subunit pyruvate

dehydrogenase complex localized in the mitochondrial

matrix. Acetyl-CoA then enters the TCA cycle, where it is

further oxidized. Following glycolysis and oxidative

phosphorylation, each fully oxidized molecule of glucose

to CO2 produces 30 molecules of ATP. Alternatively,

pyruvate can also be reduced to lactate in the cytosol by

lactate dehydrogenase. This reaction allows the regenera-

tion of NAD? from the nicotinamide adenine dinucleotide

(NADH) that is produced by glycolysis. Aerobic glycolysis

departs from oxidative phosphorylation in the glycolytic

part of the reaction by the involvement of hexokinase 2

(HK2) instead of hexokinase 1 and pyruvate kinase isoform

M2 (PKM2) instead of PKM1. Hexokinase 2 (HK2) is

highly activated in cancer cells and is located on the outer

membrane of mitochondria [88]. Both HK2 and PKM2 are

expressed preferentially by photoreceptors [72, 89–91].

Hk2 expression is increased during the maturation of

photoreceptor in the mouse retina. RdCVF does not acti-

vate the expression of HK2, nor does it promote a switch

from oxidative phosphorylation to aerobic glycolysis [72].

Hexokinases are responsible for a rate-limiting step of

glycolysis phosphorylating glucose to glucose-6-phosphate

(G6P), which is maintained in the cytoplasm. G6P is the

branch point for proceeding to glycolysis or the pentose

phosphate pathway (PPP) (Fig. 7). The PPP shunt is the

major contributor of reducing equivalents in the form of

reduced nicotinamide adenine dinucleotide phosphate

(NADPH). Pyruvate kinases catalyze an ATP-generating

step of glycolysis, in which phosphoenolpyruvate (PEP) is

converted to pyruvate. Pyruvate kinase exists in two M

isoforms, differentiated by alternative splicing of exons 9

and 10, which in PKM2 codes for a specific allosteric

pocket, absent in PKM1 that allows the binding of the

activating glycolytic intermediate, fructose-1,6-bisphos-

phate (FBP) [92]. PKM2 controls the final step of

glycolysis, and its regulation serves to integrate intra-cel-

lular signaling inputs with the metabolic state of the cell.

Down-regulation of PKM2 activity and up-regulation of

other enzymes committing glucose to glycolysis will lead

to the accumulation of phosphorylated glycolytic
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intermediates that spill into branching biosynthetic path-

ways, as the production of glycerol-3-phosphate from

dihydroxyacetone phosphate (DHAP) or the production of

NADPH through the pentose phosphate pathway [93]

(Fig. 7). The carbon flux must be diverted, since if each

six-carbon glucose is entirely transformed producing two

molecules of three-carbon lactate, no carbon would be

incorporated from glucose into phospholipids of the cone

outer segments. Injection of glucose in a pig model of

retinitis pigmentosa was sufficient to promote cone outer

segment regrowth, which is consistent with the mode of

action of RdCVF [94].

For retinitis pigmentosa patients, in the midterm of their

disease, the regrowth of cone outer segments, which ulti-

mately will reverse the disease by restoring central vision

can be theoretically obtained by stimulating the rate of

aerobic glycolysis by increased glucose entry and by

increasing the expression and/or the activity of key gly-

colytic enzymes [72, 77]. Cone outer segment regrowth is a

real possibility, as it was observed in patients suffering

from acute idiopathic blind spot enlargement and after

retinal detachment [95–97].

Antioxidants versus redox signaling

According to the free radical theory of aging, first proposed

by Harman in 1956 [98], free radicals are continuously

produced in the cell as a product of aerobic life and induce

oxidative damage while aging [99]. Caloric restriction,

which lower glucose metabolism, is the only unequivocally

effective scheme to extend life span significantly for most

organisms and is known to increased resistance to various

oxidative stresses in many animals [100]. More than 90 %

of total cellular oxygen is reduced to water stepwise via

electron carriers of the mitochondrial respiratory chain

[101]. Presently, it is virtually impossible to identify which

specific respiratory complex or mitochondrial enzyme is

producing reactive oxygen species by leakage [102].

Reactive nitrogen species (RNS) are produced when the

superoxide ion O2
�- reacts with nitric oxide (NO) produced

by NO synthases (NOS1–3). To avoid the damage of

macromolecules by ROS and RNS, proper redox condi-

tions must be maintained within the intra-cellular

environment. Therefore, aerobic organisms have developed

several antioxidant systems. Antioxidant molecules, such

as uric acid, glutathione (GSH), and vitamins C and E,

scavenge ROS and RNS to prevent oxidative damage.

Antioxidant enzymes detoxify ROS/RNS into less reactive

species. Paradoxically, the protective role of antioxidants

has been challenged by the observation that antioxidants

prevent health-promoting effects of physical exercise in

humans [103].

Alternatively, repairing enzymes reduces the oxidized

groups in macromolecules. Importantly, the reversible

oxidation of the thiol group in cysteines and methionines

is the rational of redox signaling [104]. Cysteine is a

rarely used amino acid that accounts for about 2 % of the

amino acids in eukaryotic proteins. ROS and RNS can

induce redox signals by means of oxidative modifications

of cysteine residues. The large, polarizable sulfur atom in

a thiol group is electron-rich and highly nucleophilic;

hence, cysteines can undergo a broad range of chemical

reactions. The sulfhydryl group (C–SH) is in equilibrium

with C–S- and to the disulfide (S–S), can be oxidized by

ROS to sulfenic (C–SOH), sulfinic (SO2H), and sulfonic

(SO3H), or S-nitrosylated by RNS to C–SNO, and finally,

in the presence of glutathione (GSH), S-thiolated to C–S–

SG [6]. Sulfonic acid modifications, the most oxidized

form of the thiol group, are irreversible and are thus

deleterious oxidative damage, much as HNE adducts

[105]. Cysteines differ in their reactivity properties

depending of the protein microenvironment, and not all

cysteines are susceptible to modifications. Most, but not

all, of these modifications are reversible through reduction

catalyzed by oxidoreductases, such as thioredoxins

(TXN1 and 2), glutaredoxins (GLRX1-3 and 5), and

sulfiredoxin (SRXN1). The prototype of thioredoxin pro-

teins, TXN1, is a 12 kDa protein with a redox active

conserved disulfide/dithiol group C32GPC35 (Fig. 8a).

Reduced TXN1 catalyses the reduction of disulfide

bounds in many proteins, and oxidized TXN1 is rever-

sibly reduced by the action of thioredoxin reductases

(TXNRD1–3) and NADPH [106]. TXN is secreted from

cells by a hitherto unknown mechanism that is not

dependent on a signal peptide, as for RdCVF [107].

Transgenic mice overexpressing human TXN1 have a

statistically significant increase in life span [108]. Under

oxidative conditions, heterologous disulfides can be

formed non-enzymatically between proteins and the

tripeptide glutathione (GSH), one of the most prevalent

and important thiol buffers in the cell. Reduced GSH is

oxidized to GSSG or in protein-S–SG (XS–SG). This

reaction is termed S-glutathionylation [109]. S-Glu-

tathionylation is a protection of protein thiols under

oxidative conditions, since it can be reversed [110]. It

prevents the sequential oxidation of thiol groups to sul-

fenic, sulfinic, and sulfonic acids; the latter is irreparably

damaged [111]. Deglutathionylation is catalyzed by

glutaredoxins (GLRX) through a monothiol reaction that

depends only on the N-terminal active site cysteine resi-

due (Fig. 8b). GSSG is reduced by the mitochondrial

glutathione reductase (GSR). GSR requires riboflavin

(vitamin B2) in the flavin adenine dinucleotide (FAD)

coenzyme form to perform the reduction of GSH:

FADH2 ? GSSG[FAD ? GSH [112].
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Methionine is also sensitive to non-enzymatic oxidation

by ROS. Methionine sulfoxide (Met-SO) can be further

oxidized to sulfone (Met-SO2) by an irreversible oxidation.

The oxidation of methionine generates a diastereomeric

mixture of two stereoisomers methionine, S-sulfoxide and

methionine R-sulfoxide, due to the asymmetry of sulfur

atom that is repaired by methionine sulfoxide reductases:

MSRA and MSRB1-3, respectively (Fig. 8c). Most MSR

possess two cysteine residues (2-Cys-MSR), a catalytic

cysteine and a recycling cysteine. For both MSRA and

MSRB, the catalytic cysteine of the MSR first attacks the

sulfur atom of Met-SO in a nucleophilic reaction. The

catalytic cysteine forms a disulfide bond with the recycling

cysteine, MSR is oxidized, and Met-SO is reduced to Met

in the reaction (Fig. 8d). The recycling of MSR involves

either TXN or GLRX.

The pentose phosphate pathway links glucose
metabolism to redox signaling

The reduction of NADP? to NADPH is particularly

important, because it provides reducing power for most

antioxidant and redox regulatory enzymes controlling cell

redox homeostasis. Nicotinamide is derived from ATP

[113] (Fig. 9a). In response to oxidative stress, glucose

metabolism is diverted from energy formation to reductive

biosynthesis [114]. Glyceraldehyde-3-phosphate dehydro-

genase (GAPDH) harbors a strictly conserved catalytic

cysteine, which is susceptible to a variety of thiol modifi-

cations, including inhibitory but reversible S-

glutathionylation [115]. Oxidation of PKM at cysteine 358

(C358) stops the production of pyruvate and results in the

accumulation of phosphoenol pyruvate (PEP) [93]. PEP, an
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allosteric inhibitor of triose phosphate isomerase (TPI),

interrupts glycolysis, which produces an elevation of the

intra-cellular concentration of glucose-6-phosphate (G6P).

G6P, produced by the action of hexokinases on glucose

entry to the cell via glucose transporters, is diverted to

produce ribulose-5-phosphate (Ru5P) by the oxidative part

of the pentose phosphate pathway, the enzymatic steps

catalyzed by glucose-6-phosphate dehydrogenase

(G6PDH) and 6-phosphogluconate dehydrogenase (6PGD),

the later producing also CO2 (Fig. 7). Both G6PDH and

PGD use NADP? as a co-factor that is reduced to NADPH

during the reaction. The electrons derived from NADPH

are transferred to the glutathione and thioredoxin systems

via thioredoxins reductases (TXNRD1–3) and glutathione

reductase (GSR), respectively, to reduce ROS and to

reduce oxidized proteins (Fig. 9b). Thus, the cellular

antioxidant machineries are maintained with energy

provided by glucose catabolism through NADPH-mediated

electron transport [116]. G6PDH activity is regulated by

the NADP?/NADPH ratio, NADPH inhibits its activity,

whereas NADP? is required for its proper active confor-

mation [114]. In the non-oxidative part of the pentose

phosphate pathway, Ru5P is converted to ribose-5-phos-

phate (R5P) by ribulose-5-phosphate isomerase (RPIA),

and R5P might reenter the glycolytic pathway when con-

verted in fructose-6-phosphate (F6P) or glyceraldehyde-3-

phosphate (G3P) [117]. Increased flux of glucose through

the pentose phosphate pathways can have a neuroprotective

function [118]. The conversion of G6P to Ru5P generates

two moles of NADPH and one of CO2, so that under

conditions of excess oxidative stress requiring the maximal

amount of NADPH, G6P is completely oxidized to CO2 by

six complete cycles. The complete oxidation of glucose by

cells to CO2 is likely to be detrimental to the organism, but
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in non-pathological conditions, the production of redox

power through NADPH should balance the negative effect

of oxidation of glycolytic enzymes, such as GAPDH and

PKM and restore redox homeostasis (Fig. 10).

Oxidative stress promotes retinal diseases

Epidemiological studies have suggested that elderly

patients who consumed diets rich in antioxidants through-

out their life are less likely to be afflicted with age-related

macular degeneration (AMD) [119]. In animal models, the

endogenous antioxidant molecule taurine and its deriva-

tives are able to prevent photoreceptor degeneration

following exposure to damaging light [120, 121]. There is

also an attenuation of retinal photo-oxidative damage in

thioredoxin transgenic mice [122]. There is an additional

cause of oxidative stress to photoreceptors in the course of

normal life or in inherited diseases with rod-specific

mutations. A problem with the choroidal circulation lies in

inefficient self-regulatory mechanisms that fail to meet the

demands of the tissue it serves. One consequence is that

when the oxygen consumption of the photoreceptors falls,

oxygen tension in the outer retina rises sharply [123].

Consequently, the retinal oxygen pressure reaches values

that approximate hyperoxia. Moreover, cone death can be

delayed by reducing oxidative stress during disease

[124, 125].
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The disruption of the rod-derived cone viability gene

leads to photoreceptor dysfunction and susceptibility to

oxidative stress [58]. Cone function is normal in young

Nxnl1-/- mice, but deteriorates month-by-month as the

mice age, indicating that the gene is involved in the late

(but not early) developmental stages, or aging. Specifically,

RdCVFL interacts with the microtubule-associated protein

TAU (TAU) and prevents its oxidation in vitro. It also

prevents its phosphorylation and aggregation in the retina

[58, 126]. RdCVFL protects rod photoreceptors against

photo-oxidative damage [64] and reduces the oxidation of

polyunsaturated fatty acids induced by photoreceptor

degeneration in the rd10 mouse [66]. RdCVFL is normally

expressed by cones as well as rods in the mouse retina,

while the trophic factor RdCVF is specifically expressed by

rods: alternative splicing of the Nxnl1 gene is restricted to

rods [127]. Differences between splicing pattern between

rods and cones were revealed by the study of the PRPH2

gene [128]. The cones and their outer segments composed

of polyunsaturated fatty acids are damaged by reactive

oxygen species produced from leakage of the respiratory

chain. In the absence of Nxnl1, the retina shows the signs of

lipid peroxidation, as HNE adducts [58]. After selective

recombination of the Nxnl1 gene in the cones, the retina

also displayed signs of oxidative damage. Nevertheless, in

the retina, the thiol-oxidoreductase activity of RdCVFL

depends on its cycling between a reduced and an oxidized

status as any other thioredoxin. Once oxidized, RdCVFL

must be reduced by thioredoxin reductases [106]. The co-

factor of thioredoxin reductases, NADPH, is produced

mostly from glucose through the pentose phosphate path-

way. In that respect, in cones, RdCVF likely acts upstream

of RdCVFL by providing reducing power (Figs. 7 and 10).

Reduced RdCVFL could reestablish aerobic glycolysis in

cones after oxidative stress, and we have identified a

potential interaction between RdCVFL and PKM [126].

One could speculate that in patients suffering from retinitis

pigmentosa after the loss of expression of RdCVF pro-

duced by rods, cones become non-functional and die within

several years as a result of the loss RdCVFL expression

and subsequent oxidative damage in cones. Thus, a therapy

aimed at preventing secondary cone degeneration should

be pursued using both RdCVF and RdCVFL.

Perspectives opened by metabolic and redox
signaling in the retina

The retina is a biological model system that was at the

origin of many breakthroughs in biology and the metabolic

and redox signaling revealed by the study of the mecha-

nism of secondary degeneration of cones in retinitis

pigmentosa might be part of these scientific founding

principles. Nevertheless, we are perfectly aware that our

report will become obsolete in the near future, since the

research on the retina is a very active field. We simply

intend to draw here the big scene that could both incor-

porate the numerous new findings that can be anticipated

and evolve accordingly.
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