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Abstract. Genetic diseases of the macula and choroid have various inheritance patterns and varying degrees of impact on vision.
Herein, we review the literature including most recent advances in the understanding of the genetics of these diseases. Although
many of these disorders have limited treatment options, knowledge of inheritance patterns can aid in early detection and with
close monitoring can help the ophthalmologist preserve as much vision as possible (for example with early treatment of choroidal
neovascularization).
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1. Introduction

The macula is the area of the retina most critical for
central visual acuity. It is contained between the optic
disc and the emanating temporal vasculature, measures
approximately 5.5 mm in diameter, and is defined his-
tologically by the presence of two or more ganglion
cell layers. Diseases of the macula are of critical impor-
tance given their impact on vision and thus quality of
life. Several inherited diseases of the macula are well
recognized. These diseases vary greatly in their preva-
lence, age of onset, symptoms, and severity, and in
the degree to which prevention or treatment is avail-
able. In this review, we provide a summary of these
features.

∗Corresponding author: Sudha Nallasamy, MD, Children’s
Hospital Los Angeles, 4650 Sunset Blvd., MS #88, Los Angeles,
CA 90027, USA. Tel.: +1 323-361-4510; Fax: +1 323-361-7993;
E-mail: snallasamy@yahoo.com.

2. Stargardt’s disease

Stargardt’s disease, first described in 1909 by Karl
Stargardt, is the most common juvenile macular
dystrophy, with an estimated prevalence of between
one in 8–10,000 [1, 2]. It is a heterogeneous, autoso-
mal recessive macular dystrophy caused, in the vast
majority of cases, by various mutations in the ABCA4
gene [3]. ABCA4 encodes a photoreceptor-specific
adenosine triphosphate (ATP)-binding cassette (ABC)
transporter protein [4] that functions to transport N-
retinylidene-phosphatidyle (NRPE), a byproduct of
the photocoagulation cascade, out of photoreceptors.
If not cleared, NRPE is converted to A2E, a bis-
retinoid and lipofuscin fluorophore. A2E is toxic
to the photoreceptors, and its accumulation results
in photoreceptor degeneration and dysfunction [5],
manifesting clinically as decreased vision. The het-
erogeneity of Stargardt’s disease is thought to be a
consequence of both the nature and severity of the
particular ABCA4 gene mutation in addition to as
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Fig. 1. (A) Fundus photograph of the right eye of an individual with Stargardt’s disease. (B) Corresponding fluorescein angiogram. The fundus
shows profound chorioretinal atrophy centrally, with pisciform flecks throughout the macula. A dark choroid is seen on the angiogram (Images
courtesy of Dr. Thomas C. Lee, Children’s Hospital Los Angeles).

yet uncharacterized features of the photoreceptors and
retinal pigment epithelium (RPE) of the affected indi-
vidual [6, 7]. Interestingly, mutations in the same gene
also result in other disorders of the macula: cone
dystrophy (discussed later in this review), cone-rod
dystrophy, and retinitis pigmentosa (beyond the scope
of this review) [8–11].

Stargardt’s disease is typically bilateral, and most
commonly presents with decreased central vision, usu-
ally during childhood or adolescence. Visual field
testing may show a central scotoma; peripheral vision
typically remains intact. The fundi of affected invdi-
viduals are notable for the presence of elongated,
yellow-white lesions at the level of the RPE known as
flecks, or pisciform flecks, on account of their fish-like
appearance [12–15]. The disease classically progresses
through four stages of fleck accumulation and then
resorption resulting, ultimately, in chorioretinal atro-
phy, as described by Fishman [16] in 1976 (Fig. 1A).
A significant number of individuals; however, do not
show progression from their initial presentation [17].
A fairly specific clinical finding in Stargardt’s disease
is a “dark choroid” on fluorescein angiography (FA),
or the absence of dye filling the choroidal circulation
(normally the choroid shows a generalized faint hyper-
fluorescence, or “blush”) (Fig. 1B). This is thought to
be due to the presence of A2E, a lipofuscin fluorophore,
in the RPE, which absorbs short-wavelength visi-
ble light and thus prevents transmission of choroidal
illumination [17–19]. A recent study shows that as
many as 94% of patients with ABCA4-associated Star-
gardt’s disease have this dark choroid on FA [20].

It is important to note that Stargardt-like dominant
macular dystrophy (SLDMD), so-named because of
its clinical similarity to Stargardt’s disease, is a differ-
ent entity. As the name suggests, SLDMD is inherited
with an autosomal dominant pattern. In the majority
of cases, SLDMD can be attributed to mutations in the
ELOVL4 gene, which encodes an endoplasmic reticu-
lum enzyme involved in long chain fatty acid synthesis
[21–24]. When mutated, mistrafficking of this enzyme
can result in increased lipofuscin formation and pho-
toreceptor cell death [25, 26]. Clinically, these patients
possess a phenotype similar to those with Stargardt’s
disease; they display progressive central vision loss,
and their fundi are characterized by pisciform flecks,
macular atrophy, and peripapillary sparing. Unlike
those with Stargardt’s disease, patients with SLDMD
do not show a dark choroid pattern on FA [21].

At this time, there is no treatment or prevention
for Stargardt’s disease. Attempts at gene therapy
are ongoing, and may prove promising in the future
[27–29]. Affected individuals, therefore, should be
provided with support and genetic counseling, and
with instruction in behavior modifications that may
be undertaken to maximize visual potential. Patients
with Stargardt’s disease should be counseled to wear
dark glasses when exposed to bright light, as the
deleterious accumulation of A2E is dependent on
the light-mediated activation of the photocoagulation
cascade. Further, they should avoid high-dose vitamin
A, which, as a primary component of A2E, can
contribute to its accumulation in the RPE. Finally,
they should be counseled against smoking, which
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Fig. 2. Fundus photographs of the right (A) and left (B) eyes of an individual with Best disease. Both fundi show the classic “vitelliform” or
“egg yolk” lesion characteristic of stage 2 disease. Note the symmetric appearance of the two eyes, which is a common, though not universal
finding (Images courtesy of Dr. Thomas C. Lee, Children’s Hospital Los Angeles).

anecdotally, has been reported to result in decreased
vision [15].

3. Best disease

Best disease, or vitelliform macular dystrophy, is
an autosomal dominant condition with an incidence
of approximately one in 10,000 that results from
mutation of the BEST1/VMD2 gene, which encodes
bestrophin-1, a retinal pigment endothelium (RPE)
protein [30–32]. Best disease classically presents
bilaterally in childhood or adolescence, with ini-
tial preservation of normal vision. The disease then
progresses, with gradual loss of central vision and
metamorphopsia (a visual distortion wherein straight
lines appear wavy). At age 40, the majority of patients
(76%) with Best disease maintain visual acuity of
20/40 or better in one eye, but by age 50, this num-
ber decreases to 20%. Visual acuity in the weaker eye
diminishes to 20/100 or worse by age 30 in 74% of
patients [33]. Approximately 2–9% of patients will
experience choroidal neovascular membrane (CNVM)
formation in one eye, which is typically accompanied
by dramatic vision loss (e.g. 20/200) [34–38].

Histopathologically, patients with Best disease
show increased RPE lipofuscin, accumulation of
fluid and/or debris in the subretinal space, and
resultant photoreceptor degeneration [1, 39, 40].
These changes stem from disrupted function of
bestrophin, which normally functions as chloride
channel in the RPE. Bestrophin-1 is expressed in the

RPE throughout the retina, but the lesions of Best
disease typically localize to the macula (though they
can be found elsewhere in some cases). This spatial
selectivity may be due to quantitative differences in
bestrophin-1 expression throughout the retina or to
the expression patterns of other RPE or photorecep-
tor proteins, which interact with bestrophin-1,
or which influence photoreceptor stability
[15, 41, 42].

Clinically, Best disease is often described in five
stages, though it is important to note that progres-
sion does not always occur in a stereotypical fashion
across all individuals. In stage 0, the fundus is com-
pletely normal in appearance, and in stage 1, only
minor RPE changes are seen. The classic early lesion in
Best disease is the “vitelliform” or “egg-yolk” lesion,
which is a round or ovoid, yellow-orange, slightly-
raised lesion centered on the fovea (Fig. 2) [36, 43].
This characterizes Stage 2 disease, and despite its
dramatic appearance, central vision at this stage is typ-
ically quite good (20/20–20/60) [33]. Stage 2a occurs
as lipofuscin begins to resorb, and the lesion assumes a
heterogeneous “scrambled-egg” appearance. The yel-
low material comprising the vitelliform lesion may
settle inferiorly, resulting in a yellow-colored fluid
level within the macula, the “pseudohypopyon” of
stage 3 disease. Finally, stage 4 disease is character-
ized by RPE atrophy (4a), subretinal fibrosis (4b), and
CNVM formation (4c) [36, 43].

Historically, one very specific marker for Best
disease has been a loss of light response on
electrooculography (EOG). The EOG measures the
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Fig. 3. Fundus photographs demonstrating lesions of various grades in North Carolina macular dystrophy. In grade I disease (A), the macula
shows fine, confluent drusen. In grade II (B), a subretinal scar is present, indicating a cite of previous choroidal neovascularization. In grade III
(C), a macular caldera (a well-circumscribed excavation) is seen [194].

electric potential difference between the skin and the
eye elicited when moving the eyes in the dark and when
moving the eyes in the light. In normal individuals, the
ratio of the light potential to the dark potential (the
Arden ratio) is greater than 1.85 [44]. In individuals
with Best disease, it is less than 1.45, and may be as
low as 1.0. This is true whether or not macular lesions
are present [45]. Of note, carriers of the disease will
have abnormal EOG [45], but if they maintain nor-
mal or minimally abnormal appearance of the fundus
in early adult life, they will normally also maintain
good vision [46]. More recently, however, a number
of studies have identified families with Best disease
(demonstrated by fundus appearance and Best1 muta-
tion) in which patients and/or carriers maintain normal
EOG [47–53].

While there is no prophylaxis or treatment, per se, for
Best disease, these patients should be monitored by an
ophthalmologist. Yearly examinations are critical for
helping to prevent the development of amblyopia, for
identifying and treating commonly co-occurring con-
ditions such as hyperopia and angle closure glaucoma,
and for identifying CNVM formation and treating
it, most commonly with intravitreal anti-VEGF (vas-
cular endothelial growth factor) injections [54–60].
Furthermore, patients should be educated on the warn-
ing signs of CNVM, decreased vision or increased
metamorphopsia, which should provoke a more urgent
examination.

As with all individuals with one poorly seeing eye
and one well-functioning eye, protective polycarbon-
ate spectacles (with or without a prescription) are
recommended at all times. Additionally, because of
increased propensity for subretinal hemorrhage with
relatively minor trauma, it is recommended that these

individuals do not engage in sports involving frequent
blows to the head. Finally, these patients should be
counseled against smoking to reduce the risk of retinal
neovascularization [61].

To date, there are no known systemic associations
with Best disease.

4. North Carolina macular dystrophy (NCMD)

NCMD is a completely penetrant, variably
expressed, autosomal dominant macular dystrophy
first described in 1971 based on a large family in
North Carolina [62]. Since that time, many additional
families with the condition have been identified inter-
nationally [63–67], though the disorder is still rare
enough that the true prevalence is unknown. Genetic
linkage analyses have localized the causative genetic
locus, MCDR1 (macular dystrophy retinal 1) to chro-
mosome 6q16, but the causative gene has not been
identified [68–70].

NCMD presents during infancy and, despite early
reports to the contrary, does not appear to be pro-
gressive [71]. The dystrophy is typically bilateral and
symmetric, and it is classified into grades based on
the appearance of the macula (Fig. 3). Grade 1 is
characterized by scattered drusen-like yellow or white
lesions at the level of the RPE, grade 2 is charac-
terized by confluent drusen at the level of the RPE,
which may be accompanied by RPE atrophy, pigmen-
tary changes, or a disciform scar, and grade 3 consists
of a large (1-2 disc diameter), well-circumscribed
area of macular excavation, termed a caldera, which
is classically bordered by a thick, white rim of scar
tissue. Visual acuity varies with the grade of dis-
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Fig. 4. Fundus photographs of the right (A) and left (B) eyes of an individual with Sorsby fundus dystrophy. In the left eye, which had normal
vision, yellow drusen can be seen in the posterior pole. The right eye shows hemorrhagic choroidal neovascularization, further complicated by
a retinal detachment [99].

ease; grade 1 is typically associated with acuity of
20/20–20/30, grade 2 with acuity of 20/25–20/60, and
grade 3 with acuity of 20/40–20/200. Just as the grade
of the lesions tends to be stable, so too does visual
acuity [71–74]. The preservation of relatively good
visual acuity in the face of large macular lesions is
thought to be due to the plasticity of the visual sys-
tem at the young age at which they emerge; patients
learn to fixate on the uncompromised retina at the
edge of the lesions, and the visual pathways mature
accordingly [15].

A notable exception to the stability of visual acu-
ity in NCMD is in eyes in which a CNVM develops.
CNVMs form when abnormal choroidal vessels grow
into the outer retina, resulting in mechanical disrup-
tion of these retinal layers, and further damage via
fibrosis or hemorrhage. This devastating phenomenon
has been described in grade 2 and 3 lesions in sev-
eral studies, and in a patient as young as 3 yr of age
[65, 70, 73, 75–77]. Thus, patients and their parents
should be counseled to seek care immediately in the
case of sudden vision loss or new onset of metamor-
phopsia (straight lines appearing wavy). Treatment for
subfoveal CNVMs has not been well studied in these
patients; intravitreal anti-VEGF injections or photody-
namic therapy may be considered.

Although the original report of NCMD described an
associated aminoaciduria [62], this has not been found
to be a consistent finding and no additional systemic
features have been reported to be associated with the
disease.

5. Sorsby fundus dystrophy (SFD)

SFD is an autosomal dominant macular condition
that results commonly in severe, bilateral vision loss
during middle age as a consequence of choroidal neo-
vascularization (CNV), RPE atrophy (Fig. 4A), or both
[78–80]. As a result, vision loss is often sudden and
profound. Younger individuals with SFD are typically
asymptomatic and may escape medical attention unless
they have a known family history. Nyctalopia, or poor
night vision, is commonly the first symptom, but often
does not manifest until middle age [78, 79, 81].

On examination, SFD is characterized by macular
deposition of drusen-like material (Fig. 4B), usually
in the third decade of life [79, 82] often extending
further into the periphery, to the equator [79, 81], a
feature that distinguishes it from the clinically related
age-related macular degeneration [15]. Histopatholog-
ically, SFD is characterized by marked thickening
of Bruch’s membrane [83, 84], which may be clin-
ically evident as a sheet-like yellow-gray deposition
on ophthalmoscopy (Fig. 4A) [15]. Despite the pres-
ence of drusen, visual acuity typically remains fairly
good initially [79]. Drastic deterioration in visual acu-
ity (to 20/200 or worse) results from CNV or central
macula RPE atrophy. In a study of forty-two indi-
viduals with SFD, Sivaprasad et al. [79] found that
62% of patients developed CNV (81% bilateral) and
19% of patients developed central macular atrophy
(100% bilateral), typically in the 5th or 6th decade
of life.
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SFD is caused by mutations in the gene encoding
tissue inhibitor of metalloproteinase-3 (TIMP3) [85],
a protein that has roles in maintaining extracellular
membranehomeostasis[86–88]andininhibitingangio-
genesis [89, 90]. In the eye, TIMP3 is expressed in
Bruch’s membrane, the tissue that separates the retina
from the underlying choroid [85, 89, 91–93] and in
SFD, these expression levels are found to be elevated
[83, 84]. Additionally, TIMP3 is expressed in drusen
in SFD and other related diseases [93–95]. At least
12 causative mutations have been described, most of
which involve alterations in cysteine residues, result-
ing in altered disulfide bonding and disrupted tertiary
structure [79, 80, 85, 91, 96–103]. It is thought that the
accumulation of mutant TIMP3 in Bruch’s membrane
results in altered turnover and thickening of the matrix,
causing deranged flow of growth factors and nutrients
[15, 80, 97]. The exact mechanism by which this pro-
cess produces the clinical features of SFD is still being
elucidated. Additionally, it is logical to hypothesize that
theneovascularizationinSFDmayresult,at least inpart,
fromdefectiveinhibitionofangiogenesisbyTIMP3,but
again, the pathophysiology is still being investigated.

Treatment of SFD is aimed at control of CNV, and is
challengingdueto itsaggressiveandrecalcitrantnature.
Many therapies used to treat CNV with other etiolo-
gies have been attempted, but at this time, there is no
definitive treatment. In two small studies, argon laser
photocoagulation proved to be ineffective [79, 104].
There have been case reports of successful treatment
withphotodynamictherapy[105,106],thoughinasmall
case series, no clinical improvement was seen [79]. Two
recent reports have shown that intravitreal injection of
anti-VEGF may yield improvement in visual acuity and
regression of CNV [107, 108]. From a symptom stand-
point, a small study investigating the effect of vitamin A
onnyctalopia inSFDfoundthathighdosesupplementa-
tion increased rod sensitivity and resulted in decreased
subjective night blindness, suggesting that this genetic
condition may have environmental modulating effects,
and providing an important marker for treating physi-
cians to be aware of [101].

6. Central areolar choroidal dystrophy
(CACD)

CACD is a rare, progressive, hereditary, bilateral
disease of the macula that typically presents with a
central scotoma in middle age, and progresses to severe

visual impairment (e.g. counting fingers acuity) by the
seventh decade. It is characterized by the presence
of a well-circumscribed area of RPE and choroidal
atrophy in the macula, which eventually becomes so
pronounced that the sclera is visible. Histopathologi-
cal findings are striking, with absence or near absence
of the photoreceptors, RPE, and choriocapillaris in the
area of the lesion [109]. CACD was first described
by Nettleship in 1884 in the United Kingdom under
the name, “central senile areolar choridal dystrophy,”
and since that time, has been described throughout the
globe, and has been demonstrated to be inherited pri-
marily in an autosomal dominant fashion, though in
some cases autosomal recessive inheritance has been
seen [110–119].

CACD progresses through four stages, best demon-
strated by FA (Fig. 5) [120]. In stage I disease, visual
acuity is normal. FA demonstrates subtle parafoveal
pigmentary abnormalities, which may or may not be
evident by ophthalmoscopy as small hypofluorescent
areas. In stage II, visual acuity is normal or slightly
reduced (better than 20/40). Hypofluorescence can be
seen by ophthalmoscopy, and FA demonstrates areas of
hyperfluorescence, often encircling the fovea. Stage III
is characterized by at least one area of choriocapillaris
and RPE atrophy on FA, which is outside of the fovea.
Visual acuity is typically, though not always, dimin-
ished (range 20/20–20/200). By stage IV, visual acuity
is poor; at best, 20/80 is seen, but counting fingers is
more typical. Foveal atrophy of the choriocapillaris and
RPE is evident on both FA and fundoscopy. Although
visual disturbances typically begin between ages 25
and 55, patients as young as 11 yr of age have reported
symptoms [118, 120]. Many patients also show some
degree of impairment in color vision and multifocal
electroretinogram responses [120, 121].

Mutations in multiple genes have been associated
with CACD, but the most common is periph-
erin/PRPH2/RDS, which encodes a photoreceptor
surface glycoprotein [122, 123]. At least six dif-
ferent mutations of peripherin/PRPH2/RDS have
been demonstrated to be associated with CACD
[117, 124–131]. Interestingly, peripherin/PRPH2/RDS
mutations underlie a host of macular dystrophies
including pattern dystrophies, adult vitelliform mac-
ular dystrophy, cone and cone-rod dystrophies, and
some forms of retinitis pigmentosa (reviewed in [131]),
speaking to the prominent role of this glycoprotein in
photoreceptor structure and function. Recently, a novel
mutation in GUCY2D, which encodes a retina-specific
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Fig. 5. Fluorescein angiograms demonstrating the stages of central areolar choroidal dystrophy. In stage I (A), small hypofluorescent and
hyperfluorescent spots are observed. In stage II (B), hyperfluorescent areas encircle the fovea. In stage III (C), there is retinal pigment epithelium
and choriocapillaris atrophy, both outside of the fovea. In stage IV (D), the atrophy seen in stage III extends to the fovea [120].

guanylate cyclase, was found to be associated with
CACD [132]. Still other, as yet unidentified genes
are thought to contribute to the genetic heterogeneity
underlying this disorder, as a study of a large Chi-
nese family with autosomal dominant CACD failed to
show linkage of any of the known candidate genes to
the disease [118].

Systemic associations with CACD remain limited to
case reports. Mansour reported the presence of CACD
in three brothers with pseudoachondroplastic spondy-
loepiphyseal dysplasia, another autosomal dominant
condition, and suggested a genetic association [133].
Hoyng et al. [134] described two unrelated individu-
als with CACD and sensiorneural hearing loss, whose
ocular and auditory symptoms had similar timing of
onset and posited that the etiology of the symptoms
may be related.

Currently, no treatment exists for CACD. Although
presentation in childhood is rare, families with a family

history should be counseled, as awareness of the like-
lihood of vision loss may affect career and lifestyle
choices.

7. Choroideremia

Choroideremia is a rare, progressive X-linked reces-
sivedisorderof the retina, retinalRPE,andchoroid,first
described in 1872 and with a prevalence of about one in
50,000 [135]. It is characterized by nyctalopia and pro-
gressive visual field loss beginning in the first or second
decadeof life, butwith relativelywell-preservedcentral
visual acuity until late in the disease course [136, 137].

Choroideremia is caused by mutation or deletion
of the CHM gene on chromosome Xq21.2, which
encodes Rab escort protein-1 (REP1). REP1 is a
part of a complex that is important for prenylation
(lipid modification) of Rab GTPases, which serve
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Fig. 6. Fundus photograph of the right eye of a patient with choroi-
deremia reveals diffuse atrophy of the retinal pigment epithelium
and choroid, but with sparing of the central macula [195].

as regulators of intracellular vesicular transport
[138–140]. Failure of Rab prenylation results in dam-
age to and degeneration of both photoreceptors and
RPE cells, and interestingly, damage to the RPE cells
alone results in accelerated photoreceptor degener-
ation, thus accentuating the effect of the mutation
[141–143].

As the name suggests, choroideremia is character-
ized by atrophy of the RPE and choroid, initially in
the periphery, and then progressively moving centrally
with time and involving the macula (Fig. 6). The atro-
phy is so profound that the bare sclera may be seen on
fundoscopic examination. Prior to the onset of atrophy,
RPE changes may be noted in the periphery. As men-
tioned above, patients with choroideremia classically
experience nyctalopia and early visual field loss in the
first or second decade of life, but with relatively main-
tained central visual acuity over a long period. Two
large cross-sectional analyses examining patients ages
3 mo - 69 yr found visual acuity in the better seeing eye
to be better than 20/50 in 79–90% of the examined pop-
ulation, with many patients demonstrating 20/20 vision
or better. Only 6–7% of patients had vision 20/200 or
worse, and of these, the majority were in the seventh
decade of life [137, 144]. Female carriers of the dis-
ease are typically, but not always, asymptomatic, but
usually possess characteristic fundus findings, albeit
to a lesser degree [145, 146]. That said, in one study
of 18 choroidemia patients and eight carrier females,
the individual with the most severely compromised
vision was a female carrier whose retinal findings were
similarly profound [147].

While there is currently no treatment or cure
for choroideremia, initial gene therapy studies are
underway with promising results. One group used
adeno-assoicated virus vectors to deliver CHM cDNA
to cell lines from patients with choroideremia, and
demonstrated that this treatment resulted in restora-
tion of REP1 activity and normal downstream protein
trafficking [148]. Furthermore, another group injected
a similar construct subfoveally in six patients with
choroideremia and found improvements in both visual
acuity and light sensitivity [149]. It was recently
reported that a large percentage of patients with choroi-
deremia exhibit cystic macular edema, [150] and
as such studies are ongoing to determine treatment
options for this complication. In a small study, topical
dorzolamide was found to be effective [151].

Although REP1 is expressed ubiquitously, other tis-
sues are not affected by CHM mutation or deletion.
This is thought to be due to the functional redundancy
of REP2, a related protein that is also expressed ubiq-
uitously and that can compensate for lack of REP1 in
other tissues, but not in the eye, where REP1 shows
particularly high levels of expression [152, 153]. As a
result, there are no known systemic associations with
choroideremia.

8. Gyrate atrophy

Gyrate atrophy is a rare, progressive, autosomal
recessive disease of the choroid and retina, so-named
because of the characteristic sharply demarcated,
round areas of chorioretinal atrophy that begin in the
peripheral retina, and spread centrally (posteriorly)
with time (Fig. 7) [154, 155]. It has a prevalence of
about one in 50,000 [155], and is caused by mutations
in the gene encoding ornithine-delta-aminotransferase
(OAT), an enzyme which catalyzes the conversion of
L-ornithine, a byproduct of dietary arginine) to proline
and glutamic acid, using vitamin B6 as a cofactor. Gene
mutation results in accumulation of ornithine (hyper-
ornithemia) and consequent damage to the retina and
choroid by unknown mechanism [156–160]

Clinically, gyrate atrophy typically presents with
progressive myopia or nyctalopia in the first three
decades of life [154, 155, 161, 162]. Overall, visual
acuity declines with age, though in cross sectional anal-
yses, there is great variability in acuity across ages
[155, 161]. Peltola et al. [161] found average visual
acuity in 33 patients to be 20/50, with an average of
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Fig. 7. Fundus photograph of the right eye of a patient with gyrate
atrophy showing the characteristic scalloped pattern of chorioretinal
atrophy peripherally in addition to a central area of atrophy [196].

about 20/45 for those less than 30 yr of age and about
20/70 for those greater than 30 yr of age. Ten percent
of eyes had acuity of worse than 20/400 (count fin-
gers, hand motions, or light perception). Early cataract
formation is a near-universal feature of gyrate atrophy,
usually of the posterior subcapsular variety, and extrac-
tion is commonly indicated [155, 161, 163]. Visual
field defects and deficiency in dark adaptation mirror
each other and worsen with age, though interestingly
the degree of impairment often exceeds that predicted
by the extent of retinal damage [155, 161]. Multiple
case reports have noted macular edema in this disease,
and one small study found it to be a uniform finding
in seven patients [162, 164–166]. Peltola et al. [161]
reported optic disc atrophy in 70% of patients.

Several studies have investigated the effects of
dietary interventions in gyrate atrophy, attempting to
decrease plasma ornithine levels, either by restrict-
ing dietary arginine or by supplementing vitamin B6.
Successful reduction of plasma ornithine levels was
typically seen with restriction of dietary arginine, while
vitamin B6 supplementation seems to be effective in
only a subset of patients. Using fundoscopic find-
ings as well as visual metrics as outcome measures,
restoration of normal or near-normal levels of plasma
ornithine has yielded encouraging results in some stud-
ies [167–170], but has proven ineffective in others
[171, 172]. Excitingly, a recent study found that amino
acid profiling; specifically assessment of the plasma
proline/citrulline ratio, in neonatal dried blood spots

(used for routine newborn screening) may be effec-
tive in identifying OAT deficiency and thus diagnosing
gyrate atrophy long before the onset of symptoms, thus
augmenting our ability to manage these patients from
an earlier age [173].

9. Cone dystrophy

The photoreceptor layer of the retina, which is
responsible for converting light into electrical signals,
consists of two types of neurons, rods and cones. The
more numerous rods play a more prominent role in
peripheral vision and vision in dim conditions, while
the cones, which are concentrated in the fovea, play
a more prominent role in central vision and vision in
bright conditions, and also in color vision. There are
multiple dystrophies that affect rod and cone function,
named to reflect the cell type(s) affected: rod, rod-cone,
cone-rod, and cone. In this chapter, we will focus on
the cone dystrophies. It is important to note that here,
dystrophy refers to a progressive condition; there exist
additionally congenital cone disorders, which manifest
in infancy. These are beyond the scope of this chapter.

Cone dystrophies are rare, with an estimated preva-
lence of 1:30,000–1:40,000 [174]. Inheritance can be
autosomal dominant, autosomal recessive, or X-linked,
with autosomal recessive being the most common [175,
176]. Mutations in at least ten different genes have been
implicated in the disorder [177–186]. Most patients
with cone dystrophy present in the first or second
decade of life, most commonly with decreased visual
acuity [187]. Photophobia and hemeralopia (reduced
vision in bright light) are common [187–189], and at
presentation, reduced color vision and a central sco-
toma (either relative or absolute) are near-universal
findings [175, 187, 188]. On ophthalmoscopy, fun-
dus appearance shows great variability. Pigmentary
changes or a bulls-eye maculopathy are often observed,
but a significant number of patients also show a normal
fundus. Interestingly, the percentage of patients with
each of these fundus characterizations may not change
from the time of diagnosis to 10 yr subsequent [175].

Diagnostically, electroretinogram testing shows
diminished cone responses, but normal rod responses
[188]. Many patients with isolated cone dystrophy
ultimately develop rod dysfunction as well [187], sug-
gesting that cone dystrophy and cone-rod dystrophy
may represent a spectrum of disease. Recent stud-
ies suggest that optical coherence tomography and
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wide-field fundus autofluorescence may be useful
adjuncts in diagnosing and characterizing cone dystro-
phy. Specifically, optical coherence tomography shows
thinning and structural changes that correlate with
visual acuity in patients with cone dystrophy [190], and
abnormalities in fundus autofluorescence reflect the
extent of macular dysfunction as evidenced by scotoma
size in this population [191].

At this time, there is no cure for cone dystrophy, but
gene therapy approaches are being pursued for related
disorders such as achromatopsia and cone-rod dys-
trophy, and may ultimately be transferrable (reviewed
elsewhere [192]). Patients should be managed symp-
tomatically with spectacle or contact lens correction,
and provided with low vision aids. Gene testing may
be helpful in determining prognosis and providing
genetic counseling [193]. Photophobia, if severe, may
be treated with miotics or red contact lenses, which
may also provide improvement in visual acuity [194].

10. Summary

Inherited diseases of the macula are rare, but of
critical importance given their profound impact on
vision. These diseases vary greatly in their prevalence,
age of onset, signs and symptoms, and severity. Our
understanding of the genetic bases for these diseases
is, in many cases, well established, and in other cases
growing rapidly. Gene therapy is an active area of
investigation for many of these diseases. Currently,
there are relatively few therapies available to treat or
prevent these diseases. Management is aimed, instead,
at symptom management and at the recognition and
treatment of associated sequelae (e.g. choroidal neo-
vascularization, cataract).
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