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SUMMARY

Cells, the basic units of biological structure and
function, vary broadly in type and state. Single-
cell genomics can characterize cell identity and
function, but limitations of ease and scale have pre-
vented its broad application. Here we describe
Drop-seq, a strategy for quickly profiling thousands
of individual cells by separating them into nanoli-
ter-sized aqueous droplets, associating a different
barcode with each cell’s RNAs, and sequencing
them all together. Drop-seq analyzes mRNA tran-
scripts from thousands of individual cells simul-
taneously while remembering transcripts’ cell of
origin. We analyzed transcriptomes from 44,808
mouse retinal cells and identified 39 transcription-
ally distinct cell populations, creating a molec-
ular atlas of gene expression for known retinal
cell classes and novel candidate cell subtypes.
Drop-seq will accelerate biological discovery by
enabling routine transcriptional profiling at single-
cell resolution.

INTRODUCTION

Individual cells are the building blocks of tissues, organs, and or-

ganisms. Each tissue contains cells of many types, and cells of

each type can switch among biological states. In most biological

systems, our knowledge of cellular diversity is incomplete; for

example, the cell-type complexity of the brain is unknown and

widely debated (Luo et al., 2008; Petilla Interneuron Nomencla-

ture Group, et al., 2008). To understand how complex tissues
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work, it will be important to learn the functional capacities and re-

sponses of each cell type.

Amajor determinant of each cell’s function is its transcriptional

program. Recent advances now enable mRNA-seq analysis of

individual cells (Tang et al., 2009). However, methods of prepar-

ing cells for profiling have been applicable in practice to just hun-

dreds (Hashimshony et al., 2012; Picelli et al., 2013) or (with auto-

mation) a few thousand cells (Jaitin et al., 2014), typically after

first separating the cells by flow sorting (Shalek et al., 2013) or

microfluidics (Shalek et al., 2014) and then amplifying each cell’s

transcriptome separately. Fast, scalable approaches are needed

to characterize complex tissues with many cell types and states,

under diverse conditions and perturbations.

Here, we describe Drop-seq, a method to analyze mRNA

expression in thousands of individual cells by encapsulating

cells in tiny droplets for parallel analysis. Droplets—nanoliter-

scale aqueous compartments formed by precisely combining

aqueous and oil flows in a microfluidic device (Thorsen et al.,

2001; Umbanhowar et al., 2000)—have been used as tiny reac-

tion chambers for PCR (Hindson et al., 2011; Vogelstein and

Kinzler, 1999) and reverse transcription (Beer et al., 2008). We

sought here to use droplets to compartmentalize cells into nano-

liter-sized reaction chambers for analysis of all of their RNAs. A

basic challenge of using droplets for transcriptomics is to retain

a molecular memory of the identity of the cell from which each

mRNA transcript was isolated. To accomplish this, we developed

a molecular barcoding strategy to remember the cell-of-origin of

each mRNA. We critically evaluated Drop-seq, then used it to

profile cell states along the cell cycle.We then applied it to a com-

plex neural tissue, mouse retina, and from 44,808 cell profiles

identified 39 distinct populations, each corresponding to one or

a group of closely related cell types. Our results demonstrate

how large-scale single-cell analysis can help deepen our under-

standing of the biology of complex tissues and cell populations.
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Figure 1. Molecular Barcoding of Cellular Transcriptomes in Droplets

(A) Drop-Seq barcoding schematic. A complex tissue is dissociated into individual cells, which are then encapsulated in droplets together with microparticles

(gray circles) that deliver barcoded primers. Each cell is lysed within a droplet; its mRNAs bind to the primers on its companion microparticle. The mRNAs are

reverse-transcribed into cDNAs, generating a set of beads called ‘‘single-cell transcriptomes attached to microparticles’’ (STAMPs). The barcoded STAMPs can

then be amplified in pools for high-throughput mRNA-seq to analyze any desired number of individual cells.

(B) Sequence of primers on the microparticle. The primers on all beads contain a common sequence (‘‘PCR handle’’) to enable PCR amplification after STAMP

formation. Each microparticle contains more than 108 individual primers that share the same ‘‘cell barcode’’ (C) but have different unique molecular identifiers

(UMIs), enabling mRNA transcripts to be digitally counted (D). A 30-bp oligo dT sequence is present at the end of all primer sequences for capture of mRNAs.

(C) Split-and-pool synthesis of the cell barcode. To generate the cell barcode, the pool of microparticles is repeatedly split into four equally sized oligonucleotide

synthesis reactions, to which one of the four DNA bases is added, and then pooled together after each cycle, in a total of 12 split-pool cycles. The barcode

synthesized on any individual bead reflects that bead’s unique path through the series of synthesis reactions. The result is a pool of microparticles, each

possessing one of 412 (16,777,216) possible sequences on its entire complement of primers (see also Figure S1).

(D) Synthesis of a uniquemolecular identifier (UMI). Following the completion of the ‘‘split-and-pool’’ synthesis cycles, all microparticles are together subjected to

eight rounds of degenerate synthesis with all four DNA bases available during each cycle, such that each individual primer receives one of 48 (65,536) possible

sequences (UMIs).
RESULTS

Drop-seq consists of the following steps (Figure 1A): (1) prepare

a single-cell suspension from a tissue; (2) co-encapsulate each

cell with a distinctly barcoded microparticle (bead) in a nanoli-

ter-scale droplet; (3) lyse cells after they have been isolated in

droplets; (4) capture a cell’s mRNAs on its companion micropar-

ticle, forming STAMPs (single-cell transcriptomes attached to

microparticles); (5) reverse-transcribe, amplify, and sequence

thousands of STAMPs in one reaction; and (6) use the STAMP

barcodes to infer each transcript’s cell of origin.

A Split-Pool Synthesis Approach to Generate Large
Numbers of Distinctly Barcoded Beads
To deliver large numbers of distinctly barcoded primer mole-

cules into individual droplets, we use microparticles (beads).

We synthesized oligonucleotide primers directly on beads

(from 50 to 30, yielding free 30 ends available for enzymatic prim-

ing). Each oligonucleotide is composed of four parts (Figure 1B):

(1) a constant sequence (identical on all primers and beads) for

use as a priming site for downstream PCR and sequencing; (2)

a ‘‘cell barcode’’ (identical across all the primers on the surface

of any one bead, but different from the cell barcodes on other

beads); (3) a Unique Molecular Identifier (UMI) (different on

each primer, to identify PCR duplicates) (Kivioja et al., 2012);

and (4) an oligo-dT sequence for capturing polyadenylated

mRNAs and priming reverse transcription.
To efficiently generate massive numbers of beads, each with a

distinct barcode, we developed a ‘‘split-and-pool’’ DNA synthe-

sis strategy (Figure 1C). A pool of millions of microparticles is

divided into four equally sized groups; a different DNA base

(A, G, C, or T) is then added to each. All microparticles are

then re-pooled, mixed, and re-split at random into another four

groups, and then a different DNA base (A, G, C, or T) is added

to each of the four new groups. After 12 cycles of split-and-

pool DNA synthesis, the primers on any given microparticle

possess the same one of 412 = 16,777,216 possible 12-bp barc-

odes, but different microparticles have different sequences

(Figure 1C). The entire microparticle pool then undergoes eight

rounds of degenerate oligonucleotide synthesis to generate

the UMI on each oligo (Figure 1D); finally, an oligo-dT sequence

(T30) is synthesized on the 30 end of all oligos on all beads.

To confirm that we could distinguish RNAs based on attached

barcodes, we reverse-transcribed a pool of synthetic RNAs onto

11 microparticles and sequenced the resulting cDNAs (Fig-

ure S1A and Supplemental Experimental Procedures); 11 micro-

particle barcodes each constituted 3.5%–14% of the resulting

sequencing reads, whereas the next-most-abundant 12-mer

constituted only 0.06% (Figure S1A). These results suggested

that the microparticle-of-origin for most cDNAs can be recog-

nized by sequencing. We also found that each bead contained

more than 108 barcoded primer sites and that the sequence

complexity of the barcodes approached theoretical limits (Fig-

ures S1B and S1C, Supplemental Experimental Procedures).
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Microfluidics Device for Co-encapsulating Cells with
Beads
We designed a microfluidic ‘‘co-flow’’ device (Utada et al., 2007)

to co-encapsulate cells with barcoded microparticles (Figures

2A and S2 and Data S1). This device quickly co-flows two

aqueous solutions across an oil channel to form more than

100,000 nanoliter-sized droplets per minute. One flow contains

the barcoded microparticles suspended in a lysis buffer; the

other flow contains a cell suspension (Figure 2A, left, and 2B).

The number of droplets created greatly exceeds the number of

beads or cells injected, so that a droplet will generally contain

zero or one cells, and zero or one beads. Millions of nanoliter-

sized droplets are generated per hour, of which thousands

contain both a bead and a cell (Movie S1). STAMPs are produced

in the subset of droplets that contain both a bead and a cell.

Sequencing and Analysis of Many STAMPs in a Single
Reaction
To efficiently process thousands of STAMPs at once, we break

droplets, collect the mRNA-bound microparticles, and reverse-

transcribe the mRNAs (from the microparticle-attached primers)

together in one reaction, forming covalent, stable STAMPs (Fig-

ure 2A, step 7, and Experimental Procedures). A scientist can

then select any desired number of STAMPs for the preparation

of 30-end digital expression libraries (Figure 2C, Experimental

Procedures). We sequence the resulting molecules from each

end (Figure 2C) using high-capacity parallel sequencing. We

digitally count the number of mRNA transcripts of each gene as-

certained in each cell, using the UMIs to avoid double-counting

sequence reads that arose from the same mRNA transcript. We

thereby create a matrix of digital gene-expression measure-

ments (one measurement per gene per cell) for further analysis

(Figure 2D, Experimental Procedures).

The Single-Cell Accuracy and Sensitivity of Drop-Seq
Libraries
To measure the accuracy with which Drop-seq remembers the

cell-of-origin of each mRNA, we analyzed mixtures of cultured

human (HEK) and mouse (3T3) cells, scoring the numbers of hu-

man and mouse transcripts that associated with each cell bar-

code (Figures 3A, 3B, and S3A). We found that the individual

STAMPs created by Drop-seq were highly organism-specific

(Figures 3A and 3B), indicating high single-cell integrity of the li-

braries. At saturating levels of sequence coverage, we detected

an average of 44,295mRNA transcripts from 6,722 genes in HEK

cells and 26,044 transcripts from 5,663 genes in 3T3 cells (Fig-

ures 3C and 3D).

To understand how Drop-seq libraries compare to other

single-cell methods, we used three quality metrics: (1) the fre-

quency of cell-cell doublets; (2) single-cell purity; and (3) tran-

script capture rates.

Cell Doublets

One potential mode of failure in any single-cell method involves

cells that stick together or happen to otherwise be co-isolated for

library preparation. In Drop-seq, across four conditions spanning

12.5 cells/ml to 100 cells/ml, the fraction of species-mixed

STAMPs correlated with cell concentration (Figures 3A, 3B,

and S3B; Experimental Procedures), with cell doublet estimates
1204 Cell 161, 1202–1214, May 21, 2015 ª2015 Elsevier Inc.
ranging from 0.36% to 11.3% for the various cell concentrations

tested (under the assumption that human-mouse doublets ac-

count for half of all doublets). This reflects the greater chance

at higher cell concentrations that a droplet could encapsulate

multiple cells. By comparison, previous studies that used

FACS (Jaitin et al., 2014) or a commercial microfluidics platform

(Shalek et al., 2014) to isolate single cells reported doublet rates

of 2.3% and 11% respectively, based upon examining micro-

scopy images of captured cells. In analyzing the above mouse-

human cell suspension mixture in a commercial microfluidics

system (FluidigmC1), we found that 30%of the resulting libraries

in that experiment were species-mixed (Figure S3C); about one-

third of these doublets were visible in the microscopy images.

Single-Cell Impurity

Species-mixing experiments enabled us to measure single-cell

purity across thousands of libraries prepared at different cell

concentrations. We found that purity was strongly related to

cell concentration, ranging from 98.8% at 12.5 cells / ml to

90.4% at 100 cells / ml (Figure S3B). The largest source of sin-

gle-cell impurity appeared to be ambient RNA that is present in

the cell suspension (a first step of almost all single-cell methods)

and presumably results fromcells that are damaged during prep-

aration (Figure S3D). We measured a mean single-cell purity

of 95.8% for the same cell mixtures in the Fluidigm C1 system

(Figure S3C), similar to Drop-seq at 50 cells /ml.

Conversion Efficiency

The use of synthetic RNA ‘‘spike-in’’ controls at known concen-

trations, together with UMIs to avoid double-counting, allows

estimation of capture rates for digital single-cell expression tech-

nologies (Brennecke et al., 2013; Islam et al., 2014).We identified

evidence that PCR and sequencing errors inflate the numbers of

apparently unique UMIs (Table S1 and Supplemental Experi-

mental Procedures), so we developed a more conservative esti-

mation method than has been used in earlier studies (Islam et al.,

2014); in our approach, we collapse similar UMI sequences into a

single count. Using this approach we calculated a capture rate of

12.8% for Drop-seq (Figure 3G). We corroborated this estimate

by making independent digital expression measurements (on

bulk RNA from 50,000 HEK cells) on ten genes using droplet dig-

ital PCR (ddPCR) (Hindson et al., 2011), calculating an average

conversion efficiency of 10.7% (Figures S4A, S4B, and S4C).

To further evaluate how the digital transcriptomes ascertained

by Drop-seq related to the underlying mRNA content of cells,

we compared Drop-seq log-expression measurements to those

made by a commonly used in-solution amplification process,

finding strong correlation (r = 0.94, Figure 3E), though Drop-

seq ascertained GC-rich transcripts at a lower rate (Figure S4D).

We also compared Drop-seq single-cell log-expression mea-

surements with measurements from bulk mRNA-seq, observing

a correlation of r = 0.90 (Figures 3F, S4E, and S4F).

Cell States: Drop-Seq Analysis of the Cell Cycle
To evaluate the visibility of cell states in Drop-seq, we first exam-

ined cell-to-cell variation among the 589 HEK and 412 3T3

STAMPs shown in Figure 3B. Both cultures consisted of asyn-

chronously dividing cells; principal components analysis (PCA)

of the single-cell expression profiles showed the top principal

components to be dominated by genes with roles in protein
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Figure 2. Extraction and Processing of Single-Cell Transcriptomes by Drop-Seq

(A) Schematic of single-cell mRNA-seq library preparation with Drop-seq. A custom-designed microfluidic device joins two aqueous flows before their

compartmentalization into discrete droplets. One flow contains cells, and the other flow contains barcoded primer beads suspended in a lysis buffer. Immediately

following droplet formation, the cell is lysed and releases its mRNAs, which then hybridize to the primers on the microparticle surface. The droplets are broken by

adding a reagent to destabilize the oil-water interface (Experimental Procedures), and the microparticles collected and washed. The mRNAs are then reverse-

transcribed in bulk, forming STAMPs, and template switching is used to introduce a PCR handle downstream of the synthesized cDNA (Zhu et al., 2001).

(B) Microfluidic device used in Drop-seq. Beads (brown in image), suspended in a lysis agent, enter the device from the central channel; cells enter from the top

and bottom. Laminar flow prevents mixing of the two aqueous inputs prior to droplet formation (see alsoMovie S1). Schematics of the device design and how it is

operated can be found in Figure S2.

(C) Molecular elements of a Drop-seq sequencing library. The first read yields the cell barcode and UMI. The second, paired read interrogates sequence from the

cDNA (50 bp is typically sequenced); this sequence is then aligned to the genome to determine a transcript’s gene of origin.

(D) In silico reconstruction of thousands of single-cell transcriptomes. Millions of paired-end reads are generated from a Drop-seq library on a high-throughput

sequencer. The reads are first aligned to a reference genome to identify the gene-of-origin of the cDNA. Next, reads are organized by their cell barcodes,

and individual UMIs are counted for each gene in each cell (Supplemental Experimental Procedures). The result, shown at far right, is a ‘‘digital expressionmatrix’’

in which each column corresponds to a cell, each row corresponds to a gene, and each entry is the integer number of transcripts detected from that gene, in

that cell.
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Figure 3. Critical Evaluation of Drop-Seq Using Species-Mixing Experiments

(A and B) Drop-seq analysis of mixutres of mouse and human cells. Mixtures of human (HEK) and mouse (3T3) cells were analyzed by Drop-seq at the con-

centrations shown. The scatter plot shows the number of human and mouse transcripts associating to each STAMP. Blue dots indicate STAMPs that were

designated from these data as human-specifiic (average of 99% human transcripts); red dots indicate STAMPs that were mouse-specific (average 99%). At the

lower cell concentration, one STAMP barcode (of 570) associated with a mixture of human and mouse transcripts (A, purple). At the higher cell concentration,

about 1.9% of STAMP barcodes associated with mouse-humanmixtures (B). Data for other cell concentrations and a different single-cell analysis platform are in

Figures S3B and S3C.

(C and D) Sensitivity analysis of Drop-seq at high read-depth. Violin plots show the distribution of the number of transcripts (C, scored by UMIs) and genes (D)

detected per cell for 54 HEK (human) STAMPs (blue) and 28 3T3 (mouse) STAMPs (green) that were sequenced to a mean read depth of 737,240 high-quality

aligned reads per cell.

(E and F) Correlation between gene expression measurements in Drop-seq and non-single-cell RNA-seq methods. Comparison of Drop-seq gene expression

measurements (averaged across 550 STAMPs) to measurements from bulk RNA analyzed by: (E) an in-solution template switch amplification (TSA) procedure

similar to Smart-seq2 (Picelli et al., 2013) (Supplemental Experimental Procedures); and (F) Illumina TruSeqmRNA-seq. All comparisons involve RNAderived from

the same cell culture flask (3T3 cells). All expression counts were converted to average transcripts per million (ATPM) and plotted as log (1+ATPM).

(G) Quantitation of Drop-seq capture efficiency by ERCC spike-ins. Drop-seq was performed with ERCC control synthetic RNA at an estimated concentration of

100,000 ERCC RNAmolecules per droplet. 84 beads were sequenced at a mean depth of 2.4 million reads, aligned to the ERCC reference sequences, and UMIs

counted for each ERCC species, after applying a stringent down-correction for potential sequencing errors (Table S1 and Supplemental Experimental Pro-

cedures). For each ERCC RNA species above an average concentration of one molecule per droplet, the predicted number of molecules per droplet was plotted

in log space (x-axis), versus the actual number of molecules detected per droplet by Drop-seq, also in log space (y-axis). Error bars indicate SD. The intercept of a

regression line, constrained to have a slope of 1 and fitted to the seven highest points, was used to estimate a conversion factor (0.128). A second estimation,

using the average number of detected transcripts divided by the number of ERCC molecules used (100,000), yielded a conversion factor of 0.125.
synthesis, growth, DNA replication, and other aspects of the cell

cycle. We inferred the cell-cycle phase of each of the 1,001 cells

by scoring for gene sets (signatures) reflecting five phases of the

cell cycle previously characterized in chemically synchronized

cells (G1/S, S, G2/M, M, and M/G1) (Figure 4A, Table S2) (Whit-
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field et al., 2002).We identified 544 human and 668mouse genes

with expression patterns that varied along the cell cycle (at a

false discovery rate of 5%;Experimental Procedures) (Figure 4B),

including 200 orthologous gene pairs (p < 10�65 by hyper-

geometric test). Of these orthologous gene pairs, most (82.5%)
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Figure 4. Cell-Cycle Analysis of HEK and

3T3 Cells Analyzed by Drop-Seq

(A) Cell-cycle state of 589 HEK cells (left) and 412

3T3 cells (right) measured by Drop-seq. Cells were

assessed for their progression through the cell

cycle by comparison of each cell’s global pattern

of gene expression with gene sets known to

be enriched in one of five phases of the cycle

(horizontal rows). A phase-specific score was

calculated for each cell across these five phases

(Supplemental Experimental Procedures), and the

cells ordered by their phase scores.

(B) Discovery of cell-cycle regulated genes. Heat

map showing the average normalized expression

of 544 human and 668 mouse genes found to be

regulated by the cell cycle. Maximal and minimal

expression was calculated for each gene across a

sliding window of the ordered cells, and compared

with shuffled cells to obtain a false discovery

rate (FDR) (Experimental Procedures). The plotted

genes (FDR threshold of 5%) were then clustered

by k-means analysis to identify sets of genes with

similar expression patterns. Cluster boundaries

are represented by dashed gray lines.

(C) Representative cell-cycle regulated genes

discovered by Drop-seq. Selected genes that

were found to be cell-cycle regulated in both the

HEK and 3T3 cell sets. Left: genes that are

well-known to be cell-cycle regulated. Right: some

genes identified in this analysis that were not

previously known to be associated with the cell

cycle (Experimental Procedures). A complete

list of cell-cycle regulated genes can be found in

Table S2.
have been previously annotated as related to the cell cycle in at

least one species; among the other 17.5%, we found some that

would be expected to show cell-cycle variation (e.g., E2F7 and

PARPBP) and many that to our knowledge were not previously

connected to the cell cycle (Figure 4C and Table S2). Single-

cell analysis at this scale enabled characterization of cell-cycle

gene expression without chemical synchronization and at high

temporal resolution.

Cell Types: Drop-Seq Analysis of the Retina
We selected the retina as the first tissue to study with Drop-seq

because decades of work has generated molecular information

about many retinal cell types (Masland, 2012; Sanes and Zipur-

sky, 2010), allowing us to relate our RNA-seq data to prior clas-

sification. The retina contains five neuronal classes—retinal gan-

glion, bipolar, horizontal, photoreceptor, and amacrine—each

defined by morphological, physiological, and molecular criteria

(Figure 5A). Most of the classes are divisible into discrete

types—a total currently estimated at about 100—but well under

half of these types possess known, distinguishing molecular

markers.

We sequenced 49,300 STAMPs prepared from the retinas of

14-day-old mice (STAMPs were collected in seven batches

over 4 days). We performed principal components analysis on

the 13,155 largest libraries (Figure S5, Table S3), then reduced

the 32 statistically significant PCs (Experimental Procedures)

to two dimensions using t-Distributed Stochastic Neighbor
Embedding (tSNE) (Amir et al., 2013; van der Maaten and Hinton,

2008). We projected the remaining 36,145 cells in the data into

the tSNE analysis. We then combined a density clustering

approach with post hoc differential expression analysis to divide

44,808 cells among 39 transcriptionally distinct clusters (Supple-

mental Experimental Procedures) ranging from 50 to 29,400

cells in size (Figures 5B and 5C). Finally, we organized the 39

cell populations into larger categories (classes) by building a

dendrogram of similarity relationships among the 39 cell popula-

tions (Figure 5D, left).

The cell populations inferred from this analysis were readily

matched to the known retinal cell types, including all five

neuronal cell classes, based on the specific expression of known

markers for these cell types (Figure 5D, right, and Figure S6A).

Additional clusters corresponded to astrocytes (associated

with retinal ganglion cell axons exiting the retina), resident micro-

glia, endothelial cells (from intra-retinal vasculature), pericytes,

and fibroblasts (Figure 5D). The relative abundances of the

major cell classes in our data agreed with earlier estimates

from microscopy (Jeon et al., 1998) (Table 1).

Replication and Cumulative Power of Drop-Seq Data
Replication across experimental sessions enables the construc-

tion of cumulatively powerful datasets—but only if data are repli-

cable and comparable. The retinal STAMPswere generated on 4

different days (weeks apart), utilizing different litters and multiple

runs in several sessions, for a total of seven replicates. One of the
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Figure 5. Ab Initio Reconstruction of Retinal Cell Types from 44,808 Single-Cell Transcription Profiles Prepared by Drop-Seq

(A) Schematic representation of major cell classes in the retina. Photoreceptors (rods or cones) detect light and pass information to bipolar cells, which in turn

contact retinal ganglion cells that extend axons into other CNS tissues. Amacrine, bipolar and horizontal cells are retinal interneurons; Müller glia act as support

cells for surrounding neurons.

(B) Clustering of 44,808 Drop-seq single-cell expression profiles into 39 retinal cell populations. The plot shows a two-dimensional representation (tSNE) of global

gene expression relationships among 44,808 cells; clusters are colored by cell class, according to Figure 5A.

(C) Differentially expressed genes across 39 retinal cell populations. In this heat map, rows correspond to individual genes found to be selectively upregulated in

individual clusters (p < 0.01, Bonferroni corrected); columns are individual cells, ordered by cluster (1–39). Clusters with > 1,000 cells were downsampled to 1,000

cells to prevent them from dominating the plot.

(D) Gene expression similarity relationships among 39 inferred cell populations. Average expression across all detected genes was calculated for each of 39 cell

clusters, and the relative (Euclidean) distances between gene-expression patterns for the 39 clusters are represented by a dendrogram. The branches of the

dendrogram were annotated by examining the differential expression of known markers for retina cell classes and types. Twelve examples are shown at right,

using violin plots to represent the distribution of expression within the clusters. Violin plots for additional genes are in Figure S6A.

(legend continued on next page)
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Table 1. Ascertainment of Cell Types and Frequencies in the

Mouse Retina by Drop-Seq

Cell Class

Percentage of Retina

(Jeon et al., 1998) (%)

Percentage of

Cell Population

in Drop-Seq (%)

Rod photoreceptors 79.9 65.6

Cone photoreceptors 2.1 4.2

Muller glia 2.8 3.6

Retinal ganglion cells 0.5 1.0

Horizontal cells 0.5 0.6

Amacrine cells 7.0 9.9

Bipolar cells 7.3 14.0

Microglia — 0.2

Retinal endothelial cells — 0.6

Astrocytes 0.1

The sizes of the 39 annotated cell clusters produced from Drop-seq were

used to estimate their fractions of the total cell population. These data

were compared with those obtained by microscopy techniques (Jeon

et al., 1998).
runs was performed at a particularly low cell concentration (15

cells/ml) and thus high purity, to evaluate whether results were ar-

tifacts of cell-cell doublets or single-cell impurity. We found that

all 39 clusters contained cells from every experiment. One clus-

ter (arrow in Figure 5E; star in Figure S6B), which drew dispropor-

tionately from two replicates, expressedmarkers of fibroblasts, a

non-retinal cell type that is present in tissue surrounding the

retina, and hence likely represents imprecise dissection.

We examined how the classification of cells (based on their

patterns of gene expression) evolved as a function of the

numbers of cells in analysis. We used 500, 2,000, or 9,731 cells

from our dataset, and asked how (for example) cells identified as

amacrines in the full dataset clustered in analyses of smaller

numbers of cells (Figure 5F). As the number of cells in the data

increased, distinctions between related clusters become clearer,

stronger, and finer in resolution, with the result that a greater

number of rare amacrine cell sub-populations (each represent-

ing 0.1%–0.9% of the cells in the experiment) could ultimately

be distinguished from one another (Figure 5F).

Profiles of Amacrine Cell Types
To characterize distinctions among closely related cell popula-

tions, we focused on the 21 clusters of amacrines. Amacrines

are the most morphologically diverse neuronal class (Masland,

2012), but the majority of types lack defining molecular markers.

Most amacrine cells are inhibitory, utilizing either GABA or

glycine as a neurotransmitter. Excitatory amacrine cells that

release glutamate have also been identified (Haverkamp and
(E) Representation of experimental replicates in each cell population. tSNE plot f

clarity, the central rod cluster was downsampled to 10,000 cells). Each of the sev

these replicates are unevenly represented, expressed markers of fibroblasts, whic

Figure S6B).

(F) Trajectory of amacrine clustering as a function of number of cells analyzed. T

9,731 cells (Supplemental Experimental Procedures). Cells identified as amacrine

that analysis. Analyses of smaller numbers of cells incompletely distinguished th
Wässle, 2004). Another amacrine cell population expresses no

GABAergic, glycinergic or glutamatergic markers; its neuro-

transmitter is unidentified (nGnG amacrines) (Kay et al., 2011).

We first identified markers that were most universally ex-

pressed by amacrines relative to other cell classes (Figure 6A).

We then assessed the expression of known glycinergic and

GABAergic markers; their mutually exclusive expression is a

fundamental distinction among amacrines. Of the 21 amacrine

clusters, 12 were identifiable as GABAergic (Gad1 and/or

Gad2-positive) and 5 others were glycinergic (glycine transporter

Slc6a9-positive) (Figure 6B). An additional cell population was

identified as excitatory by its expression of a glutamate trans-

porter,Slc17a8 (Figure 6B). The remaining three clusters (clusters

4, 20, and 21) had low levels of GABAergic, glycinergic, and glu-

tamatergic markers; these likely include nGnG amacrines.

Among the glycinergic and GABAergic clusters, we found

many amacrine types with known markers. The most divergent

glycinergic cluster appeared to correspond to the A-II amacrine

neurons (Figure 6B, cluster 16), as this was the only cluster to

strongly express the Gjd2 gene encoding the gap junction pro-

tein connexin 36 (Feigenspan et al., 2001). Ebf3, a transcription

factor found in SEG glycinergic as well as nGnG amacrines,

was specific to clusters 17 and 20. Starburst amacrine neurons

(SACs), the only retinal cells that use acetylcholine as a co-trans-

mitter, were identifiable as cluster 3 by their expression of the

cholinergic marker Chat (Figure 6B). Unlike other GABAergic

cells, SACs expressed Gad1 but not Gad2, as previously

observed in rabbit (Famiglietti and Sundquist, 2010).

We then identified selectively expressedmarkers for eachof the

21 amacrine cell populations (Figure 6C and Table S4). We vali-

dated two of the markers immunohistochemically. First, we co-

stained retinal sections with antibodies to the transcription factor

MAF, the topmarker of cluster 7, plus antibodies to eitherGAD1or

SLC6A9, markers of GABAergic and glycinergic transmission,

respectively. As predicted by the Drop-seq analysis, MAF was

found in a small subset of amacrine cells that were GABAergic

and not glycinergic (Figure 6D). Cluster 7 had numerous genes

that were enriched relative to its nearest neighbor, cluster 6 (Fig-

ure 6E, 16 genes > 2.8-fold enrichment, p < 10�9), including

Crybb3, which belongs to the crystallin family of proteins that

are known to be directly upregulated by Maf (Yang and Cvekl,

2005), and another, the proteaseMmp9, which accepts crystallins

as substrates (Descamps et al., 2005). Second, we stained sec-

tions with antibodies to PPP1R17 (Figure 6F), a nominatedmarker

of cluster 20. Cluster 20 shows weak, infrequent glycine trans-

porter expression and is one of only two clusters (with cluster

21) that express Neurod6, a marker of nGnG neurons (Kay et al.,

2011). We used a transgenic strain (MitoP) that has been shown

to express CFP specifically in nGnG amacrines (Kay et al.,

2011). PPP1R17 stained 85% of all CFP-positive amacrines in
rom Figure 2B, with each cell now colored by experimental replicate (for visual

en replicates contributes to all 39 cell populations. Cluster 36 (arrow), in which

h are not native to the retina and are presumably a dissection artifact (see also

hree different downsampled datasets were generated: (1) 500, (2) 2,000, or (3)

s (clusters 3–23) in the full analysis are here colored by their cluster identities in

ese subpopulations from one another.
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Figure 6. Finer-Scale Expression Distinctions among Amacrine Cells, Cones, and Retinal Ganglion Cells
(A) Pan-amacrine markers. The expression levels of the six genes identified (Nrxn2, Atp1b1, Pax6, Slc32a1, Slc6a1, Elavl3) are represented as dot plots across all

39 clusters; larger dots indicate broader expression within the cluster; deeper red denotes a higher expression level.

(legend continued on next page)
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theMitoP line, validating this as amarker of nGnGcells (Figure 6F).

PPP1R17 was one of several markers that distinguished Cluster

20 from its closest neighbor, Cluster 21 (Figure 6G; 12 genes >

2.8-fold enrichment, p < 10�9). The differences between Clusters

20 and 21 suggest a hitherto unsuspected level of heterogeneity

among nGnG amacrines.

Supervised Analysis Reveals Additional Diversity
Our unsupervised analysis grouped cells into 39 transcription-

ally distinct populations, but morphological and functional

criteria suggest that there are �100 retinal cell types. We asked

whether supervised analysis could reveal multiple types within

individual clusters. For example, retinal ganglion cells (RGCs),

which consist of about 30 types (Sanes and Masland, 2015),

formed a single cluster in our analysis, perhaps because it is

a rare cell population (1%, Table 1). Five RGC types, called

intrinsically photosensitive RGCs (ipRGCs), express Opn4, the

gene encoding the photopigment melanopsin. Opn4+ RGCs

(26/432) expressed nine genes at levels 2-fold higher than

Opn4- RGCs (p < 109, Figure 6H), including Tbr2/Eomes,

known to be a selective marker for this population (Sweeney

et al., 2014). This result reveals additional heterogeneity that

may also emerge ab initio as analyses expand to include

more cells.

DISCUSSION

Ascertaining transcriptional variation across individual cells is a

valuable way of learning about complex tissues and functional

responses, but single-cell analysis has been limited by the time

and cost of preparing libraries from many individual cells. A sci-

entist employing Drop-seq can prepare 10,000 single-cell li-

braries for sequencing in 12 hr, for about 6.5 cents per cell (Table

S5), representing a >100-fold improvement in both time and cost

relative to existing methods. A Drop-seq setup can be con-

structed quickly and inexpensively in a standard biology lab us-

ing readily available equipment (Figure S2B and Supplemental

Experimental Procedures). We hope that ease, speed, and low

cost facilitate exuberant experimentation, careful replication,

and many cycles of experiments, analyses, ideas, and more

experiments.
(B) Identification of known amacrine types among clusters. The 21 amacrine clus

non-GABAergic non-glycinergic clusters. Starburst amacrines were identified in

Slc17a8; A-II amacrines by their expression of Gjd2; and SEG amacrine neurons

(C) Nomination of novel candidate markers of amacrine subpopulations. Each clu

other amacrine clusters (p < 0.01, Bonferroni corrected) (McDavid et al., 2013),

candidate marker for each cluster is shown across all amacrines.

(D) Validation of MAF as amarker for a GABAergic amacrine population. Staining o

and vii), GAD1 (iii and iv, red staining), and SLC6A9 (vi and vii, red staining), dem

(E) Differential expression of cluster 7 (Maf+) with nearest neighboring amacrine c

and 7; 16 genes (red dots) were identified with >2.8-fold enrichment in cluster 7

(F) Validation of PPP1R17 as a marker for an amacrine subpopulation. Staining

amacrines and type 1 bipolars (Kay et al., 2011). Overlapping labeling by PPP1R

Ppp1r17 expression in the nGnG amacrine neurons. 85% of CFP+ cells were P

amacrine type expressing this marker. Blue staining is for VSX2, a marker of bip

(G) Differential expression of cluster 20 (Ppp1r17+) with nearest neighboring ama

clusters 20 and 21; 12 genes (red dots) were identified with >2.8-fold enrichmen

(H) Differential expression of melanopsin-positive and negative RGCs. Average ex

2. Seven genes were identified as enriched in Opn4-positive cells (red dots, > 2-
In validating Drop-seq, we developed stringent species-mix-

ing experiments to measure single-cell purity and cell doublet

rates in our libraries. In another article in this issue, Klein et al.

(Klein et al., 2015) describe a droplet-based approach to sin-

gle-cell RNA-seq and also use species-mixing experiments to

evaluate it. Our results indicate that all methods of isolating

single cells from a cell suspension, including Drop-seq, fluores-

cence activated cell sorting (FACS) andmicrofluidics, are vulner-

able to impurities, and highlight the value of performing species

mixing experiments to assess single-cell approaches. In our

retina analysis, even relatively impure libraries generated in

‘‘ultra-high-throughput’’ modes (100 cells per ml, allowing the

processing of 10,000 cells per hour at �10% doublet and impu-

rity rates) appeared to yield a robust and biologically validated

cell classification, but other tissues or applications may require

using Drop-seq in purer modes.

Unsupervised computational analysis of Drop-seq data

identified 39 transcriptionally distinct retinal cell populations,

many representing specific subtypes of the major retinal cell

classes (Figures 5 and 6). It is a particular strength of the

retina that establishing correspondence between cluster and

type was in many cases straightforward; an important direc-

tion will be to identify cell types and states in other parts of

the brain—as well as in other tissues—about which less is

currently known.

We see many applications of Drop-seq, beyond the identifica-

tion of cell types and cell states. Genome-scale genetic studies

are identifyingmanygeneswhose variation contributes to disease

risk, but biology has lacked similarly high-throughput ways of

connecting these genes to specific cell populations and unique

functional responses. Drop-seq could be used to provide initial in-

sights into how these genes function in the diverse cell types

composing each tissue. In addition, coupling Drop-seq to pertur-

bations—suchassmallmolecules,mutations,pathogens,orother

stimuli—could generate an information-rich, multi-dimensional

readout of the influence of perturbations on many kinds of cells.

The functional implications of a gene’s expression are a prod-

uct not just of that gene’s intrinsic properties, but also of the

entire cell-level context in which the gene is expressed. We

hope Drop-seq enables the abundant and routine discovery of

such relationships in many areas of biology.
ters consisted of 12 GABAergic, five glycinergic, one glutamatergic, and three

cluster 3 by their expression of Chat; excitatory amacrines by expression of

by their expression of Ebf3.

ster was screened for genes differentially expressed in that cluster relative to all

and filtered for those with highest relative enrichment. Expression of a single

f a fixed adult retina fromwild-type mice for MAF (i, ii, v, and green staining in iv

onstrating co-localization of MAF with GAD1, but not SLC6A9.

luster (#6). Average gene expression was compared between cells in clusters 6

(p < 10�9).

of a fixed adult retina from Mito-P mice, which express CFP in both nGnG

17 antibody (green) and Mito-P CFP (red) supports Drop-seq identification of

PP1R17+ and 50% of the PPP1R17+ cells were CFP�, suggesting a second

olar neurons.

crine cluster (#21). Average gene expression was compared between cells in

t in cluster 20 (p < 10�9).

pression was compared betweenOpn4-positive and -negative RGCs in cluster

fold, p < 10�9).
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EXPERIMENTAL PROCEDURES

Device Design and Fabrication

Microfluidic devices were designed using AutoCAD software (Autodesk), and

the components tested using COMSOL Multiphysics (COMSOL). Full details

are described in Supplemental Experimental Procedures.

Barcoded Microparticle Synthesis

Bead functionalization and reverse-direction phosphoramidite synthesis were

performed by Chemgenes Corp (Wilmington, MA). ‘‘Split-and-pool’’ cycles

were accomplished by removing the dry resin from each column, handmixing,

andweighing out four equal portions before returning the resin for an additional

cycle of synthesis. Full details are described in Supplemental Experimental

Procedures.

Drop-Seq Procedure

Monodisperse droplets�1 nl in size were generated using the microfluidic de-

vice described in Supplemental Experimental Procedures, in which barcoded

microparticles, suspended in lysis buffer, were flowed at a rate equal to that of

a single-cell suspension, so that resulting droplets were composed of an equal

amount of each component. As soon as droplet generation was complete,

droplets were broken with perfluorooctanol in 30 ml of 63 SSC. The addition

of a large aqueous volume to the droplets reduces hybridization events after

droplet breakage, because DNA base pairing follows second-order kinetics

(Britten and Kohne, 1968; Wetmur and Davidson, 1968). The beads were

then washed and resuspended in a reverse transcriptase mix, followed by a

treatment with exonuclease I to remove unextended primers. The beads

were then washed, counted, aliquoted into PCR tubes, and PCR amplified.

The PCR reactions were purified and pooled, and the amplified cDNA quanti-

fied on a BioAnalyzer High Sensitivity Chip (Agilent). The cDNA was frag-

mented and amplified for sequencing with the Nextera XT DNA sample prep

kit (Illumina) using custom primers that enabled the specific amplification of

only the 30 ends (Table S6). The libraries were purified, quantified, and then

sequenced on the Illumina NextSeq 500. All details regarding reaction

conditions, primers used, and sequencing specifications can be found in the

Supplemental Experimental Procedures.

Cell-Cycle Analysis of HEK and 3T3 Cells

Gene sets reflecting five phases of the HeLa cell cycle (G1/S, S, G2/M, M and

M/G1) were taken from Whitfield et al. (Whitfield et al., 2002) with some modi-

fication (Supplemental Experimental Procedures and Table S2). A phase-spe-

cific score was generated for each cell, across all five phases, using averaged

normalized expression levels (log2(TPM+1)) of the genes in each set. Cells

were then ordered along the cell cycle by comparing the patterns of these

five phase scores per cell. To identify cell-cycle-regulated genes, we used a

sliding window approach, and identified windows of maximal and minimal

average expression, both for ordered cells, and for shuffled cells, to evaluate

the false-discovery rate. Full details may be found in Supplemental Experi-

mental Procedures.

Principal Components and Clustering Analysis of Retina Data

The clustering algorithm for the retinal cell data was implemented and per-

formed using Seurat, a recently developed R package for single-cell analysis

(Satija et al., 2015). PCA was first performed on a 13,155-cell ‘‘training set’’

of the 49,300-cell dataset, using single-cell libraries in which transcripts from

>900 genes were detected. We found this approach was more effective in

discovering structures corresponding to rare cell types than performing PCA

on the full dataset, which was dominated by numerous, tiny rod photorecep-

tors (Supplemental Experimental Procedures). Thirty-two statistically signifi-

cant PCs were identified using a permutation test and independently

confirmed using a modified resampling procedure (Chung and Storey, 2015).

We projected individual cells within the training set based on their PC scores

onto a single two-dimensional map using t-Distributed Stochastic Neighbor

Embedding (t-SNE) (van der Maaten and Hinton, 2008). The remaining

36,145 single-cell libraries (<900 genes detected) were next projected on

this t-SNE map, based on their representation within the PC-subspace of

the training set (Berman et al., 2014; Shekhar et al., 2014). This approach mit-
1212 Cell 161, 1202–1214, May 21, 2015 ª2015 Elsevier Inc.
igates the impact of noisy variation in the lower complexity libraries due to

gene dropouts. It was also reliable in the sense that when we withheld from

the t-SNE all cells from a given cluster and then tried to project them, these

withheld cells were not spuriously assigned to another cluster by the projection

(Table S7). Point clouds on the t-SNEmap represent candidate cell types; den-

sity clustering (Ester et al., 1996) identified these regions. Differential expres-

sion testing (McDavid et al., 2013) was then used to confirm that clusters

were distinct from each other. Hierarchical clustering based on Euclidean dis-

tance and complete linkage was used to build a tree relating the clusters. We

noted expression of several rod-specific genes, such as Rho and Nrl, in every

cell cluster, an observation that has been made in another retinal cell gene

expression study (Siegert et al., 2012) and likely arises from solubilization

of these high-abundance transcripts during cell suspension preparation.

Additional information regarding retinal cell data analysis can be found in the

Supplemental Experimental Procedures.
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Figure S1. Assessment of the Properties of Barcoded Primers on the Surface of Microparticles, Related to Figure 1

(A) Identification of individual bead barcodes in a multiplexed experiment. A synthetic polyadenylated RNAwas reverse transcribed onto the surface of barcoded

primer beads. Eleven of these beads were then manually selected and used as a template for construction of a sequencing library (Supplemental Experimental

Procedures). The library was sequenced on a MiSeq, and the cell barcode sequences gathered and counted. A sharp distinction was observed between the

numbers of reads carrying the eleventh and twelfth most abundant 12mers at the barcode position in the sequencing read, demonstrating that cell barcodes from

each bead can be recognized from their high representation in the results of a sequencing experiment.

(B) Base composition analysis of 12-bp cell barcodes. The sequences of 1,000 cell barcodes, ascertained in another sequencing experiment, were assessed for

overall nucleotide and dinucleotide composition. Red dotted lines represent the values for completely random barcode sets that would lack any sequence bias.

(C) Computational truncation of 12-bp cell barcodes. The 1,000 cell barcode sequences in (B) were trimmed from the 30 end, and the number of unique barcodes

remainingwas calculated at each number of trimmed bases (blue line). The number of unique barcodes at each number of trimmingswas compared to a randomly

generated set of 1,000 12-mers (green line).
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Figure S2. Schematics of Microfluidic Device Design and Operation, Related to Figure 2

(A) Microfluidic co-flow device design. Three inlets—for oil, cell suspension, and microparticles—converge and generate aqueous droplets composed of equal

volume contributions from the cell suspension and microparticle channels. A bumpy outlet improves mixing of the droplets to promote hybridization of released

RNAs onto the beads. A CAD file of the device can be found in Data S1.

(B) Schematic representation of Drop-seq setup. Three syringe pumps, loaded with oil, cells, and beads, respectively, are connected to the PDMS device in

Figure S2A via flexible tubing. The device rests on the stage of an inverted microscope so that droplet generation can bemonitored in real-time. Tubing connects

the outlet channel to a 50 ml conical tube for collection of droplets.
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Figure S3. Dissection of Technical Contributions to Single-Cell Impurities in Drop-Seq Library Preparations, Related to Figure 3
(A) Identification of STAMPs in a pool of amplified beads. Drop-seq involves generation of single-cell profiles by diluting cells to poisson-limiting concentrations in

droplets; therefore, the great majority of amplified beads (90%–99%) are not exposed to a cell’s RNA, only ambient RNA. To identify the cell barcodes corre-

sponding to STAMPs, cell barcodes from the experiment shown in Figure 3A are arranged in decreasing order of size (number of reads), and the cumulative

fraction of reads is plotted. An inflection point (vertical dotted line at 570) is observed very close to the number of cells predicted by Poisson statistics for the

counted and aliquoted number of beads (�500). We confirmed the significance of this inflection point by plotting the species specificity of individual STAMPs, and

observing a dramatic drop in specificity near the inflection point, indicating the transition from beads that sampled cellular RNA, to the beads that sampled

ambient RNA.

(B) Concentration dependence of Drop-Seq library purity. STAMPs were prepared using a mixture of human (HEK) and mouse (3T3) cells at four different

concentrations (n = 1,150, 690, 595, and 570 STAMPs for 100 cells/ml, 50 cells/ml, 25 cells/ml, and 12.5 cells/ml respectively). The rate of cell doublets was

calculated by multiplying by two the number of mixed species STAMPs; single-cell impurity was calculated by summing the mean human-cell and mean mouse-

cell impurities. Error bars indicate SD.

(C) Human-mouse experiments on Fluidigm C1. Human (HEK) and mouse (3T3) cells were mixed at equal concentrations and run on two Fluidigm C1 chips

according to the manufacturer’s instructions. Reads were aligned to a joint human-mouse reference in exactly the same analysis pipeline as Drop-seq. The

smallest 10 cells (with less than 100,000 reads each) were removed from analysis. Fifty-six mixed-organism libraries were identified out of 182, placing a lower

bound of 30.7% on cell-cell doublets. Twelve C1 ports were identified as possessing >1 cell by microscopy, of which five were mixed species by sequencing.

(D) Single-cell impurity analysis. Drop-seq libraries were prepared from combinations of human and mouse cells pooled at three different stages of Drop-seq

library preparation. In the first condition, human and mouse cells were mixed together prior to droplet formation (red violin plot, ‘‘Cell Mix’’). In the second

condition, human and mouse cells were separately encapsulated in droplets, which were then mixed before breaking them and performing subsequent analyses

on the mixture (blue, ‘‘Droplet Mix’’). In the third condition, human and mouse cells were separately encapsulated in droplets, which were broken in separate

reactions and then reverse-transcribed to form separate pools of covalent STAMPs, which were mixed prior to PCR amplification (green, ‘‘PCRMix’’). The twenty

largest STAMPs from each organism were selected for each of the three conditions, downsampled to the same read depth, and the organism purity represented

as violin plots. The black dot is the average organism purity of the forty STAMPs in each distribution. The cell mixes usedwere diluted to a final concentration of 50

cells/ml in droplets. From these data we estimate that (at this cell concentration) cell suspension contributes 48% of impurities, RNA transfer after droplet

breakage contributes 40%, and PCR artifacts contribute 12%.
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Figure S4. Estimation of Drop-Seq Expression Bias and Capture Efficiency, Related to Figure 3

(A) Sensitivity estimation by ddPCR. RNA was isolated from a culture of 50,000 HEK cells, and levels of ten genes (ACTB, B2M, CCNB1, GAPDH, EEF2, ENO1,

PSMB4, TOP2A, YBX3, and YWHAH) were digitally quantitated in this bulk solution using RT-ddPCR. These transcript counts were then compared to the average

number of unique transcripts counted per cell by Drop-seq. Error bars show the SE for individual ddPCR measurements (horizontal bars, n = 3 replicates) or

across STAMPs (vertical bars, n = 54). Based upon the mean of these ten gene expression measurements, we estimate that Drop-seq captures approximately

10.7% of cellular mRNAs.

(B) Capture efficiency of barcoded primer beads. The same barcoded primer beads used in Drop-seq were hybridized in solution to purified human brain RNA at a

concentration of 20 ng/ml (Supplemental Experimental Procedures). The beads were then spun down and washed three times, and the bound RNA eluted by

heating the beads in the presence of water. The concentrations of two mRNA transcripts, GAPDH and ACTB, were measured in each of the five steps by ddPCR.

Error bars, SD for three replicate experiments.

(C) Assessment of barcoded bead primer binding saturation. The same procedure described in (B) was performed using three different input RNA concentrations:

20 ng/ml, 50 ng/ml and 100 ng/ml. The fraction of input RNA that was eluted off the beads scaled linearly with input RNA concentration, indicating that hybridization

to the beads was not limited by a saturation of mRNA binding sites.

(D) GC content bias between average gene expression in Drop-seq and in-solution template-switch amplification (TSA). Comparison of average gene expression

in lowGC content genes (< 0.4 average content, red dots) from a library of 550 3T3 STAMPs, and anmRNA-seq library prepared by an in-solution template switch

amplification (TSA) procedure similar to Smart-seq2 (Picelli et al., 2013) (Supplemental Experimental Procedures), using RNA derived from an extract of the same

cell culture used to provide intact cells for Drop-seq.

(E) GC content bias between average gene expression in Drop-seq and standard mRNA-seq. Comparison of average gene expression in low GC content genes

(< 0.4 average content, red dots) from a library of 550 3T3 STAMPs, and an mRNA-seq library prepared by standard methods (Supplemental Experimental

Procedures), using RNA derived from the same cell culture flask that was used in Drop-seq.

(F) Length bias between average gene expression in Drop-seq and standard mRNA-seq. Comparison of average gene expression in long transcripts (>5,000

average transcript length, red dots) from a library of 550 3T3 STAMPs, and an mRNA-seq library prepared by standard methods (Supplemental Experimental

Procedures), using RNA derived from the same cell culture flask that was used in Drop-seq. The bias observed here was not found in a comparison of Drop-seq

and in-solution TSA (data not shown), and could result from the use of template suppression PCR, which preferentially amplifies longer fragments (Matz et al.,

2003).
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Figure S5. Plots of Principal Components 1-32 of the 44,808 Retinal Cell STAMPs Used in Analysis, Related to Figure 5
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Figure S6. Expression of Additional Genes across Retinal Cell Clusters and Replicate Representation in Each Cluster, Related to Figure 5

(A) Violin plots showing expression of selected marker genes in the 39 retinal cell clusters generated by unsupervised analysis of single-cell gene expression.

(B) The fraction of each cluster composed of cells deriving from one of the seven replicates (prepared over four different days, see Supplemental Experimental

Procedures), that composed the full 44,808-cell dataset. The fractions of each replicate are represented as a stacked barplot. Replicates 1-6 were prepared in an

‘‘aggressive mode’’ of Drop-seq (�90% single-cell, �90% purity); replicate 7 was prepared in a ‘‘pure mode’’ (>99% single-cell, 98.6% purity). The star des-

ignates an imbalanced cluster, #36, corresponding to contaminating fibroblasts that result from imperfect retinal dissection.
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Supplemental Experimental Procedures 

 

 

Device Fabrication 

 

Microfluidic devices were designed using AutoCAD software (Autodesk, Inc.), and the components 

tested using COMSOL Multiphysics (COMSOL Inc.).   A CAD file is also available in (Data S1). 

 

Devices were fabricated using a bio-compatible, silicon-based polymer, polydimethylsiloxane (PDMS) 

via replica molding using the epoxy-based photo resist SU8 as the master, as previously described 

(Mazutis et al., 2013; McDonald et al., 2000). The PDMS devices were then rendered hydrophobic by 

flowing in Aquapel (Rider, MA, USA) through the channels, drying out the excess fluid by flowing in 

pressurized air, and baking the device at 65ºC for 10 minutes. 

 

Bead Synthesis 

 

Bead functionalization and reverse direction phosphoramidite synthesis (5’ to 3’) were performed by 

Chemgenes Corp.  Toyopearl HW-65S resin (~30 micron mean particle diameter) was purchased from 

Tosoh Biosciences (catalog #19815, Tosoh Bioscience), and surface hydroxyls were reacted with a 

PEG derivative to generate an 18-carbon long, flexible-chain linker.  The functionalized bead was then 

used as a solid support for reverse-direction phosphoramidite synthesis (5’3’) on an Expedite 8909 

DNA/RNA synthesizer using DNA Synthesis at 10 micromole scale and a coupling time of 3 minutes.   

Amidites used were: N
6
-Benzoyl-3’-O-DMT-2’- deoxyadenosine-5’-cyanoethyl-N,N-diisopropyl-

phosphoramidite (dA-N
6
-Bz-CEP); N

4
-Acetyl-3’-O-DMT-2’-deoxycytidine-5’-cyanoethyl-N,N-

diisopropyl-phosphoramidite (dC-N
4
-Ac-CEP); N

2
-DMF-3’-O-DMT-2’- deoxyguanosine-5’-



cyanoethyl-N,N-diisopropyl-phosphoramidite (dG-N
2
-DMF-CEP); and 3’-O-DMT-2’- deoxythymidine-

5’-cyanoethyl-N,N-diisopropyl-phosphoramidite (T-CEP).  Acetic anhydride and N-methylimidazole 

were used in the capping step; ethylthio-tetrazole was used in the activation step; iodine was used in the 

oxidation step, and dichloroacetic acid was used in the deblocking step.  After each of the twelve split-

and-pool phosphoramidite synthesis cycles, beads were removed from the synthesis column, pooled, 

hand-mixed, and apportioned into four equal portions by mass; these bead aliquots were then placed in 

a separate synthesis column and reacted with either dG, dC, dT, or dA phosphoramidite.  This process 

was repeated 12 times for a total of 4^12 = 16,777,216 unique barcode sequences. For complete details 

regarding the barcoded bead sequences used, see Table S6. 

 

Cell Culture 

 

Human 293 T cells were purchased from ATCC (cat # CRL-11268); murine NIH/3T3 cells were 

purchased from ATCC (cat # CRL-1658). 

 

293T and 3T3 cells were grown in DMEM purchased from Invitrogen (cat # 11965092) supplemented 

with 10% FBS (Life Technologies, cat # 10437-028) and 1% penicillin-streptomycin (cat # 15070-063). 

 

Cells were grown to a confluence of 30-60% and treated with TrypLE (Invitrogen, cat #12604013) for 

five min, quenched with equal volume of growth medium, and spun down at 300 x g for 5 min.  The 

supernatant was removed, and cells were resuspended in 1 mL of 1x PBS + 0.2% BSA (Sigma cat 

#A8806) and re-spun at 300 x g for 3 min.  The supernatant was again removed, and the cells re-

suspended in 1 mL of 1x PBS, passed through a 40-micron cell strainer (Falcon, VWR cat #21008-

949), and counted.  For Drop-Seq, cells were diluted to the final concentration in 1x PBS + 200 μg/mL 

BSA (NEB, cat # B9000S). 



 

Generation of Whole Retina Suspensions 

 

Single-cell suspensions were prepared from P14 mouse retinas by adapting previously described 

methods for purifying retinal ganglion cells from rat retina (Barres et al., 1988).  Briefly, mouse retinas 

were digested in a papain solution (40U papain / 10mL DPBS) for 45 minutes.  Papain was then 

neutralized in a trypsin inhibitor solution (0.15% ovomucoid in DPBS) and the tissue was triturated to 

generate a single-cell suspension.  Following trituration, the cells were pelleted, resuspended, and 

filtered through a 20μm Nitex mesh filter to eliminate any clumped cells.  The cells were then diluted in 

DPBS + 0.2% BSA (Sigma #A8806) to either 200 cells / μL (replicates 1-6) or 30 cells / μL (replicate 

7).   

 

Retina suspensions were processed through Drop-Seq on four separate days.  One library was prepared 

on day 1 (replicate 1); two libraries on day 2 (replicates 2 and 3); three libraries on day 3 (replicates 4-

6); and one library on day 4 (replicate 7, high purity).   To replicates 4-6, human HEK cells were spiked 

in at a concentration of 1 cell / μL (0.5%) but the wide range of cell sizes in the retina data made it 

impossible to calibrate single-cell purity or doublets by cross-species comparison.  Each of the seven 

replicates was sequenced separately. 

 

Experiments were approved by the institutional animal use and care committee at Harvard Medical 

School in accordance with NIH guidelines for the humane treatment of animals.   

 

Drop-Seq 

 

Preparation of beads 



 

Beads (either Barcoded Bead SeqA or Barcoded Bead SeqB; Table S6 and see note at end of 

Supplemental Experimental Procedures) were washed twice with 30 mL of 100% EtOH and twice 

with 30 mL of TE/TW (10 mM Tris pH 8.0, 1 mM EDTA, 0.01% Tween). The bead pellet was 

resuspended in 10 mL TE/TW and passed through a 100 µm filter (BD Falcon, cat # 352360) into a 50 

mL Falcon tube for long-term storage at 4 
o
C. The stock concentration of beads (in beads/μL) was 

assessed using a Fuchs-Rosenthal cell counter purchased from INCYTO (cat # DHC-F01). For Drop-

Seq, an aliquot of beads was removed from the stock tube, washed in 500 μL of Drop-Seq Lysis Buffer 

(DLB, 200 mM Tris pH 7.5, 6% Ficoll PM-400, 0.2% Sarkosyl, 20 mM EDTA), then resuspended in 

the appropriate volume of DLB + 50 mM DTT for a bead concentration of ~120 beads/μL.   

 

Droplet Generation 

 

The two aqueous suspensions—the single-cell suspension and the bead suspension—were loaded into 3 

mL plastic syringes (BD cat #309657).  To the bead syringe, we added a 6.4 mm magnetic stir disc 

(V&P Scientific, VP cat # 782N-6-150).  Droplet generation oil (Biorad, cat # 186-4006) was loaded 

into a 10 mL plastic syringe (BD #309604).   The three syringes were connected to a 125 μm co-flow 

device (Figure S2A) by 0.38 mm inner-diameter polyethylene tubing (Scientific Commodities, inc cat 

# BB31695-PE/2), and injected using syringe pumps (KD Scientific, Legato 100) at flow rates of 4.1 

mL/hr for each aqueous suspension, and 14 mL/hr for the oil, resulting in ~125 m emulsion drops with 

a volume of ~1 nanoliter each. For movie generation, the flow was visualized under an optical 

microscope (Olympus IX83) at 10x magnification and imaged at ~1000-2000 frames per second using a 

FASTCAM SA5 color camera (Photron, Japan).  Droplets were collected in 50 mL falcon tubes; the 

collection tube was changed out after every 1 mL of combined aqueous flow volume. 
 



During droplet generation, the beads were kept in suspension by continuous, gentle magnetic stirring 

(V&P Scientific, cat # VP710D2).  The uniformity in droplet size and the occupancy of beads were 

evaluated by observing aliquots of droplets under an optical microscope with bright-field illumination; 

in each experiment, greater than 95% of the bead-occupied droplets contained a single bead. 

 

Droplet Breakage 

 

The oil from the bottom of each aliquot of droplets was removed with a P1000 pipette, after which 30 

mL 6X SSC (Life Technologies, cat # 15557-036) at room temperature was added.   

 

To break droplets, we added 600 L of Perfluoro-1-octanol (Sigma-Aldrich, cat # 370533-25G), and 

shook the tube vigorously by hand for about 20 seconds.  The tube was then centrifuged for 1 minute at 

1000 x g. To reduce the likelihood of annealed mRNAs dissociating from the beads, samples were kept 

on ice for the remainder of the breakage protocol.  The supernatant was removed to roughly 5 mL 

above the oil-aqueous interface, and the beads washed with an additional 30 mL of room temperature 

6X SSC, the aqueous layer transferred to a new tube, and centrifuged again. The supernatant was 

removed, and the bead pellet transferred to non-stick 1.5 mL microcentrifuge tubes (VWR, cat # 20170-

650). The pellet was then washed twice with 1 mL 6X SSC, and once with 300 L of 5x Maxima H- 

RT buffer (EP0751). 

 

Reverse Transcription and Exonuclease I Treatment 

 

To a pellet of up to 90,000 beads, 200 L of RT mix was added, where the RT mix contained 1x 

Maxima RT buffer, 4% Ficoll PM-400 (GE Healthcare, cat # 17-0300-05), 1 mM dNTPs (Clontech, cat 

# 639125), 1 U/L Rnase Inhibitor (Lucigen, cat # 30281-2), 2.5 M Template_Switch_Oligo (Table 



S6), and 10 U/L Maxima H- RT (ThermoScientific cat #EP0751).  The beads were incubated at room 

temperature for 30 minutes, followed by 42 
o
C for 90 minutes.  The beads were then washed once with 

1 mL 1x TE + 0.5% Sodium Dodecyl Sulfate (TE/SDS, Sigma cat# L4522), twice with 1 mL TE/TW, 

and once with 10 mM Tris pH 7.5.  The bead pellet was then resuspended in 200 L of exonuclease I 

mix containing 1x Exonuclease I Buffer and 1 U/L Exonuclease I (NEB cat # B0293S), and incubated 

at 37 
o
C for 45 minutes. 

 

The beads were then washed once with 1 mL TE/SDS, twice with 1 mL TE/TW, once with 1 mL 

ddH2O, and resuspended in ddH2O.  Bead concentration was determined using a Fuchs-Rosenthal cell 

counter.  Aliquots of 1000 beads were amplified by PCR in a volume of 50 L using 1x Hifi HotStart 

Readymix (Kapa Biosystems, cat #KK2602) and 0.8 M Template_Switch_PCR primer (Table S6). 

 

The aliquots were thermocycled as follows: 95 
o
C 3 min; then four cycles of: 98 

o
C for 20 sec, 65 

o
C for 

45 sec, 72 
o
C for 3 min; then X cycles of: 98 

o
C for 20 sec, 67 

o
C for 20 sec, 72 

o
C for 3 min; then a 

final extension step of 5 min.  For the human-mouse experiment using cultured cells, X was 8 cycles; 

for the dissociated retina experiment, X was 9 cycles.  Pairs of aliquots were pooled together after PCR 

and purified with 0.6x Agencourt AMPure XP beads (Beckman Coulter, cat # A63881) according to the 

manufacturer’s instructions, and eluted in 10 L of H2O. Aliquots were pooled according to the number 

of STAMPs to be sequenced, and the concentration of the pool quantified on a BioAnalyzer High 

Sensitivity Chip (Agilent Technologies, cat # 5067-4626).   

 

Preparation of Drop-Seq cDNA Library for Sequencing 

 

To prepare 3’-end cDNA fragments for sequencing, four aliquots of 600 pg of cDNA were used as 

input in four standard Nextera XT tagmentation reactions (Illumina, cat #FC-131-1096), performed 



according to the manufacturer’s instructions except that 200 nM of the custom primers P5_TSO_Hybrid 

and Nextera_N701 (Table S6) were used in place of the kit’s provided oligonucleotides.  The samples 

were then amplified as follows:  95 
o
C for 30 sec; 11 cycles of 95 

o
C for 10 sec, 55 

o
C for 30 sec, 72 

o
C 

for 30 sec; then a final extension step of 72 
o
C for 5 min. 

 

Pairs of the 4 aliquots were pooled together, and then purified using 0.6x Agencourt AMPure XP Beads 

according to the manufacturer’s instructions, and eluted in 10 L of water.  The two 10 L aliquots 

were combined together and the concentration determined using a BioAnayzer High Sensitivity Chip.  

The average size of sequenced libraries was between 450 and 650 bp. 

 

The libraries were sequenced on the Illumina NextSeq 500 using 4.67 pM in a volume of 3 mL HT1, 

and 3 mL of 0.3 M Read1CustSeqA or Read1CustSeqB (Table S6 and see note at the end of 

Supplemental Experimental Procedures) for priming of read 1.  Read 1 was 20 bp (bases 1-12 cell 

barcode, bases 13-20 UMI); read 2 (paired end) was 50 bp for the human-mouse experiment, and 60 bp 

for the retina experiment. 

 

Species Contamination Experiment 

 

To determine the origin of off-species contamination of STAMP libraries (Figure S3D), we: (1) 

performed Drop-Seq exactly as above (control experiment) with a HEK/3T3 cell suspension mixture of 

100 cells / L in concentration; (2) performed the microfluidic co-flow step with HEK and 3T3 cells 

separately, each at a concentration of 100 cells / L, and then mixed droplets prior to breakage; and (3) 

performed STAMP generation through exonuclease digestion, with the HEK and 3T3 cells separately, 

then mixed equal numbers of STAMPs prior to PCR amplification.  A single 1000 microparticle aliquot 

was amplified for each of the three conditions, then purified and quantified on a BioAnalyzer High 



Sensitivity DNA chip.  600 pg of each library was used in a single Nextera Tagmentation reaction as 

described above, except that each of the three libraries was individually barcoded with the primers 

Nextera_N701 (condition 1), Nextera_N702 (condition 2), or Nextera_N703 (condition 3), and a total 

of 12 PCR cycles were used in the Nextera PCR instead of 11.  The resulting library was quantified on 

a High Sensitivity DNA chip, and each was loaded at a concentration of 8 pM on a single, multiplexed 

MiSeq run using 0.5 M Read1CustSeqA as a custom primer for read 1 (see note at end of this section).  

 

Soluble RNA Experiments 

 

To quantify the number of primer annealing sites, 20,000 beads were incubated with 10 M of 

polyadenylated synthetic RNA (synRNA, Table S6) in 2x SSC for 5 min at room temperature, and 

washed three times with 200 L of TE-TW, then resuspended in 10 L of TE-TW.  The beads were 

then incubated at 65 
o
C for 5 minutes, and 1 L of supernatant was removed for spectrophotometric 

analysis on the Nanodrop 2000.  The concentration was compared with beads that had been treated the 

same way, except no synRNA was added. 

 

To determine whether the bead-bound primers were capable of reverse transcription, and to measure the 

homogeneity of the cell barcode sequence on the bead surface, beads were washed with TE-TW, and 

added at a concentration of 100 / L to the reverse transcriptase mix described above.  This mix was 

then co-flowed into the standard Drop-Seq 125 m co-flow device with 200 nM SynRNA in 1x PBS + 

0.02% BSA.  Droplets were collected and incubated at 42 
o
C for 30 minutes.  150 L of 50 mM EDTA 

was added to the emulsion, followed by 12 L of perfluooctanoic acid to break the emulsion.  The 

beads were washed twice in 1 mL TE-TW, followed by one wash in H2O, then resuspended in TE.  

Eleven beads were handpicked under a microscope into a 50 L PCR mix containing 1x Kapa HiFi 

Hotstart PCR mastermix, 400 nM P7-TSO_Hybrid, and 400 nM TruSeq_F (Table S6).  The PCR 



reaction was cycled as follows: 98 
o
C for 3 min; 12 cycles of: 98 

o
C for 20 s, 70 

o
C for 15 s, 72 

o
C for 1 

min; then a final 72 
o
C incubation for 5 min.  The resulting amplicon was purified on a Zymo DNA 

Clean and Concentrator 5 column, and run on a BioAnalyzer High Sensitivity Chip to estimate 

concentration.  The amplicon was then sequenced on an Illumina MiSeq at a final concentration of 6 

pM.  Read 1, primed using the standard Illumina TruSeq primer, was a 20 bp molecular barcode on the 

SynRNA, while Read 2, primed with CustSynRNASeq, contained the 12 bp cell barcode and 8 bp UMI. 

 

To estimate the efficiency of Drop-Seq, we used a set of external RNAs (ERCC Spike-ins, Life 

Technologies #4456740).  We diluted the ERCC spike-ins to 0.32% of the stock in 1x PBS + 1 U/L 

RNase Inhibitor (Lucigen) + 200 g/ mL BSA (NEB), and used this in place of the cell flow in the 

Drop-Seq protocol, so that each bead was incubated with ~100,000 ERCC mRNA molecules per 

nanoliter droplet.   Sequence reads were aligned to a dual ERCC-human (hg19) reference, using the 

human sequence as “bait,” which dramatically reduced the number of low-quality alignments to ERCC 

transcripts reported by STAR compared with alignment to an ERCC-only reference.  

 

Standard mRNA-Seq and In-Solution Template Switch Amplification  

 

To compare Drop-Seq average expression data to standard mRNAseq data, we used 1.815 ug of 

purified RNA from 3T3 cells, from which we also prepared and sequenced 550 STAMPs.  The RNA 

was used in the TruSeq Stranded mRNA Sample Preparation kit (Illumina, # RS-122-2101) according 

to the manufacturer’s instructions.  For NextSeq 500 sequencing, 0.72 pM of Drop-Seq library was 

combined with 0.48 pM of the mRNAseq library in a final volume of 3 mL Buffer HT1.  

 

To compare Drop-Seq average expression data to mRNAseq libraries prepared by a standard, in-

solution template switch amplification approach, 5 ng of the same purified 3T3 RNA used above was 



diluted in 2.75 L of H2O.  To the RNA, 1 μL of 10 μM UMI_SMARTdT primer was added (Table 

S6) and heated to 72 C, followed by incubation at 4 C for 1 min, after which we added 2 μL 20% Ficoll 

PM-400, 2 μL 5x RT Buffer  (Maxima H- kit), 1 μL 10 mM dNTPs (Clontech), 0.5 μL 50 μM 

Template_Switch_Oligo (Table S6), and 0.5 μL Maxima H- RT.  The RT was incubated at 42 C for 90 

minutes, followed by heat inactivation for 5 min at 85 C.  An RNase cocktail (0.5 μL RNase I, 

Epicentre N6901K, and 0.5 μL RNase H, Life Tech 18021071) was added to remove the terminal 

riboGs from the template switch oligo, and the sample incubated for 30 min at 37 C.  Then, 0.4 μL of 

100 μM Template_Switch_PCR primer was added, along with 25 μL 2x Kapa Hifi supermix, and 13.6 

μL H2O.  The sample was cycled as follows:  95 C 3 min; 14 cycles of: 98 C 20 s, 67 C 20 s, and 72 C 

3 min; then 72 C 5 min.  The samples were purified with 0.6x AMPure XP beads according to the 

manufacturer’s instructions, and eluted in 10 μL H2O.  600 pg of amplified cDNA was used as input 

into a Nextera XT reaction.  0.6 pM of library was sequenced on a NextSeq 500, multiplexed with three 

other samples; Read1CustSeqB was used to prime read 1.   

 

 

Droplet Digital PCR (ddPCR) Experiments 

 

To quantify the efficiency of Drop-Seq (Figure S4A), 50,000 HEK cells, prepared in an identical 

fashion as in Drop-Seq, were pelleted and RNA purified using the Qiagen RNeasy Plus Kit according to 

the manufacturer’s protocol.  The eluted RNA was diluted to a final concentration of 1 cell-equivalent 

per microliter in an RT-ddPCR reaction containing RT-ddPCR supermix (BioRad, # 186-3021), and a 

gene primer-probe set.  Droplets were produced using BioRad ddPCR droplet generation system, and 

thermocycled with the manufacturer’s recommended protocol, and droplet fluorescence analyzed on the 

BioRad QX100 droplet reader.  Concentrations of RNA and confidence intervals were computed by 

BioRad QuantaSoft software.  Three replicates of 50,000 HEK cells were purified in parallel, and the 



concentration of each gene in each replicate was measured two independent times.  The probes (Life 

Technologies #4331182) used were: ACTB (hs01060665_g1), B2M (hs00984230_m1), CCNB1 

(mm03053893), EEF2 (hs00157330_m1), ENO1 (hs00361415_m1), GAPDH (hs02758991_g1), 

PSMB4 (hs01123843_g1), TOP2A (hs01032137_m1), YBX3 (hs01124964_m1), and YWHAH 

(hs00607046_m1). 

 

To estimate the RNA hybridization efficiency of Drop-Seq (Figures S4B and S4C), human brain total 

RNA (Life Technologies #AM7962) was diluted to 40 ng / μL in a volume of 20 μL and combined with 

20 μL of barcoded primer beads resuspended in Drop-Seq lysis buffer (DLB, composition shown 

above) at a concentration of 2,000 beads / μL.  The solution was incubated at 15 minutes with rotation, 

then spun down and the supernatant transferred to a fresh tube.  The beads were washed 3 times with 

100 μL of 6x SSC, resuspended in 50 μL H2O, and heated to 72 C for 5 min to elute RNA off the 

beads.  The elution step was repeated once and the elutions pooled.  All steps of the hybridization 

(RNA input, hybridization supernatant, three washes, and combined elution) were separately purified 

using the Qiagen RNeasy Plus Mini Kit (cat #74134) according to the manufacturers’ instructions.  

Various dilutions of the elutions were used in RT-ddPCR reactions with primers and probes for either 

ACTB or GAPDH. 

 

Fluidigm C1 Experiments 

 

C1 experiments were performed as previously described (Shalek et al., 2014). Briefly, suspensions of 

3T3 and HEK cells were stained with calcein violet and calcein orange (Life Technologies) according 

to the manufacturer's recommendations, diluted down to a concentration of 250,000 cells per mL, and 

mixed 1:1. This cell mixture was then loaded into two medium C1 cell capture chips from Fluidigm and, 

after loading, caught cells were visualized and identified using DAPI and TRITC fluorescence. Bright 



field images were used to identify ports with > 1 cell (a total of 14 were identified from the two C1 

chips used, out of 192 total).  After C1-mediated whole transcriptome amplification, libraries were 

made using Nextera XT (Illumina), and loaded on a NextSeq 500 at 2.2 pM.  Single-read sequencing 

(60 bp) was performed to mimic the read structure in DropSeq, and the reads aligned as per below.  Ten 

of the 192 cells, containing fewer than 100,000 reads per cell, were excluded from analysis. 

 

Read Alignment and Generation of Digital Expression Data 

 

Raw sequence data was first filtered to remove all read pairs with a barcode base quality of less than 10.  

The second read (50 or 60 bp) was then trimmed at the 5’ end to remove any TSO adapter sequence, 

and at the 3’ end to remove polyA tails of length 6 or greater, then aligned to either the mouse (mm10) 

genome (retina experiments) or a combined mouse (mm10) –human (hg19) mega-reference (species 

mixing experiments), using STAR v2.4.0a with the default settings. 

 

Uniquely mapped reads were grouped by cell barcode.  To digitally count gene transcripts, a list of 

UMIs in each gene, within each cell, was assembled, and UMIs within ED = 1 were merged together.  

The total number of distinct UMI sequences was counted, and this number was reported as the number 

of transcripts of that gene for a given cell. 

 

To generate the digital expression matrices in this paper, we performed UMI merging at ED=1, 

including insertions and deletions.  However, a subsequent comparison of UMI edit distance 

relationships within and across genes showed that inclusion of indels resulted in excessive merging 

(Table S1).  For our ERCC sensitivity analysis, we therefore used substitution-only UMI merging, and 

plan to also use this approach in future experiments. Without any edit distance correction (or using the 

corrective approach described in Islam et al., 2014), we obtained an efficiency estimate of 47% for the 



ERCC dataset shown in Figure 3G, though we believe (from the analysis in Table S1) that for our 

data, our own correction approach, and the lower capture-rate estimate derived from it, are more 

accurate.   

 

To distinguish cell barcodes arising from STAMPs, rather than those that corresponded to beads never 

exposed to cell lysate, we ordered our digital expression matrix by the total number of transcripts per 

cell barcode, and plotted the cumulative fraction of all transcripts in the matrix for each successively 

smaller cell barcode.  Empirically, our data always displays a “knee” at a cell barcode number close to 

the estimated number of STAMPs amplified (Figure S3A).  All cell barcodes larger than this cutoff 

were used in downstream analysis, while the remaining cell barcodes were discarded. 

 

 

Cell Cycle Analysis of HEK and 3T3 Cells 

 

Gene sets reflecting five phases of the HeLa cell cycle (G1/S, S, G2/M, M and M/G1) were taken from 

Whitfield et al. (Whitfield et al., 2002) (Table S2), and refined by examining the correlation between 

the expression pattern of each gene and the average expression pattern of all genes in the respective 

gene-set, and excluding genes with a low correlation (R<0.3). This step removed genes that were 

identified as phase-specific in HeLa cells but did not correlate with that phase in our single-cell data.  

The remaining genes in each refined gene-set were highly correlated (not shown). We then averaged the 

normalized expression levels (log2(TPM+1)) of the genes in each gene-set to define the phase-specific 

scores of each cell. These scores were then subjected to two normalization steps. First, for each phase, 

the scores were centered and divided by their standard deviation. Second, the normalized scores of each 

cell were centered and normalized.  

 



To order cells according to their progression along the cell cycle, we first compared the pattern of 

phase-specific scores of each cell to eight potential patterns along the cell cycle: only G1/S is on, both 

G1/S and S, only S, only G2/M, G2/M and M, only M, only M/G1, M/G1 and G1. We also added a 

ninth pattern for equal scores of all phases (either all active or all inactive). Each pattern was defined 

simply as a vector of ones for active programs and zeros for inactive programs. We then classified the 

cells by the defined patterns based on the maximal correlation of the phase-specific scores with these 

potential patterns. Importantly, none of the cells were classified to the ninth pattern of equal activity, 

while multiple cells were assigned to each of the other patterns. To further order the cells within each 

class, we sorted the cells based on their relative correlation with the preceding and succeeding patterns, 

thereby smoothing the transitions between classes (Figure 4A). 

 

To identify cell cycle-regulated genes we used the cell cycle ordering defined above and a sliding 

window approach with a window size of 100 cells. We identified the windows with maximal average 

expression and minimal average expression for each gene and used a two-sample t-test to assign an 

initial p-value for the difference between maximal and minimal windows. A similar analysis was 

performed after shuffling the order of cells to generate control p-values that can be used to evaluate 

false-discovery rate (FDR). Specifically, we examined for each potential p-value threshold, how many 

genes pass that threshold in the cell cycle ordered and in the randomly ordered analyses to assign FDR.  

Genes were defined as being previously known to be cell-cycle regulated if they were included in a cell 

cycle GO/KEGG/REACTOME gene set, or reported in a recent genome-wide study of gene expression 

in synchronized replicating cells (Bar-Joseph et al., 2008). 

 

 

Unsupervised Dimensionality Reduction and Clustering Analysis of Retina Data  

 



P14 mouse retina suspensions were processed through Drop-Seq in seven different replicates on four 

separate days, and each sequenced separately.  Raw digital expression matrices were generated for the 

seven sequencing runs.  The inflection points in the cumulative distribution plot, corresponding to the 

number of cells in each sample replicate, were: 6,600, 9,000, 6,120, 7,650, 7,650, 8280, and 4000. The 

full 49,300 cells were merged together in a single matrix, and normalized by dividing by the total 

number of UMIs per cell, then multiplying by 10,000.  All calculations and data were then performed in 

log space (i.e. ln(transcripts-per-10,000 +1)).   

 

Initial Downsampling and Identification of Highly Variable Genes 

Rod photoreceptors constitute 60-70% of the retinal cell population. Furthermore, they are significantly 

smaller than other retinal cell types (Carter-Dawson and LaVail, 1979), and as a result yielded 

significantly fewer genes (and higher levels of noise) in our single cell data. In our preliminary 

computational experiments, performing unsupervised dimensionality reduction on the full dataset 

resulted in representations that were dominated by noisy variation within the numerous rod subset; this 

compromised our ability to resolve the heterogeneity within other cell-types that were comparatively 

much rarer (e.g. amacrines, microglia). Thus, to increase the power of unsupervised dimensionality 

reduction techniques for discovering these types we first downsampled the 49,300-cell dataset to extract 

single-cell libraries where 900 or more genes were detected, resulting in a 13,155-cell “training set”.  

We reasoned that this “training set” would be enriched for rare cell types that are larger in size at the 

expense of “noisy” rod cells.  The remaining 36,145 cells (henceforth “projection set”) were then 

directly embedded onto the two-dimensional representation learned from the training set (see below).  

This enabled us to leverage the full statistical power of our data to define and annotate cell types. 

 

We first identified the set of genes that was most variable across our training set, after controlling for 

the relationship between mean expression and variability. We calculated the mean and a dispersion 



measure (variance/mean) for each gene across all 13,155 single cells, and placed genes into 20 bins 

based on their average expression.  Within each bin, we then z-normalized the dispersion measure of all 

genes within the bin, in order to identify outlier genes whose expression values were highly variable 

even when compared to genes with similar average expression. We used a z-score cutoff of 1.7 to 

identify 384 highly variable genes. 

 

Principal Components Analysis 

We ran Principal Components Analysis (PCA) on our training set as previously described (Shalek et al., 

2013), using the prcomp function in R, after scaling and centering the data along each gene. We used 

only the previously identified “highly variable” genes as input to the PCA in order to ensure robust 

identification of the primary structures in the data. 

 

While the number of principal components returned is equal to the number of profiled cells, only a 

small fraction of these components explain a statistically significant proportion of the variance, as 

compared to a null model. We used two approaches to identify statistically significant PCs for further 

analysis: (1) we performed 10000 independent randomizations of the data such that within each 

realization, the values along every row (gene) of the scaled expression matrix are randomly permuted. 

This operation randomizes the pairwise correlations between genes while leaving the expression 

distribution of every gene unchanged.  PCA was performed on each of these 10000 “randomized” 

datasets. Significant PCs in the un-permuted data were identified as those with larger eigenvalues 

compared to the highest eigenvalues across the 10000 randomized datasets (p < 0.01, Bonferroni 

corrected). (2) We modified a randomization approach (‘jack straw’) proposed by Chung and Storey 

(Chung and Storey, 2014) and which we have previously applied to single-cell RNA-seq data (Shalek et 

al., 2014).  Briefly, we performed 1,000 PCAs on the input data, but in each analysis, we randomly 

‘scrambled’ 1% of the genes to empirically estimate a null distribution of scores for every gene. We 



used the joint-null criterion (Leek and Storey, 2011) to identify PCs that had gene scores significantly 

different from the respective null distributions (p<0.01, Bonferroni corrected). Both (1) and (2) yielded 

32 ‘significant’ PCs. Visual inspection confirmed that none of these PCs was primarily driven by 

mitochondrial, housekeeping, or hemoglobin genes.  As expected, markers for distinct retinal cell types 

were highly represented among the genes with the largest scores (+ve and –ve) along these PCs (Table 

S3).   

 

t-SNE Representation and Post-Hoc Projection of Remaining Cells  

 

Because canonical markers for different retinal cell types were strongly represented along the 

significant PCs (Figure S5), we reasoned that the loadings for individual cells in our training set along 

the principal eigenvectors (also “PC subspace representation”) could be used to separate out distinct 

cell types in our data. We note that these loadings leverage information from the 384 genes in the PCA, 

and therefore are more robust to technical noise than single-cell measurements of individual genes. We 

used these PC loadings as input for t-Distributed Stochastic Neighbor Embedding (tSNE) (van der 

Maaten and Hinton, 2008), as implemented in the tsne package in R with the “perplexity” parameter set 

to 30. The t-SNE procedure returns a two-dimensional embedding of single cells. Cells with similar 

expression signatures of genes within our variable set, and therefore similar PC loadings, will likely 

localize near each other in the embedding, and hence distinct cell types should form two-dimensional 

point clouds across the tSNE map. 

 

Prior to identifying and annotating the clusters, we projected the remaining 36,145 cells (the projection 

set) onto the tSNE map of the training set by the following procedure: 

(1) We projected these cells onto the subspace defined by the significant PCs identified from the 

training set. Briefly, we centered and scaled the 384 x 36,145 expression matrix corresponding 



to the projection set, considering only the highly variable genes; the scaling parameters of the 

training set were used to center and scale each row. We then multiplied the transpose of this 

scaled expression matrix with the 384 x 32 gene scores matrix learned from the training set 

PCA. This yields a PC “loading” for the cells in the projection set along the 32 significant PCs 

learned on the training set.  

(2) Based on its PC loadings, each cell in the projection set was independently embedded on to the 

tSNE map of the training set introduced earlier using a mathematical framework consistent with 

the original tSNE algorithm (Shekhar et al., 2014).  We note that while this approach does not 

discover novel clusters outside of the ones identified from the training set, it sharpens the 

distinctions between different clusters by leveraging the statistical power of the full dataset. 

Moreover, the cells are projected based on their PC signatures, not the raw gene expression 

values, which makes our approach more robust against technical noise in individual gene 

measurements. 

 

See section  “Embedding the projection set onto the tSNE map” below for full details. 

 

One potential concern with this “post-hoc projection approach” was the possibility that a cell type 

that is completely absent from the training set might be spuriously projected into one of the defined 

clusters. We tested our projection algorithm on a control dataset to explore this possibility, and 

placed stringent conditions to ensure that only cell types adequately represented within the training 

set are projected to avoid spurious assignments (see ‘“Out of sample” projection test’).  Using this 

approach, 97% of the cells in the projection set were successfully embedded, resulting in a tSNE 

map consisting of 48296 out of 49300 sequenced cells (Table S7).  

 

As an additional validation of our approach, we note that the relative frequencies of different cell types 



identified after clustering the full data (see below) closely matches estimates in the literature (Table 1). 

With the exception of the rods, all the other cell types were enriched at a median value of 2.3X in the 

training set compared to their frequency of the full data. This strongly suggests that our downsampling 

approach indeed increases the representation of other cell types at the expense of the rod cells, enabling 

us to discover PCs that define these cells. 

 

Density Clustering to Identify Cell-Types 

To identify putative cell types on the tSNE map, we used a density clustering approach implemented in 

the DBSCAN R package (Ester et al., 1996), initially setting the reachability distance parameter (eps) to 

1.0, and removing clusters less than 20 cells, then setting eps to 1.9, and removing clusters less than 50 

cells.  The first step (eps=1) resulted in an over-partitioning of the data, but enabled us to easily identify 

and remove singleton cells that were located along the interfaces of bigger clusters. Following this 

"pruning" step, we re-clustered the data with a larger eps value (1.9) to identify a smaller set of 49 

clusters involving 44808 cells (91% of our data) with each cluster containing at least 50 cells. This two-

step pruning strategy enabled us to avoid over-partitioning of the data, while at the same time suppress 

the co-option of outlier cells into a neighboring cluster. The 49 clusters were further interrogated 

through stringent differential expression tests (see below).    

 

We next examined the 49 total clusters to ensure that our identified clusters truly represented distinct 

cellular classifications, as opposed to over-partitioning. We performed a post-hoc test where we 

searched for differentially expressed genes (McDavid et al., 2013) between every pair of clusters 

(requiring at least 10 genes, each with an average expression difference greater than 1 natural log value 

between clusters with a Bonferroni corrected p<0.01). We iteratively merged cluster pairs that did not 

satisfy this criterion, starting with the two most related pairs (lowest number of differentially expressed 

genes). This process resulted in 10 merged clusters, leaving 39 remaining. 



 

We then computed average gene expression for each of the 39 remaining clusters, and calculated 

Euclidean distances between all pairs, using this data as input for complete-linkage hierarchical 

clustering and dendrogram assembly. We then compared each of the 39 clusters to the remaining cells 

using a likelihood-ratio test (McDavid et al., 2013) to identify marker genes that were differentially 

expressed in the cluster.   

 

Embedding the Projection Set onto the tSNE Map 

We used the computational approach in Shekhar et al. (Shekhar et al., 2014) and Berman et al. (Berman 

et al., 2014) to project new cells onto an existing tSNE map.  First, the expression vector of the cell is 

reduced to include only the set of highly variable genes, and subsequently centered and scaled along 

each gene using the mean and standard deviation of the gene expression in the training set. This scaled 

expression vector z (dimensions 1 x 384) is multiplied with the scores matrix of the genes S 

(dimensions 384 x 32), to obtain its “loadings” along the significant PCs u (dimensions 1 x 32).  Thus, 

𝑢′ = 𝑧′. 𝑆 

u (dimensions 1 x 32) denotes the representation of the new cell in the PC subspace identified from the 

training set. We note a point of consistency here in that performing the above dot product on a scaled 

expression vector of a cell z taken from the training set recovers its correct subspace representation u, as 

it ought to be the case. 

Given the PC loadings of the cells in the training set {u
i
} (i=1,2,…Ntrain) and their tSNE coordinates {y

i
} 

(i=1,2,…Ntrain), the task now is to find the tSNE coordinates y’ of the new cell based on its loadings 

vector u’. As in the original tSNE framework (van der Maaten and Hinton, 2008), we “locate” the new 

cell in the subspace relative to the cells in the training set by computing a set of transition probabilities, 

𝑝(𝑢′|𝑢𝑖) =  
exp (−𝑑(𝑢′, 𝑢𝑖)

2
2𝜎𝑢′

2⁄ )

∑ exp(−𝑑(𝑢′, 𝑢𝑖)2 2𝜎𝑢′
2⁄ ){𝑢𝑖}

 



Here, d(. , .) represents Euclidean distances, and the the bandwidth σu’ is chosen by a simple binary 

search in order to constrain the Shannon entropy associated with 𝑝(𝑢′|𝑢𝑖) to log2(30), where 30 

corresponds to the value of the perplexity parameter used in the tSNE embedding of the training set. 

Note that σu’ is chosen independently for each cell.  

 

A corresponding set of transition probabilities in the low dimensional embedding are defined based on 

the Student’s t-distribution as,  

𝑞(𝑦′|𝑦𝑖) =  
(1 + 𝑑(𝑦′, 𝑦𝑖)

2
)

−1

∑ (1 + 𝑑(𝑦′, 𝑦𝑖)2)−1
{𝑦𝑖}

 

where y’ are the coordinates of the new cell that are unknown. We calculate these by minimizing the 

Kullback-Leibler divergence between 𝑝(𝑢′|𝑢𝑖) and 𝑞(𝑦′|𝑦𝑖),  

𝑦′ =  𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝑝(𝑢′|𝑢𝑖) log
𝑝(𝑢′|𝑢𝑖)

𝑞(𝑦′|𝑦𝑖)
𝑖

 

This is a non-convex objective function with respect to its arguments, and is minimized using the 

Nelder-Mead simplex algorithm, as implemented in the Matlab function fminsearch. This procedure 

can be parallelized across all cells in the projection set.  

A few notes on the implementation, 

1. Since this is a post-hoc projection, and 𝑝(𝑢′|𝑢𝑖) is only a relative measure of pairwise 

similarity in that it is always constrained to sum to 1, we wanted to avoid the possibility of new 

cells being embedded on the tSNE map by virtue of their high relative similarity to one or two 

training cells (“short circuiting”). In other words, we chose to project only those cells that were 

drawn from regions of the PC subspace that were well represented in the training set by at least 

a few cells.  

Thus, we retained a cell u’ for projection only if 𝑝(𝑢′|𝑢𝑖) > 𝑝𝑡ℎ𝑟𝑒𝑠 was true for at least Nmin 

cells in the training set (pthres = 5 × 10−3, Nmin = 10). We calibrated the values for pthres and 



Nmin by testing our projection algorithm on cases where the projection set was known to be 

completely different from the training set to ensure that such cells were largely rejected by this 

constraint. (see Section ‘“Out of sample” projection test’) 

2. For cells that pass the constraint in pt. 1., the initial value of the tSNE coordinate y’0 is set to, 

𝑦′0 = ∑ 𝑝(𝑢′|𝑢𝑖)𝑦𝑖

𝑖

 

i.e. a weighted average of the tSNE coordinates of the training set with the weights set to the 

pairwise similarity in the PC subspace representation. 

3. A cell satisfying the condition in 1. is said to be “successfully projected” to a location y’* when 

a minimum of the KL divergence could be found within the maximum number of iterations. 

However since the program is non-convex and is guaranteed to only find local minima, we 

wanted to explore if a better minima could be found. Briefly, we uniformly sampled points 

from a 25 x 25 grid centered on y’* to check for points where the value of the KL-divergence 

was within 5% of its value at y’* or lower. Whenever this condition was satisfied (< 2%) of the 

time, we re-ran the optimization by setting the new point as the initial value.   

 

“Out of Sample” Projection Test 

In order to test our post-hoc projection method, we conducted the following computational experiment 

wherein each of the 39 distinct clusters on the tSNE map was synthetically “removed” from the tSNE 

map, and then reprojected cell-by-cell on the tSNE map of the remaining clusters using the procedure 

outlined above. Only cells from the training set were used in these calculations.  

       Assuming our cluster distinctions are correct, in each of these 39 experiments, the cluster that is 

being reprojected represents an “out of sample” cell type. Thus successful assignments of these cells 

into one of the remaining 38 clusters would be spurious. For each of the 39 clusters that was removed 

and reprojected, we classified the cells into three groups based on the result of the projection method: 



(1) Cells that did not satisfy the condition 1. in the previous section (i.e. did not have a high 

relative similarity to at least Nmin training cells), and therefore “failed” to project. 

(2) Cells that were successfully assigned a tSNE coordinate y’, but that could not be assigned into 

any of the existing clusters according to the condition below. 

(3) Cells that were successfully assigned a tSNE coordinate y’, and which were “wrongly 

assigned” to one of the existing clusters. A cell was assigned to a cluster whose centroid was 

closest to y’ if and only if the distance between y’ and the centroid was smaller than the cluster 

radius (the distance of the farthest point from the centroid).  

Encouragingly for all of the 39 “out of sample” projection experiments, only a small fraction of cells 

were spuriously assigned to one of the clusters, i.e. satisfied (3) above with the parameters pthres = 

5 ×  10−3 and Nmin = 10 (Table S7).  This gave us confidence that our post-hoc embedding of the 

projection set would not spuriously assign distinct cell types into one of the existing clusters. 

 

Downsampling Analyses of Retina Data 

 

To generate the 500-cell and 2000-cell downsampled tSNE plots shown in Figure 5F, the largest 500 or 

2000 cells were sampled from the high-purity replicate (replicate 7), and used as input for PCA and 

tSNE.  Two extreme outlier points were removed from the 500-cell tSNE prior to plotting.  To generate 

the 9,731-cell downsampled tSNE plot, 10,000 cells were randomly sampled from the full dataset, and 

the cells expressing transcripts from more than 900 genes were used in principal components analysis 

and tSNE; the remaining (smaller) cells were projected onto the tSNE embedding.   

 

Immunohistochemistry 

 



Wild-type C57 mice or Mito-P mice, which express CFP in nGnG amacrine and Type 1 bipolar cells 

(Kay et al., 2011), were euthanized by intraperitoneal injection of pentobarbital. Eyes were fixed in 4% 

PFA in PBS on ice for one hour, followed by dissection and post-fixation of retinas for an additional 30 

minutes, then rinsed with PBS. Retinas were frozen and sectioned at 20 μm in a cryostat. Sections were 

incubated with primary antibodies (chick anti-GFP [Abcam], rabbit anti-PPP1R17 [Atlas], or goat anti-

VSX2 [Santa Cruz]) overnight at 4°C, and with secondary antibodies (Invitrogen and Jackson 

ImmunoResearch) for 2 hours at room temperature. Sections were then mounted using Fluoromount G 

(Southern Biotech) and viewed with an Olympus FVB confocal microscope.   

 

Note on Bead Surface Primers and Custom Sequencing Primers 

 

During the course of experiments for this paper, we used two batches of beads that had two slightly 

different primer sequences (Barcoded Bead SeqA and Barcoded Bead SeqB, Table S6).  Barcoded 

Bead SeqA was used in the human-mouse experiments, and in replicates 1-3 of the retina experiment.  

Replicates 4-7 were performed with Barcoded Bead SeqB.  To prime read 1 for Drop-Seq libraries 

produced using Barcoded Bead SeqA beads, Read1CustSeqA was used; to prime read 2 for Drop-Seq 

libraries produced using Barcoded Bead SeqB beads, Read1CustSeqB was used.  ChemGenes plans to 

manufacture beads harboring the Barcoded Bead SeqB sequence.  These beads should be used with 

Read1CustSeqB. 

 

  

Additional Notes Regarding Drop-Seq Implementation 

 

Cell and Bead Concentrations 



Our experiments have shown that the cell concentration used in Drop-Seq has a strong, linear 

relationship to the purity and doublet rates of the resulting libraries (Figures 3A, 3B, and S3B).  Cell 

concentration also linearly affects throughput: ~10,000 single-cell libraries can be processed per hour 

when cells are used at a final concentration of 100 cells / μL, and ~1,200 can be processed when cells 

are used at a final concentration of 12.5 cells / μL.  The trade-off between throughput and purity is 

likely to affect users differently, depending on the specific scientific questions being asked.  Currently, 

for our standard experiments, we use a final concentration of 50 cells / μL, tolerating a small percentage 

of doubles and cell contaminants, to be able to easily and reliably process 10,000 cells over the course 

of a couple of hours.  As recommended above, we currently favor loading beads at a concentration of 

120 / μL  (final concentration in droplets = 60 / μL), which empirically yields a < 5% bead doublet rate.   

 

Drop-Seq Start-Up Costs 

The main pieces of equipment required to implement Drop-Seq are three syringe pumps (KD Legato 

100 pumps, list price ~$2,000 each) a standard inverted microscope (Motic AE31, list price ~$1,900), 

and a magnetic stirrer (V&P scientific, #710D2, list price ~$1,200).   A fast camera (used to monitor 

droplet generation in real time) is not necessary for the great majority of users (droplet quality can be 

monitored by simply placing 3 μL of droplets in a Fuchs-Rosenthal hemocytometer with 17 μL of 

droplet generation oil to dilute the droplets into a single plane of focus). 

  



Table S1.  Analysis of edit distance relationships among UMIs, Related to Figure 3 
 

 

UMI Sampling %  Reduction in UMI counts 
 

Substitution-only collapse Indel and substitution collapse 

 
Within a gene 

 
68.2% 

 
76.1% 

 
Across genes 

 
19.1% 

 
45.7% 

 
Edit distance relationships among UMIs.  For the data in Figure 3G, the sequences of the UMIs for 

each ERCC gene detected in each cell barcode were collapsed at an edit distance of 1, including only 

substitutions (left column) or with both substitutions and insertions/deletions (right column).  A control 

UMI set was prepared for each gene, using an equal number of UMIs sampled randomly across all 

genes/cells.  The table shows the percent of the original UMIs that were collapsed for each condition.   

  



 
Table S5.  Cost Analysis of Drop-Seq, Related to Figure 5 

Reagents Supplier Catalog # 
Cost for 

10,000 cells ($) 

Microfluidics costs (tubing, syringes, 
droplet generation oil, device fabrication) 

N/A N/A 35.00 

DropSeq lysis buffer (Ficoll, Tris, Sarkosyl, 
EDTA, DTT) 

N/A N/A 9.35 

Barcoded microparticles Chemgenes N/A 137.20 

Maxima H– Reverse Transcriptase Thermo EP0753 59.15 

dNTP mix Clontech 639125 7.78 

RNase inhibitor Lucigen 30281-2 3.80 

Template switch oligo IDT N/A 7.60 

Perfluorooctanol Sigma 370533 11.90 

Exonuclease I NEB M0293L 3.84 

KAPA Hifi HotStart ReadyMix KAPA BioSystems KK2602 210.00 

Nextera XT DNA sample preparation kit Illumina FC-131-1096 120.80 

Ampure XP beads Beckman Coulter A63882 37.35 

BioAnalyzer High Sensitivity Chips Agilent 5067-4626 9.64 
    

Total cost:   $653.41 

Cost per cell:   $0.065 

 
  



 
Table S6.  Oligonucleotide Sequences Used in This Study 

 

 

 

 

  

synRNA rCrCrUrArCrArCrGrArCrGrCrUrCrUrUrCrCrGrArUrCrUrNrNrNrNrNrNrNrNrNrNrNrNrNrNrNrNrNrNrNr
BrArArArArArArArArArArArArArArArArArArArArArArArA 
 

Barcoded Bead SeqA 5’ –Bead–Linker-TTTTTTTAAGCAGTGGTATCAACGCAGAGTACGTJJJJJJJJJJJJNNNNNNNN 
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT-3’ 

Barcoded Bead SeqB 5’ –Bead–Linker-TTTTTTTAAGCAGTGGTATCAACGCAGAGTACJJJJJJJJJJJJNNNNNNNN 
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT-3’ 

Template_Switch_Oligo AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG 

TSO_PCR  AAGCAGTGGTATCAACGCAGAGT 

P5-TSO_Hybrid  AATGATACGGCGACCACCGAGATCTACACGCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGT*A*C 

Nextera_N701 CAAGCAGAAGACGGCATACGAGATTCGCCTTAGTCTCGTGGGCTCGG 

Nextera_N702 CAAGCAGAAGACGGCATACGAGATCTAGTACGGTCTCGTGGGCTCGG 

Nextera_N703 CAAGCAGAAGACGGCATACGAGATTTCTGCCTGTCTCGTGGGCTCGG 

Read1CustomSeqA GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTACGT 

Read1CustomSeqB GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC 

P7-TSO_Hybrid CAAGCAGAAGACGGCATACGAGATCGTGATCGGTCTCGGCGGAAGCAGTGGTATCAACGCAGAGT*A*C 
 

TruSeq_F AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATC*T 
 

CustSynRNASeq CGGTCTCGGCGGAAGCAGTGGTATCAACGCAGAGTAC 
 

UMI_SMARTdT AAGCAGTGGTATCAACGCAGAGTACNNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTT 



Table S7.  “Out-of-Sample” Projection Test 

 

Cluster # 
# Cells in 
Cluster 

# failed to 
project 

# Projected 
# Wrongly 
Assigned 

% Wrongly 
Assigned 

1 153 153 0 0 0.00 

2 271 271 0 0 0.00 

3 201 201 0 0 0.00 

4 46 46 0 0 0.00 

5 63 62 1 0 0.00 

6 173 156 17 9 5.20 

7 277 272 5 5 1.81 

8 115 115 0 0 0.00 

9 275 275 0 0 0.00 

10 155 153 2 2 1.29 

11 165 162 3 3 1.82 

12 175 175 0 0 0.00 

13 46 40 6 5 10.87 

14 89 89 0 0 0.00 

15 52 44 8 6 11.54 

16 179 179 0 0 0.00 

17 284 284 0 0 0.00 

18 64 63 1 1 1.56 

19 108 107 1 0 0.00 

20 206 206 0 0 0.00 

21 154 154 0 0 0.00 

22 180 180 0 0 0.00 

23 183 182 1 1 0.55 

24 3712 3417 295 180 4.85 

25 1095 1071 24 18 1.64 

26 1213 1212 1 0 0.00 

27 323 318 5 4 1.24 

28 339 330 9 7 2.06 

29 332 324 8 6 1.81 

30 447 426 21 18 4.03 

31 346 340 6 3 0.87 

32 235 233 2 2 0.85 

33 453 450 3 3 0.66 

34 784 784 0 0 0.00 

35 27 27 0 0 0.00 

36 43 43 0 0 0.00 

37 145 139 6 5 3.45 

38 30 30 0 0 0.00 

39 17 17 0 0 0.00 

 

For each cluster, the “training” cells were removed from the tSNE plot, and then projected onto the 

tSNE.  The number of cells that successfully projected into the embedding, and the number of cells that 

were inappropriately incorporated into a different cluster were tabulated.  
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