
Contents lists available at ScienceDirect

Progress in Retinal and Eye Research

journal homepage: www.elsevier.com/locate/preteyeres

Metabolomics in the study of retinal health and disease

Inês Laínsa,b, Mari Gantnerc,d, Salome Murinelloc,d, Jessica A. Lasky-Sue, Joan W. Millera,
Martin Friedlanderc,d, Deeba Husaina,∗

a Retina Service, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, United States
b Faculty of Medicine, University of Coimbra, 3000 Coimbra, Portugal
c Lowy Medical Research Institute, La Jolla, CA, 92037, United States
d Scripps Research Institute, La Jolla, CA, 92037, United States
e Systems Genetics and Genomics Unit, Channing Division of Network Medicine Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston,
MA, 02115, United States

A R T I C L E I N F O

Keywords:
Metabolomics
Retina
Vitreous
Biomarkers
Mass spectrometry
Nuclear magnetic resonance spectroscopy

A B S T R A C T

Metabolomics is the qualitative and quantitative assessment of the metabolites (small molecules < 1.5 kDa) in
body fluids. The metabolites are the downstream of the genetic transcription and translation processes and also
downstream of the interactions with environmental exposures; thus, they are thought to closely relate to the
phenotype, especially for multifactorial diseases. In the last decade, metabolomics has been increasingly used to
identify biomarkers in disease, and it is currently recognized as a very powerful tool with great potential for
clinical translation. The metabolome and the associated pathways also help improve our understanding of the
pathophysiology and mechanisms of disease.

While there has been increasing interest and research in metabolomics of the eye, the application of meta-
bolomics to retinal diseases has been limited, even though these are leading causes of blindness. In this
manuscript, we perform a comprehensive summary of the tools and knowledge required to perform a meta-
bolomics study, and we highlight essential statistical methods for rigorous study design and data analysis. We
review available protocols, summarize the best approaches, and address the current unmet need for information
on collection and processing of tissues and biofluids that can be used for metabolomics of retinal diseases.
Additionally, we critically analyze recent work in this field, both in animal models and in human clinical disease,
including diabetic retinopathy and age-related macular degeneration. Finally, we identify opportunities for
future research applying metabolomics to improve our current assessment and understanding of mechanisms of
vitreoretinal diseases, and to hence improve patient assessment and care.

1. Metabolomics: concepts and opportunities

Human biology is diverse and complex. Most conditions and dis-
eases have a multifactorial etiology, driven by a combination of genetic
and environmental factors, which interact to lead to a range of phe-
notypes (Dunn et al., 2011a). Indeed, it is well-recognized that en-
vironmental exposures can induce epigenetic modifications, and influ-
ence the transcription of DNA into RNA, and its translation into proteins
(Crick, 1970; Jafari et al., 2017). Downstream of all the genetic tran-
scription and translation processes are the metabolites, low molecular
weight molecules (< 1–1.5 kDa), which thereby reflect both the highly
dynamic and interactive system of biological molecular layers (i.e.

genome, transcription, translation, and metabolism), and the influence
of external factors in these processes (i.e. environment, diet, age and
microbiome, among others) (Patti et al., 2012) – Fig. 1.

The multidisciplinary field studying the metabolome is known as
“metabolomics” (nowadays used interchangeably with metabonomics),
and can be defined as the study of the global qualitative and quanti-
tative composition of metabolites in a biological system (Fiehn, 2002).
The total number of metabolites varies among different biological
specimens, and remains unknown. According to the Human Metabo-
lome Database (http://www.hmdb.ca/statistics#metabolite-statistics;
assessed on 11/11/2018), one of the largest metabolite databases
worldwide, humans have at least 114,100 metabolites (confirmed or
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expected). However, this number includes exogenous metabolites (such
as toxins and drugs), and only 92,372 are thought to be endogenous.
The latter include breakdown products of nucleotides, amino acids,
carbohydrates, and lipids. Due to their biological relevance, the study of
lipid metabolites has its own subfield of study, known as
“lipidomics” (Hu and Zhang, 2018). Importantly, each body compart-
ment has its own metabolome, but they are connected through the
vascular and lymphatic systems, which also have a specific metabo-
lomic profile (Nicholson et al., 2012a). In contrast to the genotype,
which remains relatively stable over a lifespan, the metabotype (me-
tabolomic phenotype) varies with time, and every metabolomic char-
acterization of a biosample represents a snapshot of that particular state
and time (Suhre and Gieger, 2012).

Compared to genomics and proteomics, metabolomics is a relatively
new field (Kell and Oliver, 2016), but it is becoming an increasingly
important tool in medicine. Among the ‘omics, the metabolome is
perhaps the most closely linked to the phenotype and thus, can provide
information on normal and pathological conditions, as well as on the
effect and response to external stimuli (Trivedi et al., 2017). Indeed, the
study of the variations of the metabolome has major advantages, in-
cluding the possibility of: (i) increasing the understanding of the pa-
thophysiology of a disease at a molecular level and generating new
hypotheses for disease mechanisms; (ii) identifying biomarkers of dis-
ease risk prediction and diagnosis; (iii) assessing disease progression;
(iv) interpreting the influence of environment and lifestyle exposures in
disease; (v) assessing drug efficacy, toxicity and adverse drug reactions
(Nicholson et al., 2012a; Jové et al., 2014; Kohler et al., 2016). Meta-
bolomic profiles can be measured from easily accessible biofluids or
tissues that can be sampled readily in the outpatient setting, which
represents an additional advantage (Nicholson et al., 2012a). The
strength of association with disease outcomes also tends to be higher in
metabolomics than in genetics. Thus, metabolomic studies require
smaller sample sizes than genetic studies (Manolio et al., 2009).

Metabolomics has an important role to play in personalized and
stratified medicine (Ziegelstein, 2017). Clinical diagnosis, prognosis
prediction, and treatment selection are improved by tools that can help
classify diseases and their subtypes, as well as define underlying in-
dividual variations in patient biology and responses. Metabolomics is
one of these tools (Nicholson et al., 2012a), and also aids our under-
standing by providing insight into the interactions between genetic,
environmental and lifestyle factors (Suhre and Gieger, 2012). Because
of this, metabolomics has been employed in several medical fields
(Trivedi et al., 2017), including in large epidemiological and

population-based studies (Patel et al., 2017; Suhre et al., 2010). Me-
tabolites, as the final products and “effectors” of metabolism, represent
a “unique currency” in distinguishing the pathological from the normal
state. While genomics can provide guidance as to where to look for
disease-associated variants, it is the metabolic profile of a tissue under
normal and abnormal conditions that is the final common denominator
distinguishing health from diseased states and, thus, can provide insight
into mechanism of disease and potential therapeutic targets for inter-
vention. Cataloguing metabolic profiles in different normal and ab-
normal states will enable us to validate and interpret genomic variants
and place them in a physiologically relevant context (Holmes et al.,
2016).

The utility of metabolomics in ophthalmology has also been ex-
plored and reviewed (Tan et al., 2016a,b; Midelfart, 2009; Young and
Wallace, 2009). However, despite the relevance of these manuscripts, a
comprehensive summary of the methodological approaches required to
perform high-quality metabolomics studies applied to the field of vi-
treoretinal diseases was missing in the literature. Namely, procedures
for collection of biospecimens of interest have not been fully addressed,
and prior reviews did not discuss essential aspects of data analysis’
methodologies, and opportunities for data biological interpretation.
Additionally, in the last two years, novel work has been published, and
new approaches have been developed. The potential of metabolomics
for the development and application of precision medicine to vitreor-
etinal diseases also needs to be further explored.

In this manuscript, we set out to compile a comprehensive and de-
tailed summary of the tools and knowledge required to perform a me-
tabolomics study, including those specific to retinal diseases. We have
also critically analyzed published work to date, and discuss how a
better comprehension of metabolomics can help in our understanding
of eye diseases. We hope that this manuscript informs future studies,
and contributes to a better understanding of how metabolomics can be
useful for ophthalmology in general, and the field of vitreoretinal dis-
eases in particular, as well as how it can fit into clinical practice and
hence improve patient assessment and care.

2. Analytical tools for metabolomic profiling

The study of metabolites has a long history, but in the past was
limited to the assessment of specific compounds or biochemical path-
ways known a priori, and was therefore targeted metabolomics
(Wilcken et al., 2003). A good example is the study of blood glucose
levels for the diagnosis of diabetes, or lipoproteins’ levels for the

Fig. 1. Schematic representation of ‘omics in system biology. As shown, metabolomics is the downstream of the genetic transcription process and its interactions with
environmental exposures.
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assessment of dyslipidemia. These targeted assessments are well-vali-
dated, thus representing an additional advantage for modern, mostly
untargeted metabolomics, as they can pave the way for its clinical
translation. With untargeted or global approaches, studies measure as
many metabolites as possible, and compare them among samples
without bias. Such untargeted analysis is predicated on the develop-
ment of “metabolite libraries” that contain well-characterized meta-
bolite profiles. These may be used as standards, against which profiles
of specimen metabolites may be compared for identification. Un-
targeted metabolomics studies have led to new discoveries, linking
cellular pathways to biological mechanisms, and shaping our under-
standing of physiology and medicine (Patti et al., 2012).

Two main analytical tools are available for metabolomic profiling:
nuclear magnetic resonance (NMR) spectroscopy and mass spectro-
metry (MS) (Emwas, 2015; Barnes et al., 2016a). Depending on the
instrument or protocol used, typically one is able to identify from 50 to
up to 5000 different metabolites at a time, but no tool, metric or
platform is able to identify all existing metabolites in a single analysis
run or using a single technology platform. The majority of metabolomic
studies use a single analytical source. However, there is a growing ac-
knowledgment of the value of combining NMR and MS (Marshall and
Powers, 2017). They are complementary techniques, so combining
them is likely to improve the overall quality of a study and enhance the
coverage of the metabolome (Dunn et al., 2011a).

Regardless of the technical analytical tool chosen, minimum re-
quirements for reporting a metabolite profiling experiment include
sample preparation, experimental analysis, quality control, metabolite
identification, and data pre-processing (Khamis et al., 2017). Validation
of metabolomic profiles should include at least a description of the
calibration model (linearity and range), repeatability and intermediate
precision, accuracy and lower limit of quantification (Scalbert et al.,
2009).

2.1. Nuclear magnetic resonance (NMR) spectroscopy metabolomics

NMR spectroscopy measures the behavior of nuclei of atoms when
they are subjected to a magnetic field, i.e. their spin resonance. When
submitted to an external magnetic field, atoms with an odd mass, such
as hydrogen (1H) or carbon (13C), behave as dipoles and align along
the axis of the applied magnetic field (excitation). This higher energy
level is less stable, so these atoms then undergo relaxation, generating
radiofrequency signals, which can be expressed as a frequency spectrum
(Tognarelli et al., 2015; Barnes et al., 2016a). Currently, instruments
using frequencies of 500 and 600MHz are the most widely used be-
cause they represent a good compromise between sensitivity and cost.
However, it is important to note that the higher the magnetic field
strength (the highest-frequency commercially available instrument
operates at 1,000MHz), the greater the resolution (Barnes et al.,
2016a).

Hydrogen is the most abundant atom in living organisms, so proton
NMR is the most commonly used NMR technique (Barnes et al., 2016a).
In a 1H spectrum, the position of each peak (chemical shift) represents
the hydrogen atoms’ environment (i.e., proximity of electronegative
groups such as nitrogen, oxygen, double bonds, etc.). The size of the
peaks, most precisely the area under the curve, provides important
information about the number of hydrogen atoms in each environment.

NMR spectroscopy can be applied to liquid samples, but also to
solid, gas phase and tissue samples (Emwas, 2015). One of its biggest
advantages is the minimal sample preparation required, and the pre-
servation of samples (i.e., even after analysis, samples can still be used
for other studies). NMR is also recognized to be highly reproducible and
less susceptible to instrument variability. Additionally, it has the ad-
vantage of being quantitative, measuring the amount of protons under
given conditions, and thus enabling direct spectral data comparisons
(Holmes et al., 2016). NMR's major disadvantage relates to its sensi-
tivity, which is lower than that of MS. The number of metabolites

visible in the proton NMR spectrum ranges from about 50 in serum/
plasma samples to roughly 200 in urine (Kohler et al., 2016). Also, the
interpretation of NMR spectra is considered complex and requires
substantial training, as signals from different metabolites can overlap
(Markley et al., 2017).

2.2. Mass spectrometry (MS) metabolomics

MS identifies metabolites primarily based on their mass to charge
(m/z) ratio (Crutchfield et al., 2016). A good analogy is to imagine a
cannonball and a tennis ball travelling together, which we hope to
deflect with a jet of water. The cannonball is so heavy that it will hardly
be deflected at all from its original course. Conversely, the tennis ball is
light, and will have a large deflection. In this example, the mass of each
ball determines the ability to deflect them. The same principle applies
to MS. Atoms and molecules can be deflected by magnetic fields. First,
they need to be turned into ions (ionization), and then these are ac-
celerated so that they all have the same kinetic energy. The ions are
then deflected by a magnetic field according to their masses and their
number of positive charges (Gika et al., 2014; Lind et al., 2016; Wang
et al., 2011b). Several techniques are available for ionization (Kohler
et al., 2016), with electrospray ionization (ESI) being one of the most
commonly used (Wilm, 2011).

A MS spectrum of a sample can be obtained by direct injection, but
it is usually performed in tandem with separation techniques, such as
liquid chromatography (LC), gas chromatography (GC) or capillary
electrophoresis (CE). Importantly, no separation method (GC, LC or CE)
enables the simultaneous separation of all metabolites. In addition,
there is no one mass analyzer that can measure all metabolites, as some
metabolites may not ionize with certain methods, or because their
concentration is too low (Khamis et al., 2017).

In biosciences, LC, particularly ultra-high-performance liquid
chromatography (UPLC), is becoming increasingly popular and is
probably the most widely used method coupled with MS technology
(Patti et al., 2012). This is primarily due to the ability of LC to separate
and detect a wide range of metabolites, (Jové et al., 2014; Nicholson
et al., 2012a) and because of the large number of accessible instruments
and open-source data processing software available for this technique
(Jové et al., 2014). A disadvantage of LC–MS is ion suppression, as
ionization of metabolites may depend on the presence of matrix com-
pounds, particularly with ESI (Scalbert et al., 2009). GC has high se-
paration efficiency and reproducible retention times (Khamis et al.,
2017). However, it presents three main pitfalls: possible loss of ther-
molabile analytes; complex sample preparation; and higher variability
compared with LC-based metabolomics (Dunn et al., 2011b). Also of
note, concerns have emerged about degradation of metabolites during
GC–MS analysis, due to the required exposure to elevated temperatures
(Fang et al., 2015). CE has had a long history in the analysis of in-
dividual metabolites and can be applied to very low sample volumes. So
far, however, its application has been limited, mostly due to the poor
sensitivity of the CE-ESI interface. New interfaces have now been de-
veloped and are commercially available, thus opening a great future for
this method, in particularly if used as a complement to GC and LC-MS
(Barnes et al., 2016a).

In general, MS has a much higher sensitivity (detection level of
picomoles to femtomoles) than NMR, therefore enabling the measure-
ment of a broader range of metabolites. Additionally, the different MS
technologies provide an array of operational principles that can be
applied, thus increasing the number of metabolites that can potentially
be detected. This is particularly relevant for biological samples(Emwas,
2015). Importantly, MS requires the use of quality control samples,
(Barnes et al., 2016a; Gika et al., 2014) as well as multiple simultaneous
internal reference standards (typically at least three). Although the
ionization required before MS analysis can lead to complications with
quantitation, if these reference standards are used along with other
validation parameters, targeted MS becomes quantitative. This is
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particularly valid for UPLC, which enables a high degree of chemical
specificity (Holmes et al., 2016; Kapoore and Vaidyanathan, 2016).
Indeed, the superior chromatographic resolution and rapid separation
of UPLC, combined with the high sensitivity of MS, allow both the
detection and measurement of levels of thousands of metabolites in
minutes. Despite this, one needs to be aware that untargeted metabo-
lomics in general is not quantitative, so effect sizes should not be
compared across different studies and platforms (Holmes et al., 2016).

2.3. Mass spectrometry imaging metabolomics

Mass spectrometry imaging (MSI) is a method by which molecular
information is obtained over two or three spatial dimensions, thus en-
abling one to determine the distribution of small molecules within a
tissue (Petras et al., 2017). For each ion in the collected mass to charge
(m/z) range, reconstruction of its intensity in every x-y coordinate pair
creates an image of its distribution, thus permitting the virtual dissec-
tion of tissues based on macular mass signatures (Sun et al., 2014). This
leads to one of the big advantages of MSI, the ability to correlate non-
targeted metabolite information with histological data; and it is pos-
sible because, unlike traditional MS, sample preparation methods do
not result in loss of spatial localization. In a single experiment, it is
possible to detect the spatial distribution of thousands of molecules
(Naru et al., 2017).

Several MSI techniques have been developed, which mostly differ in
their spatial resolution, molecular specificity and sensitivity (Naru
et al., 2017). Matrix-assisted laser desorption ionization (MALDI) is
currently the most widely applied method, and typically provides a
lateral spatial resolution ranging from a few μm to mm. This is de-
pendent on the technique applied, particularly on the laser diameter
(Petras et al., 2017). In general, most MALDI studies are performed on
linear MALDI time-of-flight (TOF) platforms, which enable a resolution
to the level of proteomics. Bowrey et al. (2016) recently reviewed the
application of MSI proteomics to the study of the visual system. How-
ever, for metabolomics, Fourier-transform ion cyclotron resonance
(FTICR) or quadrupole-TOP is recommended, as they both provide
higher resolution and mass accuracy (Wang et al., 2011a). MALDI,
however, still has important limitations, including instrumentation re-
solution and requirements for sample preparation (Petras et al., 2017;
Zemski Berry et al., 2014). Namely, as the name suggests (“matrix-as-
sisted” laser desorption ionization), this technique requires the appli-
cation of a matrix to coat the samples to promote biomolecule deso-
rption and ionization prior to analysis (Murphy et al., 2011). This is
important because it requires extreme care to ensure that this matrix is
applied homogeneously across the tissue, and that no delocalization is
introduced; otherwise accuracy and reproducibility are compromised
(Gessel et al., 2014). Also, the time required for data acquisition in-
creases following an inverse squared relationship with lateral spatial
resolution, and the sensitivity of mass analysis increases with decreased
lateral spatial resolution. Additionally, MALDI quantitative analysis is
worse than with the traditional extraction and analysis by liquid
chromatography MS (Petras et al., 2017).

Recent advances in MSI include developments of techniques other
than MALDI, including: secondary ion mass spectrometry (SIMS) and
Desorption Electrospray Ionization MS (DESI). SIMS is considered
complementary to MALDI, as it offers a higher spatial resolution (less
than 1 μm), thereby enabling assessments at cellular levels, and does
not require labelling of the compounds to be detected. However, it has a
lower chemical specificity (Lockyer, 2014; Kraft and Klitzing, 2014).
DESI is considered a very promising technique, and also has the great
advantage of not requiring sample preparation and causing minimal
tissue architectural disruption. It allows the same tissue section to be
first subject to MSI and then to conventional histology, allowing precise
structural correlations (Holmes et al., 2016; Jarmusch et al., 2016).

3. Sample collection and processing

3.1. General concepts

Unlike the genetic sequence, metabolomic profiles vary depending
on the biofluid being assessed. Appropriate sample collection and
processing is an important requirement for successful metabolomic
studies (Khamis et al., 2017). All efforts should be made to ensure that
the collected samples are qualitatively and quantitatively re-
presentative of their source (Ammerlaan et al., 2014), and that bias and
uncontrolled experimental variances are minimized (Yu et al., 2011).

Protocols should be developed and reviewed before beginning any
collection, as they vary. For example, if metabolomic profiling is going
to be performed by a different laboratory/institution than the one that
is obtaining the samples, the entire protocol should be discussed with
all the involved parties and defined a priori. Standard operating pro-
cedures (including check lists and labeling procedures) are essential to
prevent mistakes and increase efficiency. Supply sources should be
uniform and the collection and storage conditions should be well de-
fined. In large-scale human metabolomics studies, samples are fre-
quently collected at different sites. It is therefore important to provide
written procedures or guidelines to all researchers, clinicians and la-
boratory staff involved in the project to ensure the highest reproduci-
bility throughout sample collection and handling (Kohler et al., 2016).
Despite the definition of standardized protocols, their strict execution
within single- or multi-center clinical studies can be challenging, so
monitoring and samples quality assessment is also crucial (Jobard et al.,
2016).

For studies using samples already collected as part of biobanks, it is
essential to obtain all possible information about the conditions of
sample collection and storage (Yu et al., 2011). Since a relatively long
time may elapse between the collection of the samples and their ana-
lysis, multiple parameters must be monitored to lower the risks for
degradation and interconversion, including temperature, light, hu-
midity, time span, quenching and number of freeze–thaw cycles (Kohler
et al., 2016). A consensus is still lacking on the effect of freeze–thaw
cycles on the metabolome, so multiple freeze–thaw cycles should be
avoided as much as possible (Kohler et al., 2016).

In the following section, we discuss the specific requirements to
obtain biofluids and other tissue samples that can be relevant for the
study of retinal diseases. Metabolomics workbench (www.
metabolomicsworkbench.org) is a website supported by the National
Institute of Health that has a large and excellent resource of experi-
mental protocols and specific guidelines for sample preparation and
metabolites extraction. Of note, metabolomics data can be combined
with data from other ‘omics methods, such as genomics or proteomics,
increasing the ability to investigate the pathophysiology and mechan-
isms of diseases. To this end, specific methods have been developed,
namely the simultaneous metabolite, protein, lipid extraction proce-
dure (SIMPLEX), which enables the assessment of multiple molecular
classes from a single sample in parallel (Coman et al., 2016). This is of
particular interest to the study of vitreoretinal diseases, where reduced
amounts of sample are required, and as mentioned below, eye tissue
typically is typically limited in quantity.

3.2. Animal tissue

It is essential to plan animal tissue collection in advance and con-
sider euthanasia method, tissues desired, post mortem time to
quenching/freezing and consumable selection.

Compounds commonly used for euthanasia are known to have
broad effects on cell function and metabolite levels. Isoflurane affects
glucose metabolism in mice, and if metabolites of interest are linked to
glucose, their metabolism may also be affected in the tissue being
studied (Federation of American Societies for Experimental Biology.
et al., 2010). Ideally, rapid cervical dislocation or a guillotine should be
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used in mice, but these protocols need to be discussed and approved by
the Institutional Animal Care and Use Committee. Response to stress
also affects metabolism and balancing the euthanasia approach with
minimization of stress to the animal is essential for reliable outcomes
with animal models (Ghosal et al., 2015; Hurst and West, 2010).

Many metabolites have very rapid turnover rates. Therefore, as with
other sample collection, it is key to handle tissue samples as quickly as
possible to prevent metabolite degradation. Snap freezing samples in
liquid nitrogen is commonly considered best practice. However, if and
when that is not possible, cooling to 4 °C maintains most but not all
metabolites in the retina for up to 8 hours (Tan et al., 2016a,b). Col-
lecting the entire eye and snap freezing in liquid nitrogen is the quickest
and most reliable method and should be used if the broadest metabolite
profile possible is desired (Paris et al., 2016). Micro-dissection of spe-
cific tissues such as the cornea, lens, vitreous, retina and choroid allows
for tissue-specific metabolite analysis but increases post mortem pro-
cessing time and potential changes in metabolite levels. Collection
speed must be balanced with sample integrity. If specific tissues are to
be dissected, it is best to practice ahead of time to increase speed and
accuracy.

The consumables used for tissue collection should be selected based
on the subsequent extraction and analytical platforms for analyses. For
broad metabolomics analysis including non-polar and lipid species,
glass is the best material to work with. Not all glass products are
equivalent and it is advisable to consult with those running the ex-
traction and analysis for their recommendations. If the analyses focus
on polar metabolites, plastic tubes may be appropriate, but not all
plastics are equivalent. The same container type should be used
throughout all samples in an experiment and a vessel-alone extraction
in parallel can help to distinguish non-tissue derived metabolites.

3.3. Human tissue and samples

3.3.1. Plasma and serum
Blood provides a snapshot of the metabolism that integrates many

tissues in the human body, and thus offers a global metabolomic picture
(Chetwynd et al., 2017). Therefore, along with urine (also an in-
tegrative biofluid), blood is one of the most commonly used biofluids
for metabolomics in biomedical sciences (Dunn et al., 2011a). The in-
fluence of the pre-analytics practices for blood samples has been dis-
cussed in the literature (Hebels et al., 2013), and is extremely important
(Kohler et al., 2016).

Either serum or plasma can be obtained from blood, and the pre-
ferred fluid for metabolomics remains to be established - plasma seems
to be more reproducible, and serum to have higher concentrations of
metabolites(Yu et al., 2011). The main difference between them refers
to the presence or absence of clotting factors. For serum, whole blood is
collected into tubes and is allowed to clot (Chetwynd et al., 2017). One
must record the clotting time and temperature at which the clotting
occurred, and this should be standardized across all samples (Khamis
et al., 2017). Plasma is obtained when whole blood is mixed with an
anticoagulant to inhibit clotting. Typical anticoagulants include lithium
heparin, EDTA and citrate. In general, the use of lithium heparin is
recommended, (Chetwynd et al., 2017; Yu et al., 2011) especially for
NMR, even though heparin may lead to ion suppression (Barnes et al.,
2016a). Citrate and EDTA have molecular masses similar to some me-
tabolites, and citrate is an endogenous metabolite; therefore, when
these anticoagulants are used, caution is required on data analysis.
EDTA has the advantage of chelating the potential divalent metal ca-
tions present in the sample, which otherwise might accelerate the hy-
drolysis of important energy metabolites. However, EDTA may also lead
to ion suppression (Kohler et al., 2016).

Importantly, blood collection tubes can also release materials into
the samples and interfere with metabolomic analysis, so the same tubes
should be used across a study and this information should be registered.
Circadian oscillations can also significantly influence the metabolome,

particularly for lipids, therefore it is important to collect samples at the
same time of day and document this information (Kohler et al., 2016).
Recent dietary exposures can also affect the results, and if possible,
samples should be collected after overnight fasting; otherwise, the time
since last meal should be documented. Additionally, for a more com-
plete understanding of the role of nutrition on the profiles obtained, a
nutritional assessment should be performed, for example, using a va-
lidated food frequency questionnaire (Scalbert et al., 2014).

After collection into the appropriate tubes (without or with antic-
oagulant), serum or plasma are separated by centrifugation from the
blood clot or cell mass, respectively. Samples should be immediately
stored as 0.5 or 1.0 mL aliquots at −80 °C or in liquid nitrogen. NMR
studies require larger sample volumes (Barnes et al., 2016a). A delay in
time between aliquoting and storage can affect the quality of the
samples (Yu et al., 2011). Some authors have argued that centrifugation
parameters (such as rotation speed and temperature) are not particu-
larly relevant (Jobard et al., 2016), but this remains controversial
(Ammerlaan et al., 2014).

3.3.2. Urine

Urinary metabolomic profiling has expanded in the last few years
(Slupsky et al., 2007; Khamis et al., 2017). Urine is easily obtained at a
reasonable cost (Emwas et al., 2016). Moreover, compared to blood,
urine is not subject to many homeostatic mechanisms, and greater
varieties of endogenous metabolites can be present, so some authors
argue that it may better reflect the changes in human metabolism (Mal,
2016).

Typically three types of urine samples can be collected, and they
have important differences among them: first morning void, spot urine
and 24-h urine collection (Chetwynd et al., 2017; Slupsky et al., 2007)
.The last (24 h collection) is the ideal, as it reduces the impact of any
circadian variation and represents a complete circadian cycle. However,
it is often not feasible to obtain 24 h samples for clinical studies (Kohler
et al., 2016), so first morning void is the choice in most cases. This
option can reduce the effect of meals or medication, particularly if
collected following an overnight fast. Spot urine samples refer to those
taken at any time point, which makes them highly influenced by the
variable daily excretion rate, as well as by other environmental factors
(Slupsky et al., 2007; Chan et al., 2011; Giskeødegård et al., 2015).

For urine collection, subjects are simply asked to provide a mid-
stream urine sample in a sample cup. For immobile subjects it can be
collected with a catheter, and for babies urine can be collected with
absorbent pads in nappies (Chetwynd et al., 2017). After collection,
samples should be frozen at −80 °C as soon as possible, as prior work
has shown that urine modifications can occur in a short period of time
(Gika et al., 2008), especially at room temperature. At −20 °C, samples
can remain stable for a relatively long time, but −80 °C remains the
best choice (Gika et al., 2008). Freeze thaw cycles should be kept to a
minimum (Khamis et al., 2017).

In a healthy individual, urine is sterile, however it can become
contaminated during urination, which can modify the urinary meta-
bolites. In addition to storage at −80 °C and collection of mid-stream
samples, which are both beneficial (Kohler et al., 2016), antibacterial
additives such as sodium azide and sodium fluoride seem to increase
the stability of samples (Chetwynd et al., 2017).

3.3.3. Other biofluids

Recent research in metabolomics has given increasing attention to
saliva, a biofluid obtainable non-invasively and with a relatively low
cost. Saliva provides an easy access to the metabolites secreted by the
human body (Kelly et al., 2011). It can be obtained by stimulation with
citric acid, or without stimulation (resting). Previous studies suggest
that almost all metabolites are higher in unstimulated saliva when
compared to the stimulated saliva (Takeda et al., 2009). Therefore,
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most groups choose to use unstimulated saliva samples, usually fol-
lowing a period of fasting and delayed oral hygiene to prevent con-
tamination (Chetwynd et al., 2017). Typically, saliva samples are col-
lected, centrifuged to eliminate cellular and food debris, and then
immediately stored at −80 °C until analysis (Álvarez-Sánchez et al.,
2012). Storage at −20 °C can be performed for up to 3 weeks with no
detrimental effects (Takeda et al., 2009). To our knowledge, saliva
metabolomics has not been yet applied to the study of retinal diseases.
However, salivary metabolic profiling in conjunction with serum based
metabolic profiling was able to provide diagnostic biomarkers of neu-
rodegenerative dementia, such as Alzheimer's disease and fronto-
temporal lobe dementia (Mal, 2016).

Another biofluid that can be obtained non-invasively is tears.
Human tears have been used to identify potential biomarkers of ocular
surface diseases (Nishtala et al., 2016; Zhou et al., 2006; Zhou and
Beuerman, 2012). However, recent work suggests that this biofluid also
has potential to the study of posterior segment conditions, in particular
diabetic retinopathy, (Ting et al., 2016), and also of non-ophthalmo-
logic systemic diseases (Pieragostino et al., 2015). Two main methods
have been described for tear collection for metabolomic profiling: the
use of Schirmer's strips and the use of glass capillary tubes. Schirmer's
strips are routinely used in ophthalmology and enable a simple proce-
dure. Collection should be performed without anesthesia, and then the
strips should be stored at −80 °C in glass vials (Lam et al., 2014). The
main disadvantage relates to the risk of cellular contamination with
epithelial cells (Chen et al., 2011). Glass capillary collection has
minimal cells contamination risk, but is a more complex procedure.
Previous authors described collection from the lower conjunctival sac
with glass micropipettes, followed by cooling to 4 °C and centrifugation
to remove possible cellular debris. The resultant supernatant was then
stored at −20 °C (Rantamäki et al., 2011) or −80 °C (Lam et al., 2014).

For the study of vitreoretinal diseases, it is also important to con-
sider using aqueous humor. Changes in the composition of this biofluid
have been described in patients with age-related macular degeneration
and diabetic retinopathy, among other vitreoretinal conditions
(Pietrowska et al., 2018; Kersten et al., 2018). The collection of aqueous
humor requires performing an anterior chamber paracentesis, or ob-
taining a sample at the time of intra-ocular surgery. Volumes ranging
between 50 and 100 μL have been successfully used for untargeted
metabolomic profiling (Pietrowska et al., 2018). As for other biospe-
cimens, aqueous humor should be immediately frozen and stored at
−80 °C (Pietrowska et al., 2017).

3.3.4. Paraffin-embedded tissue

Tissues in available biobanks have often been preserved with for-
malin fixation followed by paraffin embedding (FFPE). Although fresh
frozen samples are the gold standard for metabolomics, available ar-
chival FFPE tissue samples may be a viable alternative (Nirmalan et al.,
2008). These tissues have two major challenges: first, fixation in for-
malin can alter proteins and biomolecules present in the tissue, and
secondly, it is hard to subsequently remove the paraffin (water in-
soluble) without damaging or losing compounds. However, in-
vestigators have described successful metabolomics profiling using
FFPE tissue, with good correlation with results from fresh-frozen sam-
ples (Cacciatore et al., 2017; Wojakowska et al., 2015; Kelly et al.,
2011). For example, Wojakowska et al. (2015) reported the applic-
ability of FFPE kidney specimens for non-targeted GS/MS-based pro-
filing. MSI might be particularly well suited for the use of these tissues
(Buck et al., 2016). The possibility of conducting metabolomic studies
using FFPE material would open a wide range of tissues for clinical
research.

3.3.5. Fresh human retinal tissue and vitreous samples

Human tissues are metabolically active and therefore require rapid

metabolic quenching immediately after collection. In general, it is re-
commended to rapidly wash them after collection (in a phosphate-
buffered aqueous solution or in saline), and then proceed as soon as
possible with freezing, in order to quench metabolism. Washing of
tissues to remove as much blood as possible is also an important step, as
the blood metabolome is different from the tissue metabolome and
would confound the results. Storage should be performed at −80 °C.

Retinal tissue is not an exception. In the 1980s, Schmidt et al.
(1980) described that retinas from post-mortem human donor eyes can
retain their metabolic activity for 4–4.5 hours, namely for photo-
receptor cell-specific metabolic processes. However, to our knowledge,
no studies have been performed proposing a specific protocol for
human retinal tissue processing for metabolomics. Based on their
findings in rat retina tissue, Tan et al.(2016a,b) recommended that
post-mortem human tissue should be stabilized within 8 h following
enucleation.

Regarding the amount of tissue required, for both untargeted or
targeted metabolomic studies, 20–100mg of tissue is typically required
to ensure good coverage of the metabolome (Ammerlaan et al., 2014).
This can be challenging for eye tissue, especially for the study of the
retina, but authors (Tan et al., 2016a,b) have succeeded using rat retina
with a mean weight of 25.4 mg. For the vitreous, Young et al. (2009)
described successful results with undiluted samples of 0.1–0.2 mL, but
we would advise larger volumes of 0.5–1mL (Paris et al., 2016). These
samples should be transferred to sterile tubes, and frozen immediately
until analysis. This is important as time dependent post-mortem bio-
chemical changes have been demonstrated in the vitreous, even though
they are relatively slow (Boulagnon et al., 2011; Zilg et al., 2015).

4. Role of biostatistics and data analysis

Overall, in metabolomics, the analytical path from data acquisition
to biomarker discovery and to produce biologically meaningful data
involves numerous steps, including both statistical and bioinformatic
approaches (Barnes et al., 2016a). Investigators should consult with a
biostatistician before initiating a metabolomics study in order to de-
velop an appropriate experimental design, incorporate proper data
cleaning, and create an analytical plan for the metabolomic data.
During the study, as mentioned, it is also essential to record all the steps
taken in the design of the experiment, sample collection, storage and
processing. It is also important to be aware of the strengths and
weaknesses of the analytical platform, the pre-processing of the data
and the statistical and pathway tools used to interpret the data.

4.1. Main statistical approaches

As described, untargeted metabolomic studies are currently the
most popular, and are characterized by the simultaneous measurement
of a large number of metabolites on each sample. This strategy, known
as top-down strategy, avoids the need for an a priori hypothesis on a
particular set of metabolites and, instead, considers the global meta-
bolome. Consequently, these studies are characterized by the genera-
tion of a diverse array of metabolites with a range of chemical prop-
erties (Alonso et al., 2015). Targeted metabolomic studies are
hypotheses-driven experiments, and are characterized by the mea-
surement of predefined sets of metabolites, most often in a specific
metabolic pathway, with absolute quantification, which results in a
high level of precision and accuracy (Putri et al., 2013).

Alonso et al. (2015) described with great detail the typical metho-
dological pipeline of an untargeted metabolomic study. Briefly, the first
step is the processing of spectral data to generate metabolomic in-
formation (i.e. metabolic features), which is highly dependent on the
analytical technique used (for example, NMR or LC-MS). Once the
complete set of metabolomic features has been generated and run
through a quality control pipeline, univariate and multivariate statistics
can be applied to determine how the metabolomic features are related
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to each other and to the phenotypes of interest. Bioinformatic ap-
proaches can then be used to assess the metabolic pathways that are
related to the phenotype. In this manuscript, we aim to summarize the
main statistical techniques available for data analysis.

After metabolomic data are generated, the distribution of each
metabolite is most often largely skewed. This is partially biological in
nature, but also due to limitations of the current available analytical
platforms (i.e. it can happen when actual values are below the detection
limits for a given method). Based on the assumption that most miss-
ingness for a given platform is due to limits of detection, options to deal
with this include: imputing values that are a fraction (for example, 0.5)
of the lowest value measured for a given metabolite; replacing all
missing values with zero; and, if a substantial proportion of metabolites
have missing data, excluding them, or treating them as dichotomous
variables (non-missing versus missing). Of note, all these approaches
may introduce bias. After addressing missingness, metabolite variables
typically benefit from transformation and scaling to allow accurate
statistical analyses. A common approach is to log-scale the data, as it
has been observed that metabolite concentrations are more often close
to log-normal distributions than to normal distributions, but other op-
tions are also available (Suhre et al., 2011). Additionally, it is important
to always carefully assess batch-to-batch variability. Ideally, all samples
in a study should be analyzed in the same batch (i.e. should be ex-
tracted and measured in one uninterrupted sequence). When this is not
possible, a plan should be established with the laboratory performing
the analyses (including randomization of sample order), but batch ef-
fects can often persist even after preprocessing steps have been suc-
cessfully completed. Normalization of data to internal standards or to
pooled plasma measures are options to deal with this problem, as well
as considering the time of analysis as a covariate (Wehrens et al., 2016;
Rusilowicz et al., 2016).

When a quality pipeline has been run, univariate analysis methods
usually follow, to perform an initial evaluation of the basic relation-
ships between each metabolite and the phenotype of interest (Barnes
et al., 2016b). However, more complex analyses are necessary in order
to comprehensively analyze the data, namely to account for important
covariates and possible interactions. The metabolomic data obtained
from biological samples is often very complex with the presence of
correlations between features from the same metabolite and correla-
tions among metabolites from the same pathway. Also, the effect of
potential confounding variables like gender, diet, or body mass index is
not taken into account by univariate methods, increasing the prob-
ability of obtaining false positive or false negative results (Alonso et al.,
2015).

Another approach is to evaluate the relationship between a group of
metabolites, and thus analyze metabolomic features simultaneously. In
this case, both unsupervised and supervised techniques are utilized.

Unsupervised techniques do not use any phenotypic classifications
that are specific to the dataset, which means that, for example, in a
study comparing samples from patients with a certain disease with a
control group, with this approach one does not inform the software
which samples belong to each group (Barnes et al., 2016b). This pro-
vides an effective way to detect data patterns that are correlated with
biological variables (Alonso et al., 2015). One of the most commonly
used unsupervised techniques is principal component analysis (PCA).
PCA is based on the linear transformation of the metabolic features into
a set of linearly uncorrelated (i.e., orthogonal) variables known as
principal components, which can be used as independent variables. By
plotting the scores (the weighted sum of the contribution of each me-
tabolite to a principal component) of these components, it is possible to
find if a group of samples is distinct from one another – Fig. 2. This
decomposition method maximizes the variance explained by the first
component, while the subsequent components explain increasingly re-
duced amounts of variance. The first principal components usually
capture most of the variability in the dataset. PCA is also used in me-
tabolomics studies to assess data quality, since it can identify sample

outliers or reveal hidden biases in the study (Yin et al., 2013).
In supervised techniques, the phenotypic information is used in

conjunction with the metabolomic data. Using the same example de-
scribed above, in the study comparing samples from patients with a
certain disease with a control group, with this approach one would
inform the software which samples belong to each group. One of the
most commonly performed techniques is partial least squares (PLS).
Unlike PCA, PLS does not maximize the explained dataset variance but
rather the covariance between the variable of interest and the meta-
bolomics data. Therefore, the feature coefficients (loadings) of PLS
components represent a measure of how much a feature contributes to
the discrimination of the different sample groups (Alonso et al., 2015).
The major disadvantage of this approach is that some metabolic fea-
tures that are not correlated with the variable of interest can actually
influence the results and are missed. Orthogonal PLS is a derivation of
PLS and has been developed to deal with this limitation (Bujak et al.,
2016).

Supervised techniques, such as partial PLS-discriminant analysis
(PLS-DA, Fig. 2), are usually preferred to identify new metabolomic
biomarkers. Their usefulness, however, must be evaluated, as a sig-
nificant difference in the average levels of metabolites between two
patient groups does not necessarily mean that the given compound will
be a good classifier/biomarker (Xia et al., 2013). Indeed, PLS-DA has
the risk of overestimating group separation, thus its R2 (degree of fit to
the data) and Q2 (quality assessment) parameters should be assessed.
These parameters, however, have limitations and are strongly appli-
cation dependent. An invalid or irrelevant model can still produce good
values, but empirically the acceptable value for Q2 is≥ 0.4/0.5. Highly
disparate R2 and Q2 values are an indicator of possible model over-
fitting (Szymańska et al., 2012; Triba et al., 2015). To prevent over-
fitting of the models, the number of variables can also be reduced. Apart
from PLS-based techniques, this can be achieved by using the Least
Absolute Shrinkage and Selection Operator (LASSO) (Bujak et al., 2016)
or Ridge Regression methods (Acharjee et al., 2012).

As in most other biomedical fields, receiving operator characteristic
(ROC) curve analysis is generally considered a standard method for
performance assessment (Obuchowski et al., 2004). A ROC curve is a
non-parametric (i.e. not dependent on data normality) measure of
biomarker utility (Xia et al., 2013), that compares specificity against
sensitivity according to a specific decision boundary – Fig. 3. They are
usually summarized with the area under the curve (AUC), which gives
the probability that a classifier will rank a randomly chosen positive
sample higher than a randomly chosen negative one. A rough guide for
assessing the utility of a biomarker based on its AUC is as follows:
0.9–1.0= excellent; 0.8–0.9= good; 0.7–0.8= fair; 0.6–0.7= poor;
0.5–0.6= fail (Xia et al., 2013). Typically biomarker discovery studies
are relatively small (n < 100) when compared to the size of the pro-
posed target population (potentially millions of subjects). As such, any
performance measure is a sample approximation to the (unmeasurable)
performance of the biomarker applied to the target population as a
whole. Therefore, confidence intervals (CIs) should always be reported.

It is also imperative that, regardless of the reported predictive in-
dices, the performance of any biomarker is validated. The easiest ap-
proach for cross-validation is to split the dataset into two parts, the
training set and the validation set. The model optimization should be
performed on the training subset, and then model performance is as-
sessed on the validation set. Several rounds should be performed (Xia
et al., 2013). However, the most robust measure of validation is re-
plication in an entirely independent cohort. Following this, targeted
metabolomics and studies to assess the biological mechanisms are also
recommended.

In this section, we summarized the statistical approaches that, to
date, are the most commonly used for metabolomics data analysis.
However, machine learning methods have also been applied to different
steps of modelling for these data (Cuperlovic-Culf, 2018). These
methods offer advantages in dealing with the strong correlations
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existing among metabolites, as multiple signals can belong to the same
metabolites, and metabolic connections can exist along physiological
pathways (Blaise et al., 2010). In the near future, it is likely that ma-
chine learning methods assume a more prominent role.

4.2. Sample size and power

In research, sample size determination is a critical part of study
design (Chi et al., 2014), and it is determined utilizing statistical power
calculations. Power is the probability of rejecting the null hypothesis
when one is truly there (Billoir et al., 2015). In medical studies,

researchers often have to balance sufficient statistical power with the
costs involved in a project. If a study is underpowered, the risk that
important findings are missed increases, thus resulting in a waste of
time and money. Alternatively, if a study is oversized, the overall cost of
the study increases.

In metabolomic studies, many factors complicate sample size de-
termination, thus requiring adapted tools. The metabolome is con-
sidered to be more diverse and thus more complex than other en-
sembles. As detailed, metabolites do not operate in isolation but
through a complex network of interactions (Blaise et al., 2010). Most of
the conventional methods developed for sample size determination are
based on the principle of variable independence, which is obviously not
appropriate for metabolomic studies (Billoir et al., 2015). Finally, like
the remaining ‘omics, in metabolomics we also have to face constraints
connected to multiple hypothesis testing, as discussed below.

A recent report by the training workshop group on metabolomics,
supported by the NIH Common Fund Program in Metabolomics, has
highlighted a few general points to consider (Barnes et al., 2016a).
According to these authors, for studies with laboratory animals on
controlled diets, a sample size of 6–12 animals may be adequate, al-
though if female animals undergoing estrus cycling are used, they
should be studied during the same point in the estrus cycle. Controlled
clinical studies where subjects provide multiple samples or where the
subjects are carefully matched may be possible to be carried out with as
few as 10–20 patients, but this will depend on the variance of the
disease traits, drug response or that which is introduced by an inter-
ventional procedure. These sample numbers (n= 3–20) are suitable for
generating preliminary and/or pilot data. For epidemiological studies,
where the samples are collected from a general population, often over
long periods of time, variance is a substantial issue and may require
patient numbers in the thousands (Barnes et al., 2016a). In the last few
years, important research has addressed the challenge of merging data
from different large scale studies and biobanks (Chi et al., 2014; Dane
et al., 2014; Dunn et al., 2011a).

Recently, online platforms, such as MetaboAnalyst 3.0 (Xia et al.,
2015) or metaX (Wen et al., 2017), developed modules that enable a
precise sample size estimation and power analysis for designing meta-
bolomic studies. In both cases, the available software relies on the
Bioconductor Package SSPA that was originally developed for genomic
data (van Iterson et al., 2009). This method requires the use of pilot

Fig. 2. Example of principal component analysis (PCA) (A) and partial least square discriminant analysis (PLS-DA) score plots (B). (A): PC – principal component; in
the graph, the x-axis corresponds to PC1 and the y-axis to PC2; (B): in the graph, the x-axis corresponds to component 1 and the y-axis to component 2. In both (A)
and in (B), red dots correspond to patients with age-related macular degeneration (AMD) and green to control subjects.

Fig. 3. Example of a receiving operator curve (ROC) analysis. Data refers to
plasma samples of a cohort studied by our group (unpublished data) with 242
patients with age-related macular degeneration and 53 controls. In red, a
baseline model including only clinical covariates (i.e. age, gender, smoking
status and body mass index); in blue, metabolites data is additionally con-
sidered. As shown, the model including metabolomics data significantly out-
performed (p=0.003) the model only with clinical covariates. AUC – area
under the curve; CI – confidence interval.
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data. Briefly, users first need to upload their pilot metabolomic data and
perform the conventional data processing and normalization steps.
Several diagnostic plots are then presented to allow users to check
whether the test statistics follow an approximately normal distribution,
and whether there are relatively a large number of P values that are
close to zero (i.e. the effect indeed exists). When these assumptions are
reasonably met, users can proceed to estimate the statistical power with
regard to different sample sizes.

Considering that pilot data is often not available, another option is
MetSizeR (Nyamundanda et al., 2013), which is based on the idea that
the method for selecting sample size firmly depends on the type of data
analysis the researcher intends to employ. In a situation where ex-
perimental pilot data are not available, pseudo-metabolomic data can
be simulated from a statistical model. The specific statistical model
from which the pseudo-metabolomic data are simulated depends on the
type of statistical analysis that the metabolomic scientist intends to use
(such as, for example, principal component analysis). The main criti-
cism of this approach is that experimental conditions (including sample
preparation, storage, data acquisition) should be identical in the si-
mulated data and the planned experiments, which is difficult to account
for. Therefore, some authors argue that pilot studies might be inevitable
despite their cost, and that inadequate sample size estimations would
raise more ethical issues and costs than a properly designed pilot study
(Billoir et al., 2015).

4.3. Multiple hypothesis testing

Like the remaining ‘omics sciences, metabolomics deals with con-
cerns related to multiple hypothesis testing, which increase the risk of
false discovery (type I errors, false positives). Numerous methods have
been developed to control for multiple testing in the genomics and
transcriptomics fields. The most well established are family-wise error
risk (FWER) controls, such as the Bonferroni correction; and false dis-
covery rate (FDR) measurements, such as the Benjamin-type corrections
(Billoir et al., 2015). The FWER estimates the number of variables as-
sociated with a true null hypothesis and that are proposed as significant
by any given statistical test. The FDR controls the rate at which vari-
ables identified as significant by a given test are in fact associated with
a true null hypothesis (Billoir et al., 2015). The FDR correction of the p-
value results in a q value (Barnes et al., 2016b).

In metabolomics, the optimal method is still under debate.
However, in general, it is recognized that the FWER corrections are too
conservative, and FDR measurements are more suited and thus are
becoming widely accepted (Billoir et al., 2015; Barnes et al., 2016b;
Alonso et al., 2015). FDR is a less stringent, multiple testing correction
that results in fewer features/metabolites as false negatives (Barnes
et al., 2016b).

4.4. Pathway analysis

One of the most important advantages of metabolomics is the ability
to provide meaningful biological contexts for the data generated.
However, this is challenging and much less straight-forward than for
genomic and proteomic datasets. Enrichment tools are frequently used,
as they include molecular pathway or network information to gain in-
sight into a biological system, mostly by performing functional en-
richment or over-representation analysis. In practice, these approaches
assess, respectively, if metabolomic pathways differ in the experimental
dataset of interest versus control datasets, and whether specific path-
ways containing metabolites in an experiment derived list are over-
represented (Rosato et al., 2018).

Several enrichment tools are available, including MetaboAnalyst
(Chong et al., 2018), IMPaLA (Kamburov et al., 2011) and BioCyc/
HumanCyc (Romero et al., 2005), among many others (Marco-Ramell
et al., 2018). These tools enable to visualize the localization of meta-
bolites in a certain pathway, their molecular connections, reactions and

relational networks. Interestingly, as recently reviewed by Marco-
Ramell et al. (2018), even though the tools differ, they perform con-
sistently. Nevertheless, there are limitations. For instance, most of these
platforms function on the basis of metabolite name or codes (identi-
fiers) from one or several metabolite database, and current metabolite
databases are limited (Kell and Oliver, 2016), as discussed in our sec-
tion “7. Future Directions”. If possible, more than one tool should be
used.

5. Metabolomics of vitreoretinal health and disease

Metabolomics has been applied by different groups to the study of
normal vitreous and retina, as well as to the study of several pathologic
conditions. Due to the versatility of metabolomics, these include: clin-
ical applications aiming to identify biomarkers of retinal diseases; at-
tempts to identify novel mechanisms behind the development of certain
conditions, in order to discover new potential targets for future re-
search; and clarification of mechanisms identified by other research
techniques.

In this section, we critically review relevant work performed in this
field (normal and pathology). Table 1 summarizes data on the study
design of selected literature applying metabolomics to the study of
retinal diseases.

5.1. Normal vitreoretinal metabolome – animal model investigations

5.1.1. Normal retina
Understanding the classes of common metabolites that can be ex-

pected in normal retina tissue is important, as it serves as baseline
knowledge to recognize and comprehend pathological states. By gen-
erating a complete metabolomic profile, we can increase our under-
standing of the potentially multifaceted roles of the different molecules
in regulating and maintaining retinal development, health, and func-
tion. To our knowledge, however, studies of normal retina tissue are
currently limited to animal models.

Using GC-MS and LC-MS, Du et al. (2016) assessed the metabolomic
profile of normal whole mouse retina tissue. Targeted metabolomics of
171 metabolites was performed, and data were obtained for 114 of
them. These included metabolites involved in glucose metabolism
(anabolism and catabolism), tricarboxylic acid cycle (TCA) cycle, amino
acids, nucleotides and their metabolites, tryptophan cycle metabolites,
vitamins, and a small number of sugars and lipids/fatty acids. Tan et al.
(2016a,b) studied the neurosensory rat retinal metabolome, and com-
pared it with the metabolite composition of the remaining rat ocular
tissues (cornea, lens and vitreous). Interestingly, the authors found that
the retina displayed the most unique profile of identified metabolites,
with 655 detected only in this tissue. In total, 21 metabolites were
identified in rat retina tissue with GC-MS and 1942 with UHPLC-MS,
belonging to many different classes. Importantly, other groups de-
scribed that the rat retinal metabolome varies with sex (male vs fe-
male), mostly in terms of glycerophospholipids, biogenic amines and
amino acids metabolites (de la Barca et al., 2017). This is important for
the design of future studies using animal retina tissue.

Imaging MS (MALDI-FTICR-MS) of retina tissue has also been de-
scribed (Sun et al., 2014). Using adult porcine eyes, Sun et al. were able
to generate segmentation maps, which were then used to identify areas
in which similar spectra occurred across the tissue samples. Twenty-
three different metabolites were identified in situ, including nucleo-
tides, glucose-6-phosphate and other metabolites belonging to the
central carbon metabolism pathway, and lipids, among others. This was
the first study to utilize FTICR-MS, but prior studies with MALDI-TOF
had also described distributions of different phospholipids and fatty
acids in the different retinal layers (Ly et al., 2015; Zemski Berry et al.,
2014).

In addition to the characterization of the global metabolomic profile
of the retina, metabolomics has also contributed to the understanding
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of retinal physiology. The retina has an extremely complex anatomy
and physiology, and its main function is to transduce light stimuli into
chemical signals through the process of phototransduction (Luo et al.,
2008). This process requires high amounts of energy (Wong-Riley,
2010). In the outer retina, where the photoreceptors are located, the
consumption of oxygen, as well as of glucose, is higher in the dark than
in the light (Linton et al., 2010); in the inner retina, their consumption
seems to be more independent of light exposure (Lau and Linsenmeier,
2012). This happens because, in response to light stimulation, photo-
receptors hyperpolarize, and cease neurotransmitter release, thereby
decreasing their metabolic demands (Wong-Riley, 2010).

Du et al. (2016) compared the levels of metabolites from dark-
adapted mouse retinas to retinas from mice exposed to light. Their re-
sults revealed that with illumination, among other changes, the levels
of cGMP were depleted by 55%, probably due to increased hydrolysis
by phosphodiesterases; and that inosine monophosphate (IMP) accu-
mulates. Most other purine and pyrimidine metabolites, which seem to
be derived from photoreceptors, are however depleted. The authors
suggested that the observed increase in nucleotide levels in darkness
may be linked to: degradation of RNA; accumulation of products from
cGMP degradation (such as 5’-GMP) that inhibit de novo purine synth-
esis; or block of purine synthesis via the salvage pathway. The influence
of illumination on nucleotide metabolites was a new observation that
may have important implications for the study of retinal diseases,
namely for understanding why retinas are uniquely sensitive to certain
enzyme deficiencies and not to others.

Imaging MS of adult porcine retina tissue (Sun et al., 2014) also
showed a number of notable differences in the distribution profiles of
the detected metabolites between light and dark-treated tissue samples,
particularly those from the glycolysis pathway. As noted above, the
metabolism of the outer retina is higher in the dark and reduced with
light (Wong-Riley, 2010), which seems to be confirmed by this meta-
bolomic technique. With light, the authors described a shift of glyco-
lysis’ products, such as fructose 1,6 bisphosphate (F1,6BP; a product of
glycolysis) and citrate, to the inner retina, while glucose 6 phosphate
(G6P) was detected at high intensities both in the inner and outer re-
tina. This is probably due to a slowing of glycolytic activity in the outer
retina. The outer retina is avascular and is nourished by the choroid via
the RPE, which is not altered by light stimulation. Therefore, while the
delivery rate of glucose and glucose phosphorylation remains the same
as in dark conditions, decreased glycolytic activity would result in de-
creased levels of downstream metabolites following exposure to light.
In general, there were also relatively higher amounts of all metabolites
under dark conditions, which probably reflects the function of photo-
receptors and their specialized metabolic requirements (Sun et al.,
2014). Understanding the distribution of metabolites in the retina and
their differences in light and dark conditions might be important to
understand retinal diseases.

Interestingly, De La Barca et al. (2017) recently studied the effect of
light stress in the retina metabolome. This was based on the work
showing that the mechanisms of light preconditioning (pre-exposure to
moderate light before intense light) remained unknown, even though
they seemed to have a protective effect. The authors observed that light
stimulation induced changes in lipid and amino acid metabolism, with a
likely involvement of nitric oxide-related signaling pathways.

With aging, the metabolomic profile of the retina may also change.
Using targeted MS applied to an aging mouse model, Hopiavuori et al.
(2017) studied the changes in whole retina and brain composition of
the three major glycerophospholipid classes: phosphatidylcholine (PC),
phosphatidylethanolamine (PE) and phosphatidylserine (PS). The au-
thors described that retinal PC contained detectable levels of very-long
chain polyunsaturated fatty acids (PUFA), which were not observed in
brain tissue, and remained constant with age. However, like in the
brain, an age-related reduction of PE and PS, as well as some other PCs,
was observed in the retina. The authors hypothesized that these age-
related changes may have profound effects on synaptic function and

cognitive ability. In the same study, it was also described that the retina
is unique because PC, PS and PE contain a greater amount of di-PUFA
species than the brain, and that plasmalogens (PE) are present but in
lower levels. Plasmalogens are important for membrane biophysical
properties and neurotransmission, as well as for protection in response
to cellular oxidative stress. Gordon et al. performed a mini-review
proposing potential targets for lipidomics studies of retina tissue,
namely to better understand the mechanisms of inflammation, neuro-
protection and nerve regeneration (Gordon and Bazan, 2013).

5.1.2. Normal vitreous
The vitreous is the largest structure of the eye, occupying the pos-

terior segment, between the lens and the retina. Although in forensic
science the vitreous has long been considered crucial in identifying
certain causes of death and to estimate the time of death, (Zilg et al.,
2015; Boulagnon et al., 2011) in ophthalmology the vitreous was
considered relatively irrelevant until recently. This has changed dra-
matically in the last few decades, with the vitreous being recognized as
an important factor in ocular health and disease, including in the pa-
thogenesis of retinal detachment and macular hole formation, and of
diabetic retinopathy (Holekamp, 2010). In addition to its role in
maintaining a normal interface with the retina, the vitreous is also now
thought to be involved in normal oxygen metabolism and consumption.
Shui et al. (2009) suggested that the vitreous may protect the lens and
the trabecular meshwork from oxidative stress, by metabolizing the
oxygen diffused from the retina into ascorbate. This function seems to
deteriorate with vitreous age-related liquefaction. The ability of the
vitreous to regulate intra-ocular oxygen tension has also been hy-
pothesized to affect VEGF-mediated diseases. However, data on the
clinical relevance of this hypothesis remain controversial (Cuilla et al.,
2015; Singh et al., 2017).

Using a 1H-NMR untargeted approach, Locci et al. (2014) provided
interesting inputs into oxygen vitreous metabolism. The authors used
vitreous samples from goat, and studied the vitreous gel as a whole, as
well as four distinct areas – cortical, core, and superior and inferior
basal vitreous. A unique metabolomic signature was observed for each
area. The vitreous base (basal vitreous adjacent to the lens and the
trabecular meshwork) was characterized by the presence of branched-
chain amino acids (BCAA), betaine, alanine, lysine, myo-inositol and
ascorbate. The presence of ascorbate in this area is in agreement with
the theory that this molecule has a differential expression in the vitr-
eous, protecting the lens and trabecular meshwork from oxidative stress
(Shui et al., 2009). Betaine and myo-inositol probably serve as osmo-
regulators, which is important to maintain retinal structure and func-
tion. BCAA may represent an alternative energetic source to glucose,
which is critical in areas with higher metabolic demands, such as the
cortex (Locci et al., 2014).

In the cortical area, the discriminating metabolites included gluta-
mine, choline and its derivatives, N-acetyl groups, creatine, and gly-
cerol. However, the most abundant metabolite was lactate (Locci et al.,
2014). This suggests that the cortex is the most metabolically active
area, relying on a fast glucose-driven metabolic response and its
anaerobic pathway since the lactate is the product of anaerobic glyco-
lysis within the eye, when there is limited availability of oxygen.
Rucker et al. (2003) also described that lactate was the dominant re-
sonance in the human vitreous spectra, using proton NMR; the authors
suggested that lactate could be used as a molecular marker to evaluate
retinal and optic nerve metabolism.

The presence of glutamine points to a role of cortical vitreous in
preventing neurotoxicity. Glutamate is the main neurotransmitter in the
retina, and its toxicity is avoided by converting it into glutamine (Zeng
et al., 2010). The vitreous core revealed the presence of glucose, acetate
and scyllo-inositol (Locci et al., 2014); this led the authors to hy-
pothesize that this is due to a passive diffusion of these energetic mo-
lecules through the vitreous to make them available for the more active
areas near the retina.
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Despite the evidence suggesting metabolic interactions between the
vitreous and the retina, using a rat model, Tan et al. (2016a,b) de-
scribed that only a small percentage (1.6%) of the metabolites identi-
fied in the vitreous using MS, were exclusively found in the retina and
not in other tissues. The authors suggested that the metabolic ex-
change/movement between the cornea and aqueous, and the lens with
vitreous and aqueous may explain the similarities between the meta-
bolites found in the lens, vitreous and cornea. However, due to the
posterior bulk flow of water from the vitreous through the retina (Zeng
et al., 2010), the anterior movement of small molecules from the retina
into the vitreous might be inhibited, thus resulting in the vitreous
metabolome not reflecting that of the retina. Therefore, even though
vitreous has been used as the surrogate for analyzing molecular changes
taking place in the retina, this might not always be appropriate, espe-
cially in physiological states. In some pathological states, where there is
increased permeability of the retinal vessels or retinal pigment epi-
thelium, vitreous analysis may be of value (Tan et al., 2016a,b). Other
authors argue however, that exactly because of the existence of the
blood-retinal barrier, the vitreous can reflect the intraocular environ-
ment effectively (Yu et al., 2015).

Importantly, the described findings for normal metabolomic vitr-
eous composition refer to animal models and they seem to vary among
species. For example, Mains et al. (2012) observed clear differences in
the metabolomic profiles of vitreous samples from sheep, rabbits and
pigs. These were primarily related to the content of DNA and RNA-
related metabolites, as well as metabolites associated with the diet.

5.2. Diabetic retinopathy

Diabetic retinopathy (DR) affects 93 million individuals world-wide,
and of those, 5 million are completely blind (Stem and Gardner, 2013).
Irreversible vision loss occurs in mid-to late-stages of DR as a result of
either macular edema (due to disruption of the blood-retina-barrier) or
neovascularization (due to ischemia). Current therapies that target
vascular complications are only effective in 25–50% of DR patients
(Abcouwer and Gardner, 2014), hence there is a real need for new
therapies. Metabolic disturbances are a known component in the pa-
thogenesis of diabetes. Thus, metabolomics analysis of human samples
may shed light on the mechanisms of DR and identify potential ther-
apeutic targets.

Two studies have used metabolomics analyses on vitreous humor
from DR patients, to identify biomarkers of the disease (Barba et al.,
2010; Paris et al., 2016). Barba et al. (2010) analyzed vitreous samples
from 22 type 1 diabetic patients and 22 controls with macular hole
(MH) using an 1H-NMR-based approach. Through partial least square-
discriminant analysis (PLS-DA) the authors were able to correctly
classify patients and controls based on metabolomics patterns, with a
sensitivity of 86% and a specificity of 81%. Notably, they found that
acetate, glucose, sorbitol and mannitol levels were elevated in the
vitreous of patients with proliferative diabetic retinopathy (PDR),
Fig. 4. In contrast, galactitol and ascorbic acid levels were significantly

lower in the vitreous of PDR patients when compared to controls. Paris
et al. (2016) used global metabolomics to both identify PDR biomarkers
and to confirm the relevance of the rodent model of oxygen-induced
retinopathy (OIR) as a model of PDR. For their PDR vitreous studies, the
authors used two cohorts. Firstly, untargeted metabolomics, was done
on a cohort of 9 PDR vitreous samples and 11 non-diabetic controls.
Results from this analysis were then validated using targeted metabo-
lomics on a second cohort. In their studies, 129 metabolites were found
to be dysregulated. These included allatoin, glutamate, lysine, arginine,
N-acetylaspartate, iditol, glycerate and N-acetylglutamte. Validation
with targeted analysis confirmed that arginine and allantoin levels are
elevated in the vitreous of PDR patients. Next, to confirm the relevance
of OIR as a model of PDR, global metabolomics was performed on
mouse retinas. Among other dysregulated metabolites, arginine was
also increased in OIR retinas, when compared to controls, similar to
what is observed in PDR samples.

As discussed, factors limiting the usefulness of using vitreous me-
tabolomics, are the surgical procedure to collect vitreous (vitrectomy),
which limits choice and availability of control samples, and the rela-
tively small volume (a maximum of 1ml) obtained. In contrast, plasma
samples are easily collected and in larger volumes. Chen et al. (2016)
performed a nested, population-based, case-control study as part of the
Singapore Indian Eye Study (SINDI), looking at plasma samples from
patients with diabetes type 2: 40 of them with DR (moderate non-
proliferative DR), and 40 without signs of DR. The authors observed
that DR samples had decreased levels of 1,5-anhydroglucitol and in-
creased levels of 1,5-gluconolactone, 2-deoxyribonic acid, 3,4-dihy-
droxybutyric acid, erythritol, gluconic acid, lactose/cellobiose, mal-
tose/trehalose, mannose, ribose, and urea. Some of these metabolites,
however, lost their statistical significance when accounting for con-
founding factors. The identified metabolites were then separately
quantified in a different cohort from the SINDI study, and increased
plasma concentrations of five of them (2-deoxyribonic acid, 3,4-dihy-
droxybutyric acid, erythritol, gluconic acid and ribose) were seen in
patients with DR as compared with subjects with diabetes and without
DR signs, thus validating the potential of these biomarkers. Pathway
analysis revealed a significant enrichment of the pentose phosphate and
galactose metabolism pathways, suggesting the involvement of oxida-
tive stress in the disease.

Li et al. (2011) also successfully used metabolomics analysis for the
study of plasma samples of DR patients. Their goal was to stage DR
disease progression according to both Western and Chinese medicine
standards and to identify potential biomarkers. In their studies, 89 type
2 diabetic patients with or without DR and 30 non-diabetic controls
were used. Through orthogonal signal correction-partial least-squares
discriminant analysis (OSC-PLSDA), the authors were able to segregate
the diabetic samples into three stages: pre-clinical DR, non-proliferative
DR and proliferative DR. They were also able to segregate these samples
into Yang deficiency and non-Yang deficiency, the two-stages of DR
according to Chinese medicine. The authors identified 8 metabolites as
potential biomarkers for DR, according to Western medicine. These

Fig. 4. Representative ultra-widefield fundus photo-
graphy (A) and fluorescein angiography (B) of a left
eye with proliferative diabetic retinopathy. In (A)
multiple microaneurysms (black arrow), retinal he-
morrhages (blue arrow) and hard exudates (purple
arrow) can be appreciated. An area with new vessels
(yellow arrow) can also be seen in the inferior tem-
poral arcade, which presents as evident leakage in (B)
(yellow arrow).
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included, β-hydroxybutyric acid, trans-oleic acid, lineoleic acid and
arachidonic acid. Regarding Chinese medicine, a significant decrease in
glycerol levels was found in Yang deficiency when compared to non-
Yang deficiency.

5.3. Rhegmatogenous retinal detachment

Rhegmatogenous retinal detachment (RRD) is an important cause of
vision loss (D'Amico, 2008), afflicting up to 17.9 persons per 100,000 a
year (Laatikainen et al., 1985; Mitry et al., 2010; Rowe et al., 1999;
Törnquist et al., 1987; Wilkes et al., 1982). Among the potential com-
plications of RRD, the development of proliferative vitreoretinopathy
(PVR) is the most common and can lead to irreversible vision loss
(Tseng et al., 2004; Pastor et al., 2016). PVR is an irregular scarring
process, characterized by the growth of membranes on both surfaces of
a detached retina, and on the posterior surface of the vitreous (Ciprian,
2015). Despite the identification of risk factors for the development of
RRD, and the recognized role of cellular proliferation, the pathogenesis
of this condition remains largely unknown. Additionally, even though
several attempts have been made to develop drugs to halt the pro-
gression and development of PVR, they have not been successful in
humans, and currently there is no accepted treatment besides surgery
(Pastor et al., 2016). There is clearly an unmet need to better under-
stand the mechanisms of this disease and to identify novel potential
treatment targets (Pastor et al., 2016).

Metabolomics has been used as an approach to better understand
these mechanisms. Li et al. (2014) compared the metabolomic profile of
human vitreous samples from patients with RRD, with those from pa-
tients with recurrent retinal detachment and PVR, along with control
specimens from donor eyes. A clear metabolomic separation was ob-
served between the 3 groups, with 31 distinguishing metabolites
identified. Eleven metabolites were significantly different between the
eyes with RRD and PVR. The findings were interpreted as a dysregu-
lation of pathways related to inflammation, proliferation and energy
consumption. Most of the identified metabolites were linked to in-
flammation, including L-carnitine, which was decreased. Interestingly,
the decrease in L-carnitine was significantly more pronounced in eyes
with simple RRD than in eyes with PVR. Since L-carnitine inhibits in-
flammation, this suggests that inflammation is more pronounced in eyes
with RRD. Conversely, in eyes with PVR, metabolites such as ascorbate
and valine, which have been linked to fibroblast proliferation, seemed
to be more prominent. However, another metabolite associated with
proliferation, urea, was decreased in PVR, which might represent a
downregulation to inhibit proliferation. In the same study, an increase
in citrate, succinate and d-glucuronolactone was observed in both RRD
and PVR eyes, suggesting abnormalities in energy metabolism, namely
in the TCA cycle. This study has important limitations, namely a very
small sample size (8 patients with RRD, 7 with PVR and 6 normal) and
the lack of a validation cohort. However, it suggests the potential role of
metabolomics in delineating the pathophysiology of PVR. The authors

did not assess if the inclusion of metabolomics data on clinical pre-
dictive models can improve their accuracy, which would be interesting
to perform as clinical models alone do not provide sufficient predictive
power to identify patients at high risk of PVR (Pastor et al., 2016).

Another group focused on RRD associated with choroidal detach-
ment, another important cause of retinal detachment repair failure,
whose pathogenesis remains to be understood (Yu et al., 2015). The
authors compared the metabolomic profile of human vitreous samples
obtained from patients with isolated RRD, with samples from patients
with RRD and simultaneous choroidal detachment (RRDCD). In both
groups, the mean time from diagnosis was 4 days. Both on PCA and
PLS-DA the authors observed a separation between RRD and RRDCD
profiles, which included 265 metabolites, but only 24 were identified.
The authors acknowledged that the many unidentified metabolites re-
present a limitation of their work, as it is likely that metabolomic
changes and pathways were missed. Interestingly, most of the meta-
bolites and pathways identified in this study were similar to those
identified by Li et al. (2014) distinguishing RRD and PVR, with most
metabolites related to the urea and TCA cycle. In eyes with RRDCD,
there were increased levels of TCA metabolites, suggesting a higher
level of energy metabolism, as well as proliferation-related and in-
flammation-related metabolites (even though both study groups had
the same grade of PVR).

5.4. Age-related macular degeneration

Age-related macular degeneration (AMD) is the leading cause of
blindness in people older than 50 years in developed countries, and the
third worldwide (Wong et al., 2014). Approximately 90% of patients
with AMD have early or intermediate forms (Fig. 5), which may pro-
gress to advanced disease, in the form of either geographic atrophy
and/or neovascular AMD (also known as “wet AMD”) (Sobrin and
Seddon, 2013; Yonekawa et al., 2015). AMD is mostly asymptomatic in
its early stages, thus its diagnosis tends to occur only when patients seek
a routine eye examination, or are imaged with retinal color photo-
graphy or optical coherence tomography. Thus, the condition often
remains undetected until it is more advanced with loss of vision. Ad-
ditionally, only advanced neovascular AMD can be treated; despite all
research and recent trials, limited options are available to reduce AMD
progression, and no treatments exist for the advanced atrophic forms of
the disease (Assel et al., 2018). This is at least partially linked to the
current gap in our understanding on how genes and environmental
factors interact to lead to AMD occurrence and progression, and the
current lack of treatments for early disease. Increasing our molecular
comprehension of the biological pathways, as well as the specificity of
genetic and environmental interactions on AMD, is crucial to develop
new treatments and improve patient care (Lorés-Motta et al., 2018).
Metabolomics has the potential to (i) increase the current under-
standing on AMD pathological mechanisms and thus lead to the iden-
tification of new therapeutic targets; (ii) identify potential biofluid

Fig. 5. Color fundus photographs representative of the spectrum of severity stages of age-related macular degeneration (AMD). In (A) the presence of small drusen
(blue arrow) and pigment changes in the macular area can be observed – early AMD; in (B), in the macula, the presence of intermediate and large confluent drusen
(white arrow) can be appreciated – intermediate AMD; (C) presents an example of an eye with choroidal neovascularization and subsequent fibrosis (green arrow) –
late AMD, exudative form; (D) represents an eye with several areas of geographic atrophy (grey arrows) – late AMD, atrophic form.
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biomarkers for screening and assessment of progression; (iii) better
characterizing and identifying subtypes of the disease and enable the
development of personalized medicine.

Kersten et al. (2018) recently performed a comprehensive review on
the utility of several biofluid compounds as biomarker candidates for
AMD. The authors concluded that the most promising biomarker can-
didates were related to oxidative stress pathways, the complement
system and lipid metabolism. However, they highlighted that, in gen-
eral, there was inconsistency among different studies evaluating bio-
markers and their association with AMD. The great promise of hy-
pothesis-free techniques, such as metabolomics, was also emphasized.

Osborn et al. (2013) pioneered the application of metabolomics to
the identification of potential biomarkers of AMD, by comparing the
metabolomic profile of plasma samples of patients with neovascular
AMD with controls. Using LC-MS, the authors described 94 metabolites
separating the two groups, 86 of them identified as known metabolites.
However, they acknowledged that several nucleotides, sugars and li-
pids, among others were undetectable in their study. Among the 94
metabolites identified, 40 of them were consistently different between
patients with neovascular AMD and controls regardless of the statistical
approach used. The most significant and relevant metabolites for the
separation between the groups were peptides and modified amino acids
(increased in patients with neovascular AMD), natural products and
environmental agents. Other less prominent features included bile acids
(decreased in patients with neovascular AMD) and vitamin D-related
metabolites (decreased in patients with neovascular AMD). The authors
also performed pathway analysis, and described that the identified
metabolites mapped to 17 pathways, mostly related to carbohydrate,
amino acid, and coenzyme metabolites required for nitrogen balance
and energy metabolism.

Our group was the first to study the metabolomic profile of the
different stages of AMD (early, intermediate and late), which we
compared to control subjects older than 50 years and with normal
macula. Our initial work (Laíns et al., 2017a) was performed with NMR
metabolomics, based on the principal that this can be an appropriate
technique for an initial untargeted approach. In this study, we included
a total of 396 subjects, 61% (n=243) from Coimbra, Portugal (42
controls and 201 patients with AMD) and the remaining from Boston,
United States (n=153) (40 controls and 113 patients with AMD). Data
from both cohorts were analyzed separately. Using variable selection (a
technique that enables to filter off random variability unrelated to
sample classes (Diaz et al., 2013)), it was possible to observe a se-
paration between multiple AMD stages for the Boston cohort, and be-
tween extreme stages (late AMD vs controls and late AMD vs early
AMD) for the Coimbra cohort. This separation was mostly due to amino
acids and organic acids, dimethyl sulfone, lipids and proteins. The po-
tential confounding effects of gender, smoking history and age on these
results were found to be negligible. Interestingly, the metabolomic
fingerprints of AMD in the two cohorts presented both similarities and
differences. We observed similarities in the variations of histidine, un-
saturated fatty acids and protein levels, which suggests that such var-
iations may be a universal reflection of the disease, and, therefore, with
potential value in contributing to the current knowledge of the patho-
genesis of AMD. On the other hand, cohort differences in relation to
variations in particular compounds may reflect the potential im-
portance of local diet and lifestyle effects on the suggested AMD me-
tabolic fingerprints. We also observed a number of small metabolite
variations potentially differentiating controls from early AMD. This is
particularly relevant as these might represent specific signals to dis-
tinguish disease from non-disease status.

As discussed, MS has a much higher sensitivity than NMR, enabling
the measurement of a broader range of metabolites. Therefore, we
continued our investigations using MS metabolomics. In the Boston
cohort (Laíns et al., 2017b), we observed that after controlling for age,
gender, BMI and smoking status, 87 metabolites differed significantly
between AMD cases and controls. Indeed, a summary score based on

these 87 metabolites increased the ability to predict AMD cases, relative
to clinical covariates alone. Of these metabolites, over half (48 meta-
bolites) also differed significantly across AMD severity stages. Similar to
what was described by Osborn et al. (2013), and what we observed
using NMR, we identified significantly increased levels of dipeptides
and amino acids metabolites in patients with AMD, including a sig-
nificant role for alanine and aspartate metabolism. However, the ma-
jority of the identified significant metabolites were involved in lipid
metabolism, in particular glycerophospholipid metabolism. Glycer-
ophospholipids are a major component of cell membranes and are
especially enriched in neural membranes. Indeed, changes in glycer-
ophospholipids and their metabolism have been extensively in-
vestigated in neurodegeneration and in several chronic neurological
diseases, (Farooqui et al., 2000; Kosicek and Hecimovic, 2013) and
metabolomics is currently considered a promising tool to identify valid
biomarkers and new targets in Alzheimer disease (Mapstone et al.,
2017; Proitsi et al., 2017; Whiley et al., 2014). This is relevant because
AMD is a neurodegenerative disease of the retina and shares important
features and pathologic mechanisms with Alzheimer disease (Ermilov
and Nesterova, 2016; Kaarniranta et al., 2011; Ohno-Matsui, 2011;
Sivak, 2013). In Alzheimer disease, glycerophospholipids have been
shown to be reduced, and to play a central role in its pathogenesis
(Farooqui, 2012; Frisardi et al., 2011). Using MS metabolomics and
lipidomics, Mapstone et al. (2014) identified a panel of ten plasma li-
pids, most of them phosphatidylcholines (a class of glyceropho-
spholipids), that predicted with high accuracy conversion to mild
cognitive impairment and to frank Alzheimer disease in elderly sub-
jects.

Interestingly, Li et al. (2016) also described a significant role of
glycerophospholipids’ plasma metabolites in patients with polypoidal
choroidal vasculopathy (PCV) (a subtype of wet AMD), as compared to
controls (n= 21 and 19, respectively). Importantly, the authors focused
only on lipid metabolites (lipidomics), assessed with untargeted MS.
Their results revealed that the glycerophospholipid pathway was one of
the most significant pathways involved in the separation of their study
groups. However, the key indicator seemed to be platelet activating
factor (PAF), which was significantly higher in patients with PCV. As
the authors pointed out, PAF is an endogenous bioactive phospholipid
that plays an important role in angiogenesis promotion.

Metabolomics has also been used to increase the current under-
standing of AMD pathophysiology at a cellular level, namely related to
the formation of drusen and other sub-RPE deposits. These are the
clinical and pathological hallmark of AMD, and their features are
known to be linked to AMD progression. Thomson at al (Thompson
et al., 2015). used a combination of analytical techniques including
SIMS imaging (one of the techniques for MSI) to study the composition
and origin of focal (drusen) or diffuse (basal linear and basal laminar)
sub-RPE deposits. The authors isolated sub-RPE deposits from human
cadaveric eyes and described that they contained hydroxyapatite
spherules with cholesterol-cores, which provided a scaffold for proteins
to adhere. Based on this work, they postulated that the process of
drusen and basal deposits formation starts with the deposition of in-
soluble hydroxyapatite spherules around naturally occurring, extra-
cellular lipid droplets that contain cholesterol at the RPE/choroid in-
terface. Then, proteins and lipids attach to these shells, initiating or
supporting the growth of these sub-RPE deposits. This is in agreement
with important work by Dr. Curcio's lab (Pilgrim et al., 2017) that
developed a RPE cell culture model able to produce sub-RPE deposits
containing hydroxyapatite and lipids, among other elements, without
outer segment supplementation.

5.4.1. Animal model investigations
Using an aged-mouse model, Rowan et al. (2017) found further

evidence of the importance of lipid metabolites on AMD. The authors
performed an integrative assessment of the metabolome (urine and
plasma) with the microbiome, to better understand the effect of high-
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glycemic (HG) versus low-glycemic (LG) diets on AMD features, such as
photoreceptor cell damage and RPE abnormalities. Plasma metabo-
lomics was assessed by MS and urine metabolomics by NMR. The au-
thors described the identification of 26 metabolites common to both
fluids, although the results should be evaluated with the caveat that the
two fluids were assessed using two different techniques. The compar-
ison of the plasma and urinary metabolomic profile of mice fed with
HG, LG, and switched from HG to LG diets revealed significant differ-
ences. Mice with HG diets presented higher levels of lipids and higher
retinal damage scores, while mice from the LG diet group presented
higher levels of carbohydrates and amino acids, as well as lower retinal
damage scores. Additionally, the authors tried to identify metabolites
that could be associated with the presence of AMD features, verifying
that eight of them, including a phosphatidylcholine and carnitine, en-
abled a good separation (high area under the curve) between mice with
a high retinal damage score and non-affected animals. In the micro-
biome, an association was observed with metabolites modulated by the
abundance of microbiota, such as serotonin, whose higher levels were
associated with less retinal damage. The microbiome composition was
different among the three different dietary groups (HG, LG and switch
from HG to LG), but interestingly in the mice that were switched from
HG to LG, the microbiome was restored to the LG mice. The microbiome
of HG mice was enriched in Clostridia and Firmicutes, and both of these
were related to a more advanced retinal damage score. These findings
led the authors to emphasize the role of diet on AMD pathogenesis.
Finally, using analytical techniques to integrate all data, Rowan et al.
(2017) assessed diet-metabolome-AMD features interactions. These
seemed to be mostly driven by a central hub including three lipids,
serotonin and lysophosphatidylethanolamine.

5.5. Macular telangiectasia

Macular telangiectasia type 2 (MacTel) is a rare neurodegenerative
disease specifically affecting the macular region of the retina, causing
progressive central vision loss – Fig. 6. It has a late onset, typically
presenting between 40 and 60 years of age (Charbel Issa et al., 2013).
While there is strong evidence for genetic etiology, no causative gene or
genes have been identified.

While the clinical manifestations of the disease are primarily re-
stricted to the macular region of the retina, there have been reported
associations between MacTel and systemic abnormalities including
diabetes, obesity, hypertension and increased BMI (Charbel Issa et al.,
2013). Metabolomic MS analysis was run by the MacTel consortium on
patient serum in the hope of identifying systemic metabolite changes
that associate with the disease (Charbel Issa et al., 2013). Fasting serum
was collected for 50 MacTel patients and 50 control subjects (matched
for age, ethnicity and diabetes). Interestingly, plasma metabolite

differences were detected between the MacTel and control cohort. In
particular three amino acids - serine, glycine and threonine - were
significantly decreased in plasma from MacTel patients. Concurrently, a
genome-wide association analysis of MacTel subjects identified disease-
associated genetic loci that link to serine and glycine metabolism. This
study highlights the application of patient-derived samples, like serum/
plasma and possibly cells, to investigate disease-specific questions, even
when the disease is rare and samples are not derived directly from the
diseased tissue.

5.6. Others

Young et al. (2009) performed one of the first studies applying
metabolomics to the study of eye diseases. The authors obtained vitr-
eous humor samples from 42 patients undergoing PPV for several vi-
treoretinal disorders, thus including a very heterogeneous cohort. Most
of the patients had a diagnosis of chronic non-infectious uveitis
(n= 20, including panuveitis, pars planitis and Fuch's heterochromic
cyclitis) or lens induced uveitis (n= 9). These two groups presented a
distinct vitreous metabolome as assessed by three distinct analytical
methods. The authors performed a limited assessment of the metabo-
lites responsible for this separation, but these included glucose, ox-
aloacetate and urea, which were increased in samples from eyes with
lens induced uveitis. This is an acute condition, thus being logical to see
increased levels of inflammatory metabolites (such as oxaloacetate and
urea) as compared to a more chronic process. Importantly, most of
these patients were receiving steroids for treatment, which differed
between the two groups (lens induced uveitis with topical steroids,
while chronic uveitis with oral steroids). This might have introduced an
important bias. The authors also did not account for other potential
confounding factors.

5.6.1. Animal model investigations
Loss or reduction of blood flow and/or induction of hypoxia in the

retina are thought to be causative or confounding factors in many ret-
inal disorders, including age-related macular degeneration, diabetic
retinopathy and glaucoma (Narayanan et al., 2013; Kurihara et al.,
2016; Osborne et al., 2004). Therefore, animal models of reduced blood
flow or retinal hypoxia coupled with metabolomics tools have been
used to provide insights into the metabolic signatures that might as-
sociate with these retinal diseases.

D'Alessandro et al. (2014) used an ex vivo mouse model of retinal
ischemia to study the consequences of reduced perfusion to the retina,
as well as to test the capacity of different peptide therapeutics to re-
cover some of the damage. In their model, the retina was removed and
ischemia was induced ex vivo by putting the tissue in an air-tight con-
tainer and adding sodium azide to block mitochondrial oxygen

Fig. 6. Infra-red and optical coherence tomography of a right eye with macular telangiectasia. The image demonstrates abnormal vessels in the perifoveal area and
hyporeflective spaces in the inner and outer retina (blue arrows).
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consumption. Untargeted metabolic profiling was used to look at the
changes that occur from these treatments compared to controls, as well
as the ability of candidate peptides treatment to recover the effects.
Metabolite changes of interest arising for the untargeted approach were
validated by multiple reaction monitoring (MRM). The ex vivo ischemia
model leads to extensive cell apoptosis and, not surprisingly, a rapid
alteration in the levels of numerous metabolites. Notably, they found
metabolites related to oxidative stress, including glutathione, perox-
idized lipids and nitric oxide metabolites were all increased due to
ischemia with varying levels or rescue by the peptides. Central carbon
metabolism was altered with an accumulation of lactate, decreases in
glycolytic intermediates and elevation metabolites of the pentose
phosphate pathway. They also observed altered levels of purines me-
tabolites, something seen also in the oxygen-induced retinopathy mouse
model (OIR) (Paris et al., 2016).

It is well established that ischemia and the total loss of blood supply
to the retina results in metabolic dysfunction and photoreceptor death.
Interestingly, recent work by Kurihara et al. (2016) has shown that
induction of hypoxia signaling alone specifically in the RPE is sufficient
to cause substantial photoreceptor dysfunction and death, mirroring
features of AMD. The authors used high-resolution untargeted meta-
bolomics to verify a lipid dysregulation in a mouse model of RPE hy-
poxia signaling. They observed that numerous acylcarnitines were in-
creased in the mouse RPE/choroid complex and this phenotype could
be corrected with the deletion of the HIF genes and the prevention of
hypoxia signaling (Kurihara et al., 2016).

Hibernating animals experience dramatically reduced blood flow to
their retinas during hibernation, essentially a non-pathological form of
ischemia. Metabolic adaptations are used to deal with the reduced
blood flow and result in increased resistance to ischemia. Luan et al.
(2018) studied the retinas of hibernating ground squirrels by coupling
transcriptome analysis with metabolomics to reveal the metabolic
pathways that are altered in the hibernation state. Winter-awake ani-
mals were compared to deep torpor (hibernating) animals (6 per group)
and untargeted analysis was performed using both GC/MS and LC/MS
platforms. The metabolomics data was integrated with transcriptome
data and used in pathway analysis. Analysis revealed a shift from car-
bohydrate metabolism to lipid oxidation, similar to other tissues and
what is expected in a hibernating or fasting state. However, some amino
acid levels (including acetyled amino acids) were increased, which
appears unique to hibernating retinal metabolism and different than
other hibernating tissues (Luan et al., 2018; Nelson et al., 2009). Un-
derstanding the metabolic adaptations that allow the retina to with-
stand low blood flow may be informative to treating retina diseases
connected to ischemia and/or hypoxia.

To find a potential biomarker for postnatal hypoxia induced brain
injury Solberg et al. (2013) used a porcine model of hypoxia and ex-
amined the retinas as representative neuronal tissue. Five piglets were
used in a control and treatment group, and 8 metabolites were identi-
fied that surpassed thorough statistical analysis. CDP-choline was
identified and further validated and quantified with targeted mass
spectrometry as significantly increased in the hypoxic retinas. Further
work will be needed to determine if CDP-choline has value as a bio-
marker, including testing the levels in plasma.

5.7. Limitations

The application of metabolomics to the study of retinal diseases, and
the studies that have been published to date, have important limita-
tions. These include both limitations specific to the different study
designs, and limitations of metabolomics itself.

Of the studies mentioned in this manuscript, only a few (Tan et al.,
2016a,b; Yu et al., 2015; Li et al., 2014; Osborn et al., 2013; Laíns et al.,
2017b) reported un-annotated metabolites (i.e. with no identification
available on databases such as HMDB). Un-annotated metabolites are
important to describe, because if they are associated with disease or

with health, their omission can introduce bias into the reported results.
Therefore, they should be described and taken into account in all me-
tabolomic studies. Un-annotated metabolites remain an important
problem in metabolomics, since to date no complete characterization of
any organismal metabolome has been reported, dramatically con-
trasting with the genome (Viant et al., 2017). This is due to several
issues, including: the vast heterogeneity of metabolites; their wide
variation in concentration and size (for example, of approximately 4000
metabolites in human serum, concentrations range over 11 orders of
magnitude with the most abundant metabolites measured at millimolar
concentrations, and low abundance metabolites measured at picomolar
concentrations (Psychogios et al., 2011); and their large number and
distinct psychochemical properties (for example, differences in polarity
among groups or families of metabolites demand different extraction
procedures). Because of the higher sensitivity of MS, this is particularly
evident in studies using this analytical approach (Petras et al., 2017).
Un-annotated metabolites have been the focus of recent attention, and
an international task group is in place to help coordinate metabolome
annotation (Viant et al., 2017). Currently, among the most commonly
used public available metabolomic databases are the Human Metabo-
lome Database (http://www.hmdb.ca/) and METLIN (http://metlin.
scripps.edu/), and these are certainly crucial tools to address the
challenge of metabolomic annotation (Kell and Oliver, 2016).

Most studies included in this manuscript provide a detailed de-
scription of their methods for sample collection and processing (Kohler
et al., 2016), however, several studies lack quality control samples. This
is particularly relevant when large series of samples are analyzed, to
control for the analytical systems performance and identify eventual
drifts (Scalbert et al., 2009). Quality control samples are commonly
obtained by sample pooling (a pooled sample to represent all the
samples to be analyzed) (Barnes et al., 2016a), as performed for ex-
ample by Li et al. (2014), Yu et al. (2015) and Chen et al. (2016) or can
be achieved by using internal standards from different laboratories
(Hopiavuori et al., 2017). In any case, a laboratory should analyze and
report the variation that occurs for repeated analysis of the same
sample, for multiple extractions of the same sample on one day, and for
multiple extractions of the same sample over a period of time (Barnes
et al., 2016a). Before data analysis, data quality control procedures
should also take place, namely to identify and assess the number of
metabolites with missing data or undetected levels, to identify outliers,
and to analyze the normality of the data (Kumar et al., 2017). Several
techniques are available to deal with these distinct data analysis chal-
lenges, and it is crucial to report them (Di Guida et al., 2016). In the
field of metabolomics applied to retinal diseases few papers (Sun et al.,
2014; Tan et al., 2016a,b; Laíns et al., 2017b; Chen et al., 2016) pre-
sented their approach to deal with these aspects.

In terms of data analysis for metabolomics studies, as described in
the respective section of this manuscript, it is also important to account
for the fact that multiple hypotheses are tested (Hopiavuori et al., 2017;
Tan et al., 2016a,b; Li et al., 2014; Yu et al., 2015; Osborn et al., 2013;
Laíns et al., 2017a; de la Barca et al., 2017; Rowan et al., 2017; Chen
et al., 2016). Another important concept relates to the requirement of
validating metabolomics results, especially if they refer to the identi-
fication of potential biomarkers. The ideal approach is to assess an in-
dependent cohort (Monteiro et al., 2013), which so far, to our knowl-
edge, has only been partially attempted by one of the studies published
in the field of vitreoretinal diseases(Chen et al., 2016). Also, few studies
(Li et al., 2016), (Chen et al., 2016), (Laíns et al., 2017b), (Rowan et al.,
2017) assessed the performance of their potential metabolomic bio-
markers using ROC analysis, which, as mentioned, is the standard
method for assessment of biomarkers performance; and few groups
commented on other approaches to validate their results, namely con-
cerning PLS-DA analysis (Li et al., 2014; Yu et al., 2015; Osborn et al.,
2013; Laíns et al., 2017a; Locci et al., 2014; Young et al., 2009). Im-
portantly, these are mostly cross-sectional association studies, so no
causality can be inferred. The observed changes in the metabolomic
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profiles might be related to causal mechanisms and may also represent
the downstream effect of the metabolomic derangements in the distinct
vitreoretinal diseases. To understand the causal roles of metabolites,
one should ideally develop prospective longitudinal studies that allow
for future disease risks to be evaluated on the basis of both genetic and
metabolic information. This was performed by Rowan et al. (2017),
using an animal model to the study of AMD. These authors were also
the only group who assessed the influence of diet in the evaluated
metabolomic profiles. In the remaining studies, no assessments have
been performed in terms of the potential influence that dietary patterns
and genetic profiles may have in the described metabolomic profiles. As
stated, all these factors contribute to the overall metabolomic profile,
and can obscure or enhance differences, thus representing a potential
source of bias (Monteiro et al., 2013).

Despite its relevance for the understanding of disease biology and
mechanisms, a comprehensive integration of metabolomic profiles
among different biospecimens (i.e. urine, plasma and feces) has also
only been attempted in animal models (Rowan et al., 2017; Tan et al.,
2016a,b). This is important because, as mentioned, metabolomic pro-
files vary depending on the biofluid assessed and very little literature is
available correlating these data. For example, it would be interesting to
understand if and how the described metabolomic findings on plasma
samples of diabetic retinopathy patients (Barba et al., 2010; Paris et al.,
2016) relate to vitreous profiles (Chen et al., 2016), as at a first glance
they seem to be mostly unrelated. In all these analyses, however, one
needs to bear in mind that the metabolomic characterization reflects
the nature of the biospecimen assessed, i.e. for example, plasma re-
flecting the whole organism profile, while urine is a filtration of the
plasma, and vitreous or retinal tissue reflect the local eye environment.
Indeed, it is important to further emphasize that, as pointed by Tan
et al.(2016a,b), despite its proximity to the retina, the vitreous does not
necessarily mirror retina metabolomic changes. Funding limitations,
study design constraints, and the complexity of the statistical ap-
proaches required to perform association studies across biospecimens
are likely the cause of the current lack of data in this field, particularly
for human subjects. However, methods for robust data analysis have
been developed, (Do et al., 2017; Do et al., 2015; Feng et al., 2016; Xia
and Wishart, 2010) and can unravel unparalleled data for the under-
standing of disease mechanisms, and also to assess the biological re-
levance of peripheral (i.e. in the blood and urine) biofluid biomarkers.
Pathway analysis methods have also been applied to a very limited
extent in the field of vitreoretinal conditions, (Laíns et al., 2017b; Chen
et al., 2016; Li et al., 2016; Yu et al., 2015) and they are crucial to meet
these opportunities provided by metabolomics to increase the current
understanding of disease pathophysiology (as described in the corre-
sponding section). While in this manuscript it would had been ideal to
organize published data by metabolic pathway and physiologic system,
published studies do not provide sufficient information to permit this.
Indeed, this is an opportunity for future work.

The inclusion of insufficient sample sizes is also a very important
limitation and is problematic in the application of metabolomics across
most medical fields. As described, there is currently no standard
method for the determination of sample size when designing a meta-
bolomic experiment (Blaise et al., 2016; Nyamundanda et al., 2013),
but several tools are available for its estimation, and minimum numbers
for animal and human studies have been reported (Barnes et al.,
2016a). Our group has published on AMD human plasma metabolomics
following these recommendations (n≥ 30 for each study group), (Laíns
et al., 2017a; Laíns et al., 2017b) but this is not the case for most of the
remaining literature. Indeed, published studies with animal tissue in-
cluded sample sizes varying between one (Hopiavuori et al., 2017) to
seven (Tan et al., 2016a,b) samples per group; and studies with human
vitreous samples included as low as eight samples per group (Li et al.,
2014). For both animal and human studies, metabolomic studies have
been limited by the difficulty in obtaining adequate healthy control
groups, matched for relevant potential confounding factors, such as age

or gender. Collaborative studies, including several institutions from the
same country or different countries, are probably the best strategy to
overcome this problem, especially for human clinical studies.

In summary, although the potential of the metabolic phenotyping
strategy appears obvious, so far, its application to the field of retinal
diseases is limited by a lack of well-designed and appropriately pow-
ered studies, as well as the lack of validation cohorts (Holmes et al.,
2015). The clinical applicability of metabolomics strongly relies on the
quality and accuracy of the acquired data. Study design should be
planned in advance, including all crucial steps to ensure the highest
data quality and lowest analytical variability. This includes subject/
sample selection, sample collection, sample size, sample handling and
storage conditions, preparation and data analysis. Also, new methods
should always be evaluated in comparison with the current clinical
standards, to ensure that they represent an actual benefit.

5.8. Future directions

In the last few decades, the field of metabolomics has experienced
an exponential growth, and holds great promise to significantly im-
prove diagnosis, provide prognostic information and identify additional
therapeutic targets. The potential of this approach for translation to the
clinical environment is great. However, as described in this manuscript,
the application of metabolomics to the study of vitreoretinal diseases is
very limited, and not comparable to what has happened in other
medical fields (Kohler et al., 2016). Clearly, we are still very far from
clinical translation. Most studies were hindered by small sample sizes
and data analysis constrains. However, we believe that there is a great
opportunity for a wider use of metabolomics to further understand the
mechanisms of several vitreoretinal diseases, as well as for developing
diagnostic and prognostic biomarkers. Indeed, for certain conditions
studied, such as AMD, the available results are encouraging, con-
sidering the reported biologically plausible metabolites and metabo-
lomic pathways.

As summarized, most work performed so far in the field of vi-
treoretinal diseases relates to the identification of potential biomarkers.
In this manuscript, we have pointed opportunities, current limitations
and especially approaches to improve the application of metabolomics
to that end. Indeed, we further highlight that there is a great need to
developing highly predictive and robust biomarkers able to reflect the
complex nature of diseases. In this section, however, we focus on other
future directions not yet widely explored, which we believe can also aid
clinical care and improve patients’ outcomes.

One of the new concepts of modern medicine is “precision medi-
cine” or “personalized medicine”. According to the Precision Medicine
Initiative, it takes into account individual variability in genes, en-
vironment and lifestyle for treatment and prevention. This means that
differences between individuals are considered, instead of “one-size fits
all approach”. The goal is that ultimately clinicians can prescribe the
right medicine to the right patient at the right time, with maximum
efficacy and minimal toxicity, as well as predicting the susceptibility to
disease onset among populations (Sun and Hu, 2016). Metabolomics is
one of the most widely applicable areas for the development of preci-
sion medicine, as it mirrors genes, environment and lifestyle. For ex-
ample, metabolomics can help in identifying disease subtypes and
stratify patients with certain conditions. This is good to maximize pa-
tient benefit and minimize patient harm, and would be useful for ex-
ample for AMD and DR, both complex diseases with a spectrum of
phenotypes and pathways of progression. In clinical research, stratifi-
cation can also enhance selection of appropriate trial participants, and
thus increase their power and enhance the analysis of outcomes.

Another example, which has also not been explored in vitreoretinal
diseases, is pharmacometabolomics/pharmacometabolomics, i.e. me-
tabolomics applied to drug discovery and development. Metabolomics
is expected to have the ability to identify markers of drug toxicity and
efficacy that can accelerate drug discovery and assist to delineate
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appropriate clinical plans (Cuperlovic-Culf and Culf, 2016; Tolstikov,
2016). For example, pharmacometabolomics has been used to assess
toxicity induced by acetaminophen (Winnike et al., 2010), as well as to
predict efficacy and adverse events of other drugs, such as oral anti-
diabetics or statins (Sun and Hu, 2016; Wishart, 2016; Zhang et al.,
2015). This is particularly important considering the global aging of the
population. Typically, older patients have more comorbidities and
polypharmacy, thus representing a bigger challenge due to the un-
known interactions between drugs. Pharmacometabolomics can po-
tentially provide a gateway to stratified medicine, by acting as a
screening tool for selecting individuals according to their suitability for
treatment with particular drugs (Nicholson et al., 2012a). This could be
an interesting approach, for example, to study the efficacy of vitamin
supplements to halt AMD progression; or the differences in response to
anti-angiogenic treatments, namely why some patients do not respond
as opposed to others, and the differences among the different agents.
Due to the current costs of these medications, and an increasing
awareness on the great need for cost-effectiveness in patient care, this is
of outmost importance. Metabolomics is used to probe the real-world
nature of biochemical functionality and is sensitive to both gene and
environmental influences; therefore, it is likely to be more practical
than gene-based measurements of response to therapy. Indeed, the
concept of metabolomics trajectory has been suggested (Nicholson
et al., 2012b), and includes obtaining biofluid samples prior to, during,
and after a patient undergoes treatment. The obtained information can
be used to monitor effects of any treatment, and to predict outcomes.
This will enable better outcomes instead of trial and error treatment
regimes. Also, personalized medicine could be better achieved if instead
of biosamples, wearable technologies could be developed and applied.
An excellent example are glucose monitoring contact lenses, which are
able to transfer biomarker discovery and assessment into an individual
level (Badugu et al., 2018; Elsherif et al., 2018).

One can also speculate that there will be great power in combining
data from multiple ‘omics, (Inouye et al., 2010; Sun and Hu, 2016)
which can lead to greater insight and better characterization of complex
diseases. To truly understand disease mechanisms, we need to adopt a
systems biology approach combining multiple bio-organizational
layers, such as the genome, proteome and metabolome (Holmes et al.,
2015). Indeed, with the currently available platforms and options for
data analysis, it is possible to analyze wide-ranging metabolomic phe-
notypes in association with genetic variance, disease-relevant pheno-
types and lifestyle and environmental parameters, allowing dissection
of the relative influences of these factors (Suhre and Gieger, 2012). This
strategy can allow the visualization of a biological system on a global
level. Namely, the so-called metabolome-genome wide association
(GWAS) studies are becoming increasingly popular (Wang et al., 2017).
The conventional GWAS studies focus on the association between single
nucleotide polymorphisms (SNPs) and disease phenotypes (for example,
disease versus non-disease). These require large sample sizes and often
do not provide any information on the underlying biological processes.
Conversely, metabolome-GWAS studies are more highly powered and,
by using metabolomic profiles as intermediate traits, they provide in-
formation on the biology of the disease association. This has been de-
monstrated in several medical fields, including cancer (Wang et al.,
2017), and can be of great utility for vitreoretinal conditions that lack a
complete understanding of their pathophysiology. If novel pathways
and their interactions are unraveled, this can lead to the identification
of novel targets and the development of therapies directed to them. This
is crucial considering the current lack of treatment for conditions like
macular telangiectasia, and for the dry and atrophic forms of AMD,
among others. For AMD, there is also still a great need to understand
the mechanisms involved in progression, and to develop strategies to
halt it, and thus reduce the burden of this blinding condition. Of note,
‘omics integrative analyses remain in their early stages and clinical
utility has yet to be demonstrated. Machine-learning approaches can be
a powerful tool to support these and other metabolomics data analysis

(Zhou et al., 2017). Indeed, improvements in technology and compu-
tational solutions are still required, and ideally one should be able to
link metabolomic with dynamic metadata from patients to predict risks
and prognosis (Trivedi et al., 2017).

In the future, imaging metabolomics (as described, enabling the
study of the distribution of metabolites within a tissue) will also likely
play an increasingly important role to provide new insights into the
biological processes at systems biology level (Sun et al., 2014). The
retina is a highly specialized tissue, with a complex anatomy. Each
layer has a different morphology and function. The ability to assess and
obtain qualitative and quantitative metabolomics data without dis-
turbing this complex anatomy in its native environment is extremely
valuable. It can facilitate the understanding of disease processes, and
the identification of novel biomarkers. This is particularly true if one
can integrate these data with the metabolomic phenotype of easily
accessible biofluids, bearing in mind that these represent distinct bio-
logical environments, thus the detected biomarkers might differ.

Importantly, to make the most out of metabolomics potential and
open new avenues in research and patient care, it is crucial to establish
multidisciplinary teams, where clinicians, biostatisticians, bioinfor-
matics, geneticists, and others, work synergistically and capitalize their
knowledge in the different required fields. Cross-disciplinary efforts, as
well as translational collaborations between academic institutions,
pharmaceutical agencies and diagnostic companies are crucial to move
forward (Kohler et al., 2016).

In conclusion, at present metabolomics is research laboratory-based,
and needs to become more practical to be easily implemented in the
clinic (Trivedi et al., 2017). This represents a great challenge for the
field of metabolomics in general, and much work lies ahead. For this to
happen, one of the most crucial requirements is to standardize and
harmonize metabolomic phenotyping and biomarker modelling proce-
dures, and to improve the current publicly available databases and
promote data sharing (Holmes et al., 2015).

We envision that metabolomics, and its integration with other
‘omics approaches, will be increasingly applied in the coming years to
the study of vitreoretinal diseases. This will lead to increased knowl-
edge on their mechanisms and pathophysiology, the identification of
diagnostic and risk-prediction biomarkers, and the assessment of effi-
cacy and toxicity of several drugs. By contributing for better diag-
nostics, better patient selection, better treatment and cost-effectiveness
of treatment strategies, it will improve patient outcomes and offer
higher-precision medicine of high value. We live in the era of precision
medicine, and we are now in a position to develop global systems-
biology care for conditions that are characterized by gene–environment
interactions. The field of vitreoretinal diseases will certainly benefit
from this approach. In this manuscript, we provide tools for a better
understanding of metabolomics and its potential in clinical transla-
tional research and management of retinal diseases.
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