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Great strides have been made over the past decade toward comprehensive study of metabolism.
Mass spectrometry (MS) has played a central role by enabling measurement of many metabolites
simultaneously. Tracking metabolite labeling from stable isotope tracers can in addition reveal
pathway activities. Here, we describe the basics of metabolite measurement byMS, including sam-
ple preparation,metabolomic analysis, and data interpretation. In addition, drawing on examples of
successful experiments, we highlight the ways in which metabolomics and isotope tracing can illu-
minate biology.
Introduction
Since the discovery of DNA, biological research has steadily

accelerated due to ever-increasing ability to control genes and

their protein products. Against the backdrop of the revolutionary

progress, metabolism research remained comparatively stag-

nant for many decades. The past decade, however, has seen a

swell of interest. The ongoing epidemic of obesity and metabolic

syndrome is one reason for this resurgence. Metabolism, how-

ever, plays a central role in all areas of biology, from ecology to

bioengineering to cancer (Figure 1). Each of these areas is now

being increasingly examined from a metabolic viewpoint. In

such efforts, there is high value to taking a big-picture perspec-

tive. This is feasible due to advances in metabolite measurement

technologies like NMR and mass spectrometry (MS) (Fiehn,

2002; Beckonert et al., 2007).

Measurement of metabolite concentrations by metabolomics,

however, tells only half the story. Equally important is under-

standing pathway activity, which can be quantified in terms of

material flow per unit time, i.e., metabolic flux (Sauer, 2006).

Concentrations and fluxes do not reliably align. This is intuitive

to drivers: although flux increases with car density until traffic

slows, a high concentration of cars on the road does not reliably

indicate high flux (Figure 2A). Similarly, in metabolism, metabo-

lite build-up can occur not only due to increased production,

but also due to decreased consumption. For example, when

glucose is removed from yeast, glycolytic efflux drops sharply,

leading to build-up of lower glycolytic intermediates even though

pathway influx is decreased (Figure 2B, Lowry et al., 1971; Xu

et al., 2012). Because metabolite levels and fluxes provide com-

plementary information, metabolic understanding is best

achieved by investigating both.

Unlike metabolites, fluxes are not physical entities that can be

measured in a mass spectrometer. They can be inferred, how-

ever, through use of isotope tracers. Classical radioactive tracer

studies laid the foundations for modern understanding of meta-

bolism. Today, similar studies can be performed using MS or

NMR to follow, broadly and quantitatively, the fate of non-radio-

active stable isotope tracers. To quantitate fluxes at the systems

level, copious tracer data are integrated using computational
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models. But without such computation, valuable biological in-

sights can nevertheless be obtained by intuitive interpretation

of isotope tracer experiments. Moreover, intuition can often be

complemented by using equations to quantitate key fluxes or

flux ratios. Such targeted isotope tracer methods are covered

together with metabolomics here.

The Metabolome
Metabolites are produced and consumed by a network of

coupled enzymatic reactions that converts incoming nutrients

into usable energy and biomass. At steady state, the quantitative

inflows and effluxes from eachmetabolite must balance (O’Brien

et al., 2015). The scale of the metabolic network varies by organ-

ism from around 500 to a few thousand reactions and water-sol-

uble metabolites. The structures of these metabolites are largely

identical from bacteria to humans. This reflects the fact that all

organisms need nucleotides, amino acids, and fatty acids to

make DNA/RNA, proteins, and membranes. Nearly all make or

consume glucose, with cellulose the most abundant biopolymer

on earth. Accordingly, around 100 high-flux compounds are

consistently major metabolome constituents: amino acids, nu-

cleotides, and intermediates of glycolysis, the pentose phos-

phate pathway (PPP), and the TCA cycle.

In contrast to the finite core of metabolism, the full scope of

small molecules in biological systems is vast. It includes other

functionally important metabolites: enzyme activators and inhib-

itors; donors and regulators of macromolecule modifications

(Table 1); signaling molecules including neurotransmitters and

hormones; mediators of interspecies warfare like antibiotics;

and structural and energy storage molecules such as lipids.

Because lipids are so numerous and their properties are different

from water-soluble metabolites, lipid measurement is its own

‘omics field (lipidomics) (Wenk, 2010). In addition to endogenous

metabolites, organisms that are higher on the food chain contain

secondary metabolites made by other species. Human samples

typically also contain drugs, artificial flavors, and other xenobi-

otics, as well as their metabolic byproducts.

Beyond known metabolites, there is substantial interest in the

unknownmetabolome. While the full set of genes and proteins in
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Figure 1. Applications of Metabolomics
an organism can be revealed by genome sequencing, the full set

of metabolites remains ill-defined due to the catalytic potential of

uncharacterized proteins, enzyme promiscuity, and the diversity

of metabolic inputs coming from food. The observation that most

peaks in mass-spectrometry-based metabolomics studies

remain unidentified has increased interest in unknown metabo-

lome (Domingo-Almenara et al., 2018), although many of these

peaks are analytical artifacts (Mahieu and Patti, 2017). Neverthe-

less, new metabolites and reactions certainly remain to be

discovered.

Metabolomics
Metabolomics, with or without isotope tracing, involves three

basic steps: (1) sample preparation, (2) metabolome measure-

ment, and (3) data analysis (Figure 3). While the measurement

step involves the glamorous technology, sample preparation

and data analysis are equally important.

Sample Preparation

Success in metabolomics starts with picking the right experi-

ment. In this regard, we hope that readers will be motivated

by some of the biological applications described below, as

well as Table 2, which highlights many different isotope tracers

and their utility. In this section, we focus on basic design issues
Table 1. Selected Examples of Metabolites Impacting Macromolecule Modifications

Modification Principal targets Metabolic substrate M

Phosphorylation Proteins ATP A

Acetylation Proteins Acetyl-CoA C

Deacetylation Proteins NAD (sirtuins) N

B

Methylation DNA, histones S-adenosyl-methionine S

Demethylation DNA, histones a-ketoglutarate, O2 S

GlcNAcylation Proteins UDP-N-acetylglucosamine U

Acylation Proteins Acyl-CoA (e.g., palmitoyl-CoA) C
in metabolomics studies, which apply

across many applications.

Control of the nutrient environment is

particularly important. For in vivo studies,

this means close attention to feeding,

fasting, and diet composition. For cell

culture studies, it means special care in

media selection and timing of media

changes. Chemically defined media is

generally preferred to complex biological

media like lysogeny broth (LB). For

mammalian cell culture, use of dialyzed

fetal bovine serum, which is readily

commercially available, avoids con-

founds due to serum metabolites.

For isotope tracer studies, it is often

preferable to avoid metabolic perturba-
tions when introducing the tracer, i.e., to maintain ‘‘metabolic

steady state.’’ This can be accomplished by switching into

otherwise identical media with particular nutrient(s) changed

from unlabeled to labeled form. Duration of labeling depends

on the pathways of interest and whether aiming for dynamic or

steady-state data. In cultured cells, steady-state labeling (i.e.,

‘‘isotopic steady state’’) is typically achieved in glycolysis

over �10 min, the TCA cycle over �2 hr, and nucleotides over

�24 hr. Very rapid sampling is required to capture glycolytic

labeling dynamics (e.g., 10 s timescale), whereas TCA dynamics

can be probed by sampling at time points like 15, 30, 60, and

120 min. One-day experiments are often convenient for collect-

ing steady-state labeling data.

Another key issue is harvestingmetabolites. This is a particular

challenge for cells and tissues, as many important metabolites

naturally turnover within seconds. Thus, obtaining an accurate

metabolite profile requires stopping metabolic activity nearly

instantaneously. This remains an area of active research. Typical

approaches include freezing and/or enzyme denaturation

(Figure 3). A variety of extraction and quenching protocols

have been reported (Winder et al., 2008; Dietmair et al., 2010;

Want et al., 2013). For cultured cells, a simple approach is to

add cold organic solvent directly after media removal by
etabolic product or reaction inhibitor

DP

oA

icotinamide (sirtuin inhibitor)

utyrate, 3-hydroxybutyrate (HDAC inhibitor)

-adenosyl-homocysteine

uccinate, fumarate, 2-hydroxyglutarate

DP

oA
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Figure 2. Metabolite Levels versus Meta-

bolic Flux
(A) Concentration and flux are distinct properties.
(B) Biological example of divergence between
concentration and flux. Glucose removal de-
creases flux throughout glycolysis, but some
glycolytic intermediates increase. FBP, fructose-
1,6-bisphosphate; PEP, phosphoenolpyruvate.
aspiration (for adherent cells) or fast filtration (for non-adherent

cells). The cold temperature quickly slows metabolism, and the

organic solvent permanently denatures enzymes. Manipulations

that may alter metabolism, such as pelleting or washing cells

prior to quench metabolism, are best avoided (Wittmann

et al., 2004).

For tissue specimens, it ismost practical to freeze first and then

extract. Quick freezing can be achieved by smashing tissue be-

tween liquid-nitrogen-temperature metal plates, a technique

known as the Wollenberger clamp (Figure 3) (Wollenberger

et al., 1960). Due to superior heat transfer, this results in substan-

tially faster freezing than placing tissue pieces directly into liquid

nitrogen. Tissues can then be stored at �80�C, pulverized by

grinding, and extracted with cold organic solvent. Care must be

taken to avoidmetabolic alterations both before and during sam-

pling. This is not straightforward, as anesthesia or euthanasia can

each induce metabolic changes (Overmyer et al., 2015). Indeed,

even the sight of an experimenter (or doctor) may induce a stress

response that alters metabolism (Sorge et al., 2014).

Another complication is that organic solvent may not immedi-

ately stop enzymatic activity. Persistent catalytic activity is a

particular problem for high-energy compounds like NADPH

and ATP. The degradation products of these abundant metabo-

lites are themselves biologically important metabolites, with

even modest degradation of NADPH markedly increasing

NADP and ATP markedly increasing ADP and AMP. For biolo-

gists interested in such compounds, we recommend extracting

with a combination of organic solvent and acid, as the acid ac-

celerates enzyme denaturation. Specifically, we find that a

mixture of 40:40:20 acetonitrile:methanol:water with 0.1 M for-

mic acid, followed by addition of bicarbonate a fewminutes later
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to neutralize the samples, effectively cap-

tures these metabolites (Rabinowitz and

Kimball, 2007; Lu et al., 2018). Further

research is likely to yield yet better

methods going forward.

The inherent challenges inmetabolome

sampling render confirmatory measure-

ments valuable. For example, does a

particular genetic perturbation produce

the same metabolic changes in liver

sampled both from anaesthetized and

from euthanized mice? Alternatively,

certain metabolites can be measured

directly in vivo, e.g., using fluorescent re-

porters (Looger et al., 2005; Hung et al.,

2011; Rogers and Church, 2016). At the

same time, it is important to recognize
that even imperfectly collected samples can yield valuable in-

sights. Some delays in quenching typically occur during tissue

sampling in clinical studies, but this is a reasonable trade-off

for the benefits of human data.

MS

With an extract in hand, the challenge is tomeasure asmanyme-

tabolites as possible, as accurately as possible. In the early days

of metabolomics, one-dimensional proton NMR was commonly

used to produce metabolome profiles. While peaks could be as-

signed to functional groups (e.g., CH2 signal from fatty acid tails),

most peaks reflected the integrated signals frommultiple metab-

olites. These limitations have been partially resolved by multidi-

mensional NMR (Larive et al., 2015; Markley et al., 2017), and

NMR continues to play an important role in metabolomics due

to its capacity for structure elucidation, in vivo metabolite mea-

surement (Mancuso et al., 2004; Salamanca-Cardona et al.,

2017), and universal detection (nearly every metabolite contains

a proton and thus gives a proton NMR signal). Nevertheless, in-

vestigators are increasingly relying on MS due to its unmatched

capability for detecting low-abundance metabolites without

interference from closely related species (Figure 4).

This reflects the remarkable resolving power and sensitivity of

modern mass spectrometers. In MS, resolving power is defined

as the ratio m/Dm, where m is the analyte mass and Dm is the

smallest mass difference that can be distinguished (Figure 4B).

Achieving high resolution allowsmetabolites with small mass dif-

ferences to be independently measured. For example, creatine

(C4H9N3O2) and leucine (C6H13NO2), with accurate positive ion

masses of 132.076 and 132.102, can be distinguished at 4,000

resolution. For isotope tracing, high resolution can distinguish

species labeled with different heavy nuclei. For example, M+1



Figure 3. Steps in Metabolomic Analysis
GC, gas chromatography; HILIC, hydrophilic interaction chromatography; RP, reversed phase chromatography.
palmitate isotopologues with one 2H versus one 13C can be

separated at 100,000 mass resolution.

To be detected by the MS, a liquid extract must be ionized.

This is most commonly done by electrospray ionization: applying

high voltage to liquid as it flows out the tip of a needle, thereby

converting the liquid into tiny charged droplets that eventually

generate gas phase ions (Fenn et al., 1990) (Figure 4A).

Electrospray ionization is a relatively ‘‘soft’’ (i.e., gentle) ioniza-

tion process which typically yields the intact (de)protonated

metabolite ion, (M+H)+ in positive ion mode and (M-H)� in nega-

tive ion mode. It also generates, however, a diversity of adducts

(e.g., [M+Na]+) and fragments, which complicate the resulting

mass spectra and downstream data analysis.

Common mass analyzers used in metabolomics are time-of-

flight (TOF), orbitrap, and quadrupole. All three manipulate ions

in electric fields. TOF instruments race ions down a flight tube.

First, ions are accelerated through a voltage drop (DV) to impart

kinetic energy. The ion’s velocity then depends on its mass-to-

charge ratio (m/z), with lower m/z ions flying faster down the

flight tube (Figure 4A). Current TOF instruments typically have

mass resolving power of 10,000–60,000 (Junot et al., 2014).

Orbitrap instruments monitor ion oscillations up and down a

spindle-shaped electrode. Ions are injected into the orbitrap

and rotate around the spindle, with electrostatic attraction

balanced by centripetal force. Due to the shape of the spindle,

the ions also oscillate along its long axis, with the frequency of

these z axis oscillations dependent only on ion m/z (Zubarev

and Makarov, 2013). The frequency of these oscillations can

be used to determine m/z with resolution in excess of 100,000

and even up to 1,000,000. Albeit at greater cost, even higher res-

olution can be achieved in ion cyclotron resonance instruments

in which cyclic ion movement is induced by a strong magnetic

field (Marshall et al., 1998).
In contrast to high-resolution mass analyzers like TOF and

orbitrap, which can measure all incoming ions, quadrupoles

act as low-resolution mass filters, filtering out all ions except

those of a particular m/z of interest (±0.5 dalton). Quadruples

are commonly placed in front of high-resolution mass analyzers

to make a hybrid mass spectrometer such as a quadruple time-

of-flight (Q-TOF). This enables isolation of ions of a particular

mass followed by their fragmentation (by collision with inert

gas) and high-resolution analysis of the fragment ions. The re-

sulting tandem MS (MS/MS) spectra reflect the structure of the

parent ion and can be used for metabolite identification

(Figure 4D). Alternatively, quadruples can be placed in series in

the absence of a high-resolution mass analyzer to make a triple

quadruple instrument. Triple quadrupoles measure only a prede-

fined targeted subset of ions but offer the best sensitivity for

measuring a single analyte.

Chromatography

By physically separating analytes on a column before MS mea-

surement, chromatography enhances metabolome coverage

and improves the quantitative accuracy of MS. Chromatography

is particularly important due to the competitive nature of the

electrospray ionization process; abundant ions suppress the

signal of co-ionizing species (Furey et al., 2013). Chromato-

graphic separation reduces ion suppression, improving

detection of low-abundance species. It also prevents quantita-

tive artifacts wherein changes in the concentration of an abun-

dant species systematically alter the signal intensity of other

co-ionizing metabolites.

Another merit of chromatography is separation of isomers,

which are compounds with samemolecular formula but different

structures, like leucine and isoleucine (Figure 4C). Isomers are

common in metabolism. For example, there are more than

a dozen isomers of hexose phosphate, each with distinct
Cell 173, May 3, 2018 825



Figure 4. LC-MS Concepts
(A) LC separation is followed by ionization (typically by electrospray) and MS detection. Detector reports signal intensity for specific m/z.
(B) Resolution refers to the ability of the mass spectrometer to distinguish metabolites of similar mass.
(C) Chromatography is crucial for separation of isomers that have same m/z.
(D) MS/MS provides information about chemical moieties within a compound, facilitating metabolite identification.
biological roles. Isomers are indistinguishable by straightforward

MS but can be differentiated by chromatography and/or MS/MS

fragmentation pattern.

Chromatography is also critical for distinguishing real metab-

olite signals from imposter signals arising from metabolite frag-

mentation during the ionization step, where high ionization

energy may break down some metabolites into fragments

with identical m/z to other metabolites (Xu et al., 2015). For

example, citrate fragments mimic four different carboxylic

acid metabolites. ATP fragments mimic ADP and AMP. Thus,

while direct MS analysis without chromatography can detect

a large number of ions with high throughput (Link et al.,

2015), it is subject to many false positives and negatives (Lu

et al., 2017).

Chromatography and MS are normally coupled together, as

gas chromatography-MS (GC-MS) or liquid chromatography-

MS (LC-MS). GC requires analytes to vaporize and separates

them based on their partitioning between the gas phase (‘‘mobile

phase’’) and a liquid layer on the chromatography column interior

(‘‘stationary phase’’). It is most commonly coupled to MS by

electron ionization, a hard ionization technique that produces a

characteristic set of fragments in lieu of the intact metabolite

ion. Peaks can be identified by retention time and matching

the fragmentation pattern to spectral libraries. GC has superior

chromatographic resolution to LC, with GC-MS particularly

good for measuring analytes of low molecular weight (e.g., ace-

tate), high volatility (e.g., alcohols), or poor ionization by electro-

spray (e.g., sterols). With chemical derivatization, it can also
826 Cell 173, May 3, 2018
measure medium-sized charged metabolites, like sugar mono-

phosphates (Lai and Fiehn, 2016).

LC separates metabolites based on their partitioning between

solvent and micron-sized beads packed within the column.

Reversed-phase (RP) chromatography involves hydrophobic

beads (typically C18) and elution with a gradient from water to

organic solvent. It works well for many polar metabolites and

lipids but fails to retain hydrophilic metabolites like amino acids.

It also produces poor peak shape for metabolites that contain

multiple phosphate groups, such as ATP. These deficiencies

can be corrected by adding to the running buffer a moderately

hydrophobic cation, like triethylamine, which functions as an

ion-pairing agent that helps bind anionic metabolites to the

column (Coulier et al., 2006). A cationic-ion-pairing agent,

however, causes severe ion suppression in positive mode and

can takeweeks to rinse out of an LC system; thus, a systemdedi-

cated to negative mode analysis is required.

Hydrophilic interaction chromatography (HILIC) involves hy-

drophilic beads and elution with a gradient from organic solvent

to water. HILIC methods have advanced substantially over the

past decade and allow positive- and negative-mode analysis

to be performed on the same instrument. A diversity of HILIC

column chemistries are available (Jandera, 2011). Among

these, we find an amide resin to be particularly effective for

measuring the core metabolome (Bajad et al., 2006; Yuan

et al., 2012). Another type of liquid separation, which is

also well suited to measuring the core metabolome, is capil-

lary electrophoresis, where separation is based on differential



voltage-driven movement through liquid rather than on column

interactions (Soga et al., 2003).

Data Processing

The first step in data analysis is converting raw MS data into an

annotated table indicating peak identities and intensities across

samples. This involves computational algorithms that pick

peaks, align them across samples, and quantitate peak inten-

sities. Most of the >10,000 peaks found in a typical LC-MS run

reflect environmental contaminants, adducts, or in-source frag-

ments, as opposed to metabolite molecular ions, and can be

ignored. Interesting peaks fit into one of two categories: (1)

they correspond to known metabolites or (2) they differ signifi-

cantly across biological conditions.

Given a well-annotated chromatography method, known

metabolites can be identified based on exact mass and retention

time. The open-source Maven software (now maintained as

ElMaven) was designed specifically to pull out intensities and

labeling patterns of known metabolites peaks (Melamud et al.,

2010). Given an accurate library of chromatographic retention

times (measured using metabolite standards), Maven or related

commercial software enables both easy review of raw ion-spe-

cific chromatograms and streamlined processing of these raw

data into tables of known metabolites signal intensities.

To find peaks that differ across biological conditions, the

open-source program XCMS is widely used (Smith et al.,

2006). It identifies significant changes and facilitates searching

for MS/MS spectral matches. XCMS can also be accessed

online via a web-based platform. Peaks can be identified by

matching to retention time and/or fragmentation pattern of

known standards. Fragmentation patterns, as measured by

MS/MS, are reasonably consistent across instruments, enabling

metabolite identification by searching MS/MS spectral data-

bases (e.g., HMDB, METLIN) (Smith et al., 2005; Wishart et al.,

2007; Kind et al., 2017). When no MS/MS match is found,

MS/MS can nevertheless provide hints regarding the functional

groups present in unknown compounds. NMR remains, how-

ever, the gold standard for small molecule structure elucidation

(Caceres-Cortes and Reily, 2010).

Interpretation

The starting point for interpreting metabolomics data is under-

standing the relationship between signal intensities and concen-

trations. In MS, for any given analyte, signal intensity, which is

measured in ion counts, generally depends linearly on concen-

tration. Thus, relative amounts can be inferred based on ion

count fold change. Across compounds, however, response fac-

tors (e.g., ionization efficiency) vary dramatically. Thus, absolute

quantitation requires comparison to standards. This is best

achieved by adding isotopic internal standards at the time of

quenching. Because isotopic standards are not available for

many metabolites, it is sometimes easier to label the biological

sample (e.g., by growing cells in [U-13C]-glucose) (Bennett

et al., 2008; Neubauer et al., 2012; Park et al., 2016). Once abso-

lute metabolite levels are known for a reference condition, abso-

lute levels in other conditions can be determined by relative

quantitation. Thinking in terms of concentrations, as opposed

to arbitrary signal intensities, helps to contextualize findings.

For example, when the metabolite rises in a given condition, is

it impacting osmolality? Or is it still present only in trace
amounts? How does the concentration relate to the Km of

consuming enzymes?

A good way to visualize the overall pattern of concentration

changes in a metabolomics dataset is clustered heatmaps,

which can be generated using free open-source tools (e.g., Clus-

ter 3.0 and Java Treeview). Metabolites that show similar

patterns across samples group together, as reflected in the

dendrogram (tree diagram). Figure 5A shows an example of a

clustered heatmap, in this case for an experiment probing the

response of whole-cell and mitochondrial-metabolite pools to

different respiratory chain inhibitors (Chen et al., 2016). The heat-

map nicely illustrates that mitochondrial metabolites respond

particularly strongly and variably to the different inhibitors.

Heatmaps can also be used to group together samples that

show similar metabolic responses. A more refined way of as-

sessing the overall similarity or differences between samples

is principal component analysis, which identifies linear combi-

nations of metabolites that best differentiate samples. Plotting

the position of samples along the first two principal compo-

nents graphically highlights which samples have similar metab-

olite profiles (Figure 5B). Such plots can be generated by free

software like MetaboAnalyst (Xia et al., 2015).

Another aspect of data analysis is to find metabolites (or

labeling patterns) that change significantly across conditions.

This can be done using standard statistical tests like Student’s

t test or analysis of variance (ANOVA). Because metabolomics

studies measure many metabolites, it is expected that some

metabolites will yield a p value < 0.05 based on chance alone

(on average 5 out of 100). To reduce the false discovery rate,

p values should be adjusted using the Benjamini-Hochberg

procedure. Findings that are significant after false discovery

correction can be highlighted in bar graphs (Figure 5C).

For isotope tracing, one convenient way to visualize labeling

patterns is stacked bar graphs, where each color refers to a

particular labeled form. Before analyzing labeling data, it is

important to correct for natural isotope abundances. The biggest

contributor is the natural carbon 13 abundance of 1.1%, but it is

best to correct for all relevant natural isotopes, taking into

account the tracer employed and the resolving power of the

mass spectrometer. Software exists for this purpose (Midani

et al., 2017; Su et al., 2017). Labeling fractions provide comple-

mentary information to the absolute magnitude of labeled forms.

After looking at a clustered heatmap and then individually at

altered metabolites, key messages in the data often begin to

crystalize. To facilitate this process, we routinely ‘‘get to know’’

any unfamiliar metabolite that shows an interesting concentra-

tion or labeling change by examining its structure, checking its

production and consumption routes using a pathway database

like KEGG or MetaCyc (Kanehisa et al., 2016; Caspi et al.,

2018), and searching for known biological associations using

Google or PubMed. Software has also been developed to help

identify significantly affected pathways based on the fraction

of pathway metabolites showing altered levels in a particular

experiment. For example, in the respiratory chain inhibitor exper-

iment shown in Figure 5, 45 metabolites show 2-fold concentra-

tion changes. Pathways enriched in these metabolites can

be identified using MetaboAnalyst or other similar software

(Figure 5D). Alanine, aspartate, and glutamate metabolism
Cell 173, May 3, 2018 827



Figure 5. Visualization of a Metabolomics Dataset
The dataset measured whole-cell and mitochondrial matrix metabolome changes in response to three different respiratory chain inhibitors (Chen et al., 2016).
(A) Heatmap of metabolite concentration changes. For simplicity, only metabolites showing 2-fold changes in at least one condition are shown. In practice, we
encourage users to examine all metabolites, as those that do not change in concentration can also be informative.
(B) Principle component analysis.

(legend continued on next page)
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(KEGGmap00250) is one of the top hits (Figure 5E). This example

shows the feasibility of pathway analysis but also its current lim-

itations. Alanine, aspartate and glutamate metabolism is not

actually a classical pathway, and the KEGG pathway diagram

does not illuminate the biochemical basis for the differential

responses of the involved metabolites. These data can be ratio-

nalized, however, by knowledge of the relationship between the

electron transport chain, TCA cycle, and amino acids. This is why

we rely heavily on learning metabolic biochemistry, and reading

and discussing broadly, as the cornerstones of effective inter-

pretation of metabolomics data.

Biological Application
Here, we highlight four general ways in which metabolomics and

isotope tracing can illuminate biology. In each case, we discuss

selected successful experiments. The goal is not to review the

contributions of metabolomics and isotope tracing but to

discuss a small set of experiments with an eye toward inspiring

new users.

Finding that Special Metabolite

One of themost powerful applications ofmetabolomics is finding

metabolites with specific biological roles. A straightforward case

involves identifying the substrates of enzymes. For novel or

promiscuous enzymes, the physiological substrate can be hard

to identify biochemically. There are now many examples of

successfully employing metabolomics for this purpose. The

typical experimental design involves knocking out the enzyme

and looking for changes in the metabolome. In most cases,

enzyme knockout results in buildup of the physiological sub-

strate, with software like XCMS effective for pulling out these

peaks from untargeted MS data (Saghatelian et al., 2004).

Metabolomics can also identify unexpected enzyme products.

A particularly important case involved active site mutants of the

TCA cycle enzyme isocitrate dehydrogenase (IDH1 and IDH2)

that cause human cancer (Parsons et al., 2008). While initial

biochemistry hinted that the mutant enzymes were inactive

(Zhao et al., 2009), metabolomics analysis revealed that cells

expressing oncogenic mutant IDH had a normal amount of the

enzyme’s typical substrate and product but dramatic increases

in three unexpected LC-MS peaks (Dang et al., 2009). These

three peaks all occurred at a single retention time, suggesting

that they all arose from a single metabolite. One of these peaks

proved to be the molecular anion of the metabolic error product,

2-hydroxyglutarate, produced by the mutant enzyme. The other

twowere the sodium adduct and in-source dehydration product.

Subsequent work showed that 2-hydroxyglutarate causes

cancer by inhibiting histone and DNA demethylation (Figueroa

et al., 2010).

Metabolomics can also be used to identify metabolites asso-

ciated with more complex biological functions. One approach
(C) Bar graph showing data for a specificmetabolite, aspartate. Statistical significa
rate (FDR) by the Benjamini-Hochberg procedure. *p < 0.05.
(D) Identification of impacted metabolic pathways using the MetaboAnalyst s
metabolites showing at least 2-fold concentration change in one condition (p valu
straightforward measure that takes into account whether the altered metabolites a
–log(p) and redness to the pathway impact score. The most ‘‘impacted’’ pathwa
(E) Upon clicking on the dot in (D), the software opens the pathway diagram in (E).
marked in red.
is to start with an extract that triggers a biological response of

interest. Size filtration, organic extraction, or heat can be used

to determine whether the activity resides in a small molecule or

macromolecule (e.g., protein). When the activity resides in a

small molecule, metabolomics can identify those present. The

extract can then be purified into fractions, looking for MS (or

NMR) peaks that track with the biological activity. This approach

was successful in identifying a catabolite of the amino acid

valine, 3-hydroxyisobutyrate, as an inducer of fat transport

across vascular endothelial cells (Jang et al., 2016).

Perhaps the greatest interest is in identifying metabolites

linked to common human diseases for use as diagnostic or prog-

nostic markers. The potential for metabolites to serve this role is

well established, with glucose and cholesterol measurements

central to modern medicine. Importantly, modest changes in

concentration (e.g., 50%) in glucose and cholesterol are used

to guide diagnosis and therapy. To find similar biomarkers via

metabolomics, large sample sizes are required. To reduce both

the effort required for picking peaks and the statistical chance

of false discoveries, to date, the most successful metabolomics

studies of common human diseases have focused on known

metabolites. For example, to discover metabolites that are pre-

dictive of type 2 diabetes development, samples of 2,422 indi-

viduals followed for 12 years from the Framingham Offspring

Study were analyzed by LC-MS, focusing on the core metabo-

lome using triple-quadrupoleMS. This revealed that amodest in-

crease (30%) in the concentrations of branched-chain amino

acids (BCAAs: leucine, isoleucine, valine) predicts future insulin

resistance (Newgard et al., 2009; Wang et al., 2011). Because

of the difficulty of proving causation in such population-based

human studies, looking for the same phenotype in mouse

models is valuable. Indeed, elevated BCAAs were found early

in standard mouse diabetes models (Lynch and Adams, 2014).

These models are now being used to identify the mechanisms

underlying the rise in BCAAs and how such elevation may

contribute to pathogenesis. Collectively, these studies highlight

the utility of metabolomics in finding metabolites of special bio-

logical importance, including new drivers of two of the most

common diseases: cancer and diabetes.

Seeing the Big Picture

Beyond findingmetabolites of special importance, a key virtue of

metabolomics is the global perspective. In many cases, confi-

dence is increased by seeing multiple related metabolites

change in parallel. Notable examples include increased levels

of all three BCAAs (leucine, isoleucine, and valine) in diabetes

(Newgard et al., 2009; Wang et al., 2011) and increased levels

of three different nicotinamide-related metabolites in autism

(Yap et al., 2010). Similarly, while various acetylated spermidine

species had been previously linked to cancer (Tsuji et al., 1975),

interest in these metabolites as a biomarker is much increased
nce is determined by Student’s t test with p values corrected for false discovery

oftware package. Pathways are evaluated on two criteria: Enrichment for
e based on enrichment by hypergeometric test) and ‘‘Pathway impact,’’ a less
re centrally or peripherally located in the pathway. Circle size is proportional to
y is alanine, aspartate, and glutamate metabolism (KEGG map00250).
Each rectangle is a metabolite with its KEGG ID shown. Altered metabolites are
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after it emerged as the strongest cancer predictor inmultiple me-

tabolomics studies (Johnson et al., 2015; Wikoff et al., 2015).

Beyond putting specificmetabolic changes in context, metab-

olomics can also reveal general biological principles. For

example, multiple metabolomics studies in microbes support

the concept that metabolism is relatively robust to genetic

changes but sensitive to the nutrient environment. In both

E. coli and yeast, single knockout of an enzyme has only a

modest effect on the overall metabolome, mainly accumulation

of metabolites directly upstream of the eliminated enzyme (Ishii

et al., 2007; Ewald et al., 2013). Knockout mutants of transcrip-

tion factors and signaling proteins show weaker but broader

changes inmetabolome, which are relatively subtle but reflective

of the gene’s function (Mülleder et al., 2016; Fuhrer et al., 2017).

In contrast, changes in the nutrient environment lead to large

global changes in metabolite concentrations (Ishii et al., 2007;

Boer et al., 2010). Why does knockout of a central metabolic

enzyme usually produce only focal metabolic changes, while

nutrient deprivation produces global ones? The metabolic

network contains multiple partially redundant pathways, which

can bypass many blockages. But there is no substitute for

elemental nutrients. More generally, metabolism is closely tied

to the nutrient environment by the strong impact of substrate

availability on fluxes (Hackett et al., 2016). Big metabolite

changes in response to nutrient limitation may have a diversity

of benefits: providing a robust intracellular signal of the nutrient

conditions; optimizing survival and growth in the difficult nutrient

environment; and preparing the cell for rapid recovery when

nutrient conditions improve (You et al., 2013).

Metabolomics can also be integrated with other ‘omic

approaches (Huan et al., 2017). One important goal of such

efforts is to understand regulatory interactions spanning different

biomolecule classes. This is often facilitated by dynamic

measurements. For example, serial metabolomic and transcrip-

tomic measurements of plant responses to light/dark cycling in

Arabadopsis identified that darkness quickly induces protein-

degradation genes (Caldana et al., 2011). This is followed by

increases in amino acid levels. The increased levels of amino

acids in turn triggers downregulation of amino acid biosynthetic

genes. Such ‘omics-driven hypothesis generation is valuable,

with the ultimate proof lying in confirmatory genetic experiments

testing cause and effect.

Tracking Pathways in Action

Metabolomics measures metabolite abundances. While infor-

mative, metabolite abundances do not reveal pathway activities:

metabolite levels are determined by the balance of production

and consumption in a nonlinear way. Increasedmetabolite levels

can be due to either faster production or slower consumption.

Differentiating these alternatives is often critical. For example,

when the production of a metabolite is enhanced in a disease

state, then it is logical to inhibit the pathway. Accordingly, there

is great value in probing pathway fluxes with isotope tracers.

This can be achieved by introducing the tracer and measuring

the dynamics of downstream metabolite labeling. Intuitively,

faster labeling implies higher flux. Indeed, for a metabolite

made directly from the tracer, initial rate of label accumulation

(measured in molarity or moles per cell, not labeling fraction)

equals the reaction’s flux. For suchmetabolites, assumingmeta-
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bolic steady state, flux can also be calculated from the labeling

half-time and metabolite pool size: flux = ln 2 3 pool size / t1/2.

For metabolites further downstream, however, labeling dy-

namics depend on both the flux and the pool size of all metabo-

lites between the tracer and the measured analyte (Figures 6A–

6C). For example, glycolysis and the PPP often label at similar

rates, mirroring glucose-6-phosphate labeling, despite glycol-

ysis having much higher flux.

An alternative approach involves determining labeling patterns

at isotopic steady state. Such experiments advantageously

avoid the need to take measurements at many different time

points. For example, to evaluate flux through the PPP relative

to glycolysis, it is more effective to use steady-state labeling

from positionally labeled glucose, than dynamic labeling from

[U-13C]-glucose. One effective tracer is glucose labeled selec-

tively at carbons 1 and 2 ([1,2-13C]glucose). Catabolism of this

tracer via the oxidative PPP, but not glycolysis, can produce

M+1 labeled glycolytic metabolites (Figure 6D). Because the

natural isotope M+1 signal is substantial, proper correction for

natural isotope abundance is critical. In addition, it is important

to be precise in relating the labeling patterns to pathway activ-

ities. For example, [1,2-13C]glucose specifically probes the flux

from ribose-5-phosphate generated by the oxidative PPP,

back into glycolysis via the non-oxidative PPP (Figure 6D). If

the ribose is used for nucleotide synthesis, as occurs in prolifer-

ating cells, there is no M+1 signature in glycolysis. Table 2 pro-

vides a list of tracers and heuristics for interpreting the resulting

labeling patterns. It includes simple and widely used methods

like feeding uniformly 13C-labeled nutrients and determining their

relative contributions to TCA intermediates, as well as clever

ways of probing specific fluxes with positionally labeled tracers.

As the field of flux analysis matures, we hope that such heuristics

will become increasingly well validated and widely used.

For the moment, there continues to be great value in carefully

thinking through the atom transformations involved in metabolic

pathways, and how they relate to observed labeling patterns.

Such analysis can identify unexpected fluxes of biological signif-

icance. An important example involves M+5-labeling of citrate

in mammalian cells fed [U-13C]glutamine (Figure 6D). The stan-

dard metabolic route of glutamine metabolism, involving its con-

version to a-ketoglutarate, followed by oxidative metabolism of

a-ketoglutarate in the TCA cycle, produces M+4 citrate. In

contrast, reductive carboxylation of a-ketoglutarate produces

M+5 citrate (Yoo et al., 2008; Mullen et al., 2011; Metallo et al.,

2011). This ‘‘backwards’’ TCA flux was rigorously proven by

tracing with glutamine labeled selectively at its first carbon

([1-13C]glutamine), and eventually by showing loss of the M+5

citrate upon knockout of IDH1. As such efforts more completely

map the functional capacity of metabolism, isotope tracing will

become more turnkey for the broader biology community.

Tracing in Multicellular Organisms

In flux analysis, the immediate frontier is tracing in live animals.

This is a blast from the past – isotope tracers have been

employed in plants and animals from the very beginning of

biochemistry – but such studies are being revisited now with

the power of metabolomics. Interpretation is more complicated

than for cell culture studies or isolated microbes, as labeling in

any given tissue reflects not only the average labeling of its



Table 2. Isotopic Tracers for Measuring Pathway Activities

Application Tracer Metabolite readouts Interpretation

Pentose phosphate pathway (PPP)

PPP overflow [1,2-13C]glucose Lactate M+1, M+2 Flux through the combined oxidative and

non-oxidative PPP generates M+1 lactate from

[1,2-13C]glucose, while glycolysis generates

only M+2 lactate (Lee et al., 1998). LacM+1 /

LacM+2 reflects ratio of PPP overflow to

glycolysis.

Source of ribose

(oxidative versus

non-oxidative branch

of PPP)

[1,2-13C]glucose Ribose phosphate M+1, M+2 The oxPPP make M+1 ribose phosphate; the

non-oxPPP makes M+2. Ratio of M+1/M+2

depends on the gross flux (net flux + exchange

flux) of each branch: Reversibility of the

non-oxPPP can make M+2 even if all net ribose

production is by oxPPP.

Glycolysis, TCA and gluconeogenesis

Glycolytic rate [U-13C]glucose FBP

Dihydroxyacetone phosphate

3-phosphoglycerate

Higher flux yields faster labeling. Labeling

results should be confirmed by glucose uptake

and lactate excretion measurements.

Reversibility of glycolysis 50%: 50% mix of

[U-12C]: [U-13C]

glucose

Glucose-6-phosphate M+3

FBP M+3

Feeding a mixture of labeled and unlabeled

glucose results in unlabeled and M+3 triose

phosphates. Reversibility of aldolase produces

M+3 FBP. Fructose bisphosphatase activity

yields M+3 glucose-6-phosphate (Park

et al., 2016).

Gluconeogenesis [U-13C]lactate

[U-13C]glutamine

Glucose M+2, M+3

Glucose-6-phosphate M+2, M+3

3-phosphoglycerate M+2, M+3

Lactate and glutamine are major TCA

feedstocks. Flux from TCA to glycolysis

catalyzed by PEPCK results in triose phosphate

labeling. Fructose bisphosphatase activity then

makes labeled hexose phosphates.

Pyruvate carboxylase

contribution to TCA

[3-13C]glucose

[1-13C]pyruvate

Aspartate M+1

Malate M+1

C1 of pyruvate comes from glucose C3/C4.

Pyruvate C1 is lost in making acetyl-CoA, but

can enter TCA via pyruvate carboxylase which

makes M+1 oxaloacetate and thus M+1

aspartate and M+1 malate (Sellers et al., 2015).

Reductive carboxylation

(‘‘backwards’’ TCA flux)

[U-13C]glutamine

[1-13C]glutamine

Citrate M+5, Malate M+3 or

Citrate M+1, Malate M+1

Reductive carboxylation of a-ketoglutarate

(derived from labeled glutamine) produces M+5

citrate from [U-13C]glutamine and M+1 citrate

from [1-13C]glutamine, and subsequent ATP

citrate lyase produces M+3 or M+1 malate,

respectively (Yoo et al., 2008)

TCA carbon sources [U-13C]nutrients Succinate

Malate

Citrate

a-ketoglutarate

Carbon enrichment (number of 13C atoms

versus total carbon atoms) reflects carbon

contribution from the nutrient; useful in vivowith

correction for circulating nutrient enrichment

(Davidson et al., 2016; Faubert et al., 2017; Hui

et al., 2017)

Biosynthesis

Acetyl-CoA sources [U-13C]glucose

[U-13C]glutamine

[U-13C]acetate

Fatty acids (saponified)

Acetyl amino acids

Fatty acids (e.g., palmitate) are made from

stochastic condensation of labeled and

unlabeled acetyl-CoA. Acetyl group labeling

can be inferred by binomial fitting of fatty acid

labeling or by comparing steady-state labeling

of acetyl-amino acids and the corresponding

free amino acids.

De novo fatty acid

biosynthesis

2H2O Fatty acids (saponified) 2H2O labels newly synthesized fat directly and

via NADPH, with 21 potential deuterium per

palmitate (Lee et al., 1994; Zhang et al., 2017).

(Continued on next page)
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Table 2. Continued

Application Tracer Metabolite readouts Interpretation

Purine biosynthesis [U-13C]glycine ATP M+2

GTP M+2

Purine ring contains a glycine moiety. Newly

synthesized purines are M+2.

Pyrimidine biosynthesis [U-13C]bicarbonate

[U-15N]glutamine

[U-13C]glutamine

UTP

UDP-glucose

Pyrimidines are made from carbonyl phosphate

(which contains one bicarbonate and one

glutamine nitrogen) and aspartate (which

typically contains glutamine nitrogen and

carbon (Strong et al., 1983).

Protein synthesis 2H2O

[U-13C]essential amino

acids

Amino acids (hydrolyzed

from protein)

2H from 2H2O incorporates into non-essential

amino acids (Busch et al., 2006). Essential AA

are directly incorporated.

One-carbon metabolism

De novo synthesis of

serine

[U-13C]glucose Serine M+3 Serine is made from glucose via the glycolytic

intermediate 3-phosphoglycerate. Fraction of

serine M+3 indicates fraction serine made by

de novo synthesis (Locasale et al., 2011)

Source of folate 1C units [3-13C]serine

[U-13C]glycine

[U-13C]sarcosine

[U-13C]formate

dTTP M+1

ATP M+1, M+2, M+3, M+4

Formyl-methionine M+1

Formate M+1

dTTP contains a 1C unit from cytosolic

methylene-THF. Purine rings contain two 1C

units from cytosolic formyl-THF. Formyl-

methionine contains a 1C unit from

mitochondrial formyl-THF. Excess 1C units are

secreted as formate (Ducker et al., 2016). Note

that purine rings also contain an intact glycine;

thus, ATP M+2 may be from glycine not 1C.

Location of serine

catabolism to make

cytosolic 1C units

[2,3,3-2H]serine dTTP M+1, M+2 Direct cytosolic production of methylene-THF

by SHMT1 yields dTTP M+2. The more

circuitous route from mitochondrial SHMT2

yields dTTP M+1 (Herbig et al., 2002; Ducker

et al., 2016).

Methylation through SAM [Methyl-13C,2H3]

methionine

Methylated lysine (free or

on histones)

Histones are methylated by SAM with the

methyl group frommethionine (Zee et al., 2010).

Redox metabolism

NADH production from

GAPDH

[4-2H]glucose NADH M+1

Lactate M+1

(compare to NAD, pyruvate)

GAPDH transfers the 2H of glyceraldehyde-3-

phosphate, derived from [4-2H]glucose, to

NADH. The 2H can then be transferred to

lactate by LDH (Lewis et al., 2014).

NADPH sources [1-2H]glucose

[3-2H]glucose

[4-2H]glucose

[2,3,3-2H]serine

NADPH (compare to NADP)

Fatty acids (saponified)

2-hydroxyglutarate

The oxPPP makes NADPH from [1-2H]glucose

(G6PD) and [3-2H]glucose (PGD) (Fan et al.,

2014). Malic enzyme and isocitrate

dehydrogenase make NADPH from malate and

isocitrate, which can be labeled indirectly via

[4-2H]glucose (Liu et al., 2016). Folate

metabolism makes NADPH from 2H-serine.
2H can be transferred to fatty acids or

2-hydroxyglutarate (whose production can be

induced by mutant IDH expression) (Lewis

et al., 2014).

Hydrogen-deuterium

exchange between

NADPH and water

2H2O NADPH (compare to NADP)

Fatty acids (saponified)

NADPH redox-active hydrogen undergoes

water exchange catalyzed by Flavin enzymes.

Knowledge of the fraction of NADPH

undergoing exchange is required to determine

the quantitative contribution of the oxPPP and

other NADP reduction pathways (Zhang

et al., 2017).

Glutathione biosynthesis [U-13C]glycine

[U-13C]glutamine

Glutathione Glutathione is made from glutamate, cysteine,

and glycine. Glutamine is a main source of

glutamate (Mak et al., 2017).
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Figure 6. Isotope Tracing to Probe Metabolic Activity
(A–C) Relationship between labeling patterns and flux. X, Y, Z, P, and Q represent metabolites. Arrows represent reactions with Fin and Fout the fluxes (reaction
rates) making and consuming Y, respectively. Graphs reflect pool size of different labeled forms of Y. (A) Based on the law of mass conservation, at metabolic
steady state, flow into and out of metabolite pools must balance. (B) Upon instantaneous switching of X from unlabeled to fully labeled, Y becomes labeled over
time with single exponential kinetics. Despite the isotope labeling, if no other conditions change, the cells remain at metabolic steady state with constant pool
sizes and fluxes. Labeling kinetics depend on both pool size and flux, as shown in the equation. (C) Now consider a casewhere Y can be produced by two different
reactions, using substrates P and Q, with P unlabeled and Q labeled. At isotopic steady state, the unlabeled versus labeled pool size of Y reveals the relative flux
from the two different pathways.
(D) Atom mapping for [1,2-13C]glucose tracing pentose phosphate pathway flux and for [U-13C]-glutamine tracing TCA flux. White balls are 12C atoms. Shaded
balls are 13C atoms. Glycolysis, red; pentose phosphate pathway, blue; classical TCA turning, yellow; reductive carboxylation, green.
component cells, but also the tracer’s pharmacokinetics, i.e., the

circuiting levels of the tracer and its metabolites.

To deal with this complexity, some relatively simple calcula-

tions are valuable. For animal studies, one key variable is the

tracer infusion rate. The required rate of tracer infusion to achieve

a particular target enrichment in the circulation can be deter-

mined based on knowledge of the circulating nutrient’s endoge-

nous production and consumption rates, which at steady state

must balance and are termed the nutrient’s circulatory turnover

flux (Fcirc) (Hui et al., 2017): Fcirc = R(1 – L)/L, where R is the infu-

sion rate and L the plasma metabolite labeling. It is generally

advantageous to achieve enrichment in the range of 10%–

30%, to minimize perturbation of circulating metabolite levels

while having enough tracer on board to see labeling of down-

stream products.

Another useful measurement is the fractional contribution of a

circulating nutrient to downstream tissue metabolite levels. For

example, how much does glutamine contribute to the TCA

cycle? This can be probed by infusing labeled glutamine until

steady-state tissue labeling is achieved. To estimate glutamine’s

TCA contribution, the simplest approach is to divide the tissue

TCA intermediate labeling by the serum glutamine labeling.

This approach works well when the nutrient is mainly catabolized

within a tissue. For glutamine, it has revealed that, despite its
dominant contribution to the TCA cycle in cultured cancer cells

(DeBerardinis et al., 2007), it is a minority contributor for tumors

in vivo (Hensley et al., 2016; Davidson et al., 2016). When the

infused nutrient can also feed tissues indirectly, via transforma-

tion into another circulating metabolite, a more sophisticated

approach is needed. To identify the direct contribution of

different nutrients, it is necessary to conduct tracer experiments

with all of the circulating nutrients of interest (e.g., glucose,

lactate, and glutamine). Given data on the labeling of each circu-

lating nutrient by each tracer, as well as tissue labeling data, the

direct contributions of each nutrient can then be determined by a

straightforward matrix calculation. Using this approach, we have

found that TCA labeling from infused glucose mainly occurs via

circulating lactate: Certain cells break glucose down into lactate,

which is secreted into the circulation and used as a primary TCA

substrate for most tissues and even for tumors (Faubert et al.,

2017; Hui et al., 2017). In this manner, glycolysis and the TCA

cycle are uncoupled in individual tissues, enabling their indepen-

dent tissue-specific regulation. Thus, tracing in animals can

reveal new design principles of organismal metabolism.

Future Directions

An important direction in metabolomics is standardization of

analytical procedures (Salek et al., 2015). This addresses several

needs. First, while the individual steps of analysis are not
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especially complicated, building an effective integrative work-

flow remains tricky. Second, standardization of chromatography

is needed to enable effective sharing across laboratories of peak

identities. Well-vetted libraries of exact mass and retention time

should eventually enable automated quantitation of known me-

tabolites. Standardized procedures should also include posting

of annotated data tables, including measured masses, retention

times, and individual sample peak intensities, to public

repositories. With continuous improvements in instrumentation,

standardization of protocols, and automation of data analysis

and sharing, metabolomics is poised to be increasingly broadly

available and useful to biologists over the coming decade.

What are the frontiers? One immediate need is better under-

standing the scope of metabolites. There is a vast gulf between

the �200 water-soluble metabolites that many labs now

routinely measure, and the �10,000 peaks that are found in a

typical LC-MS run. Most of this difference is the result of individ-

ual metabolites producing many different ions, due to adduct

formation and in-source fragmentation (Mahieu and Patti,

2017). After accounting for these phenomena, however, there

may still be more unknown than identified metabolites.

A longer term goal is to capture the spatial organization of

metabolism. Genetically encoded fluorescent metabolite re-

porters provide an unmatched combination of spatial and

temporal resolution and are amenable to live imaging. Effective

reporters are available, however, for only a few metabolites.

A promising alternative is imaging MS (Bodzon-Kulakowska

and Suder, 2016). Since there is no chromatographic step to

separate isomers and in-source degradation products, a key

challenge in imaging MS is ensuring accurate peak identifica-

tion. Current methods have a spatial resolution of about

20 mm, which is sufficient to assess metabolite levels in

different tissue and tumor regions, but not across subcellular

organelles. To determine organellar metabolite levels, an

auspicious approach is rapid organelle purification, which is

facilitated by genetically encoding an affinity tag on the organ-

elle of interest (Chen et al., 2016). Metabolomics can then be

performed as for any other sample. Users need to be mindful

of the potential for metabolite alterations, either due to

continued enzymatic activity or metabolite leakage during the

purification process.

Imaging MS and organelle purification will both be most valu-

able in combination with isotope tracing. A key opportunity is to

use multiple tracers and measurement methods to reveal meta-

bolic activity across tissues, cell types, and intracellular organ-

elles. A major challenge will be making sense of the data.

Graphical representation of labeling patterns and intuitive data

interpretation is likely to continue to be important, but, as

complexity increases, mathematical modeling may become

more central to driving biological discovery. This Primer explicitly

does not discuss large-scale quantitative flux analysis, because

it currently relies onmodeling that is beyond the capacity of most

labs. Development of software that makes quantitative flux anal-

ysis broadly accessible is an important goal. For such efforts to

maximize their impact, theymust ultimately allow flux determina-

tion in multi-compartment systems, including organs connected

via the circulation. Combined progress in experimental and

computational methods hold the potential to produce a picture
834 Cell 173, May 3, 2018
of metabolism in action, in space and time. The resulting knowl-

edge should inform many of society’s greatest challenges, from

green technology to cancer therapy.
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