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A guide to 13C metabolic flux analysis for
the cancer biologist
Maciek R. Antoniewicz1

Abstract
Cancer metabolism is significantly altered from normal cellular metabolism allowing cancer cells to adapt to changing
microenvironments and maintain high rates of proliferation. In the past decade, stable-isotope tracing and network
analysis have become powerful tools for uncovering metabolic pathways that are differentially activated in cancer
cells. In particular, 13C metabolic flux analysis (13C-MFA) has emerged as the primary technique for quantifying
intracellular fluxes in cancer cells. In this review, we provide a practical guide for investigators interested in getting
started with 13C-MFA. We describe best practices in 13C-MFA, highlight potential pitfalls and alternative approaches,
and conclude with new developments that can further enhance our understanding of cancer metabolism.

Introduction
In the past decade, measuring intracellular metabolism

has become an indispensable tool in biomedical
research1,2. Cancer metabolism is an especially active area
of research3–8. It has long been recognized that cancer
cells exhibit rewired metabolism compared to normal
cells. A century ago, Warburg9 described how cancer cells
take up large amounts of glucose and preferentially con-
vert it to lactate, even under aerobic conditions. This so-
called Warburg effect, or aerobic glycolysis, is a major
hallmark of cancer metabolism10–12. More recently, with
the aid of stable-isotope tracers and network analysis,
additional metabolic pathways were identified that are
activated in cancer cells, including reductive metabolism
of glutamine13, altered glycolysis14, serine and glycine
metabolism15–17, one-carbon metabolism18,19,
transketolase-like 1 (TKTL1) pathway20,21, and acetate
metabolism22–25. The activities of these pathways allow
cancer cells to extract cellular building blocks and energy
from substrates and use them for cell growth. With the
rapid progress in cancer research, an increasingly clearer
picture is generated how cancer cells rewire their

metabolism, adapt to and manipulate their micro-
environment26–28, and maintain a continuous supply of
anabolic precursors, reducing equivalents and energy to
fuel the reproduction of more cancer cells5,29.
The complexities of mammalian metabolism require a

systems-level analysis of the underlying networks and
metabolic phenotypes30,31. Currently, 13C metabolic flux
analysis (13C-MFA) is the preferred tool for quantitative
characterization of metabolic phenotypes in microbial32–34

and mammalian cells3,4,35–38. The emergence of 13C-MFA
as a primary research tool was made possible in large part
due to several major advances in theoretical approaches
for conducting 13C-MFA calculations39–41, and more
recently, by the availability of dedicated and user-friendly
software tools for 13C-MFA such as Metran and
INCA42,43. However, 13C-MFA it is still not widely used by
cancer biologists, outside of a few expert groups. This may
be in part because 13C-MFA is sometimes perceived as
unintuitive, obscure, demanding in terms of time and data,
and costly in terms of initial capital investment and iso-
topic tracers. Moreover, few guidelines exist to help
researchers get started with 13C-MFA44,45. The main
objective of this review is to address these concerns by
providing practical guidelines for cancer biologists inter-
ested in 13C-MFA. First, we describe the basics of
13C-MFA, discuss key assumptions that are inherent in
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13C-MFA but may not always be explicitly stated, highlight
best practices in 13C-MFA, and identify potential pitfalls as
well as alternative approaches. Throughout, we emphasize
key aspects that should be considered when planning
tracer experiments and performing 13C-MFA calculations
to ensure correct interpretation of data and results, and to
increase insights obtained from these studies.

Basics of 13C-MFA
Cellular metabolism serves four important functions in

proliferating cancer cells: (1) supply of anabolic building
blocks for cell growth; (2) generation of metabolic energy
in the form of ATP to drive thermodynamically unfa-
vorable reactions; (3) generation of redox equivalents in
the form of NADPH for anabolic processes such as fatty
acid biosynthesis and to combat oxidative stress; and (4)
maintaining redox homeostasis by oxidizing excess
NADH generated in central metabolic pathways.
The first step in obtaining a quantitative picture of

cellular metabolism is to measure the growth rate of the
cells and quantify nutrient uptake and secretion rates such

as glucose and glutamine uptake and lactate secretion46,47

(Fig. 1). These external rates provide important boundary
constraints on intracellular pathway activities. However,
due to redundancies in mammalian metabolic pathways,
external rates alone do not allow detailed conclusions to
be drawn about the relative contribution of specific
metabolic pathways to overall metabolism46,48. To
examine intracellular fluxes in detail, stable isotopes such
as 13C are utilized. When a labeled substrate, e.g.,
[1,2-13C]glucose, is metabolized by cells, enzymatic reac-
tions rearrange carbon atoms resulting in specific labeling
patterns in downstream metabolites that can be measured
with analytical techniques such as mass spectrometry
(MS), or nuclear magnetic resonance. For a well-selected
tracer, different metabolic pathways will produce dis-
tinctly different labeling patterns in the measured meta-
bolites from which fluxes can be inferred49,50. However, in
most cases, isotopic labeling data cannot be interpreted
intuitively due to the highly complex nature of atom
rearrangements in metabolic pathways51; instead, a formal
model-based analysis approach is required to extract flux
information from the labeling data. In the past 20 years,
13C-MFA has emerged as the primary approach used for
converting isotopic labeling data into corresponding
metabolic flux maps45.
The main objective of 13C-MFA is thus to generate a

quantitative map of cellular metabolism by assigning flux
values to the reactions in the network model and con-
fidence intervals for each estimated flux (Fig. 2). At a high
level, 13C-MFA is formulated as a least-squares parameter
estimation problem, where fluxes are unknown model
parameters that must be estimated by minimizing the
difference between the measured labeling data and
labeling patterns simulated by the model, subject to
stoichiometric constraints resulting from mass balances
for intracellular metabolites and metabolite labeling
states, the so-called isotopomers40,52. When 13C-MFA
first emerged in 1990s53, the main challenge was to
develop efficient algorithms for solving large sets of iso-
topomer mass balances54. Eventually, the computational
problems in 13C-MFA were resolved with the develop-
ment of the elementary metabolite unit (EMU) framework
that allows efficient simulation of isotopic labeling in any
arbitrary biochemical network model39. The EMU fra-
mework was subsequently incorporated into user-friendly
software tools for 13C-MFA, such as Metran and
INCA42,43, that are freely available to the scientific com-
munity. These powerful tools have opened up 13C-MFA
to a much wider scientific audience, including cancer
biologists, that may not have extensive background in
mathematics and statistics, which was required before
these software packages became available. In the next
sections, we describe in detail the three inputs that are
required for performing 13C-MFA calculations: (i)

Fig. 1 Glucose and glutamine are the two most highly consumed
carbon substrates in cancer cells. Both substrates can be converted
to lactate via glycolysis and glutaminolysis, respectively. High lactate
secretion, especially from glucose, is a major hallmark of cancer cells
known as the Warburg effect, or aerobic glycolysis
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external rates; (ii) isotopic labeling; and (iii) metabolic
model (Fig. 2).

Determination of external rates
To quantify intracellular metabolic fluxes, first, the

cross talk between the cells and their environment must
be quantified. Collectively referred to as external rates,
this includes measuring influxes of nutrients such as
glucose and glutamine, and secretion of metabolic by-
products such as lactate and glutamate. In addition, the
rate of cell growth must be determined. Assuming cells
are continuously dividing, the cell number will increase
exponentially according to:

Nx ¼ Nx;0 � expðμ � tÞ ð1Þ

Here Nx is the number of cells (typically expressed in
millions of cells), and µ (1/h) is the growth rate. The
growth rate is easily determined by plotting the natural
logarithm of Nx vs time and determining the slope of the
curve. If cells are counted only at two time points, then
the growth rate is determined as follows:

μ ¼ ln Nx;t2
� �� ln Nx;t1

� �

Δt
ð2Þ

The doubling time (td) is inversely related to the growth
rate, according to:

td ¼ ln 2ð Þ=μ ð3Þ
External rates, i.e., nutrient uptake rates and waste

product secretion rates, can be determined in a

Fig. 2 13C metabolic flux analysis (13C-MFA) is a powerful approach for quantifying intracellular metabolic fluxes in cancer cells. The three
inputs required for 13C-MFA are external uptake and secretion rates, isotopic labeling measurements, and a comprehensive compartmentalized
model of cellular metabolism. User-friendly software tools for 13C-MFA, such as Metran and INCA, can be used to perform 13C-MFA calculations. These
tools produce as outputs fluxes for all reactions in the model, confidence intervals for the estimated fluxes, and statistical analysis of the goodness-of-
fit
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straightforward way by measuring changes in metabolite
concentrations during the labeling experiment. For
exponentially growing cells, external rates (ri, in units
nmol/106 cells/h) can be calculated as follows:

ri ¼ 1000 � μ � V � ΔCi

ΔNx
ð4Þ

Here ΔCi (mmol/L) is the change in concentration of a
particular metabolite i between two sampling time points,
ΔNx is the change in cell number (expressed in millions of
cells) during the same time period, V (mL) is the culture

volume, and µ (1/h) is the growth rate. Based on this
expression, external rates have negative values for uptake
rates and positive values for secretion rates. For non-
proliferating cells, external rates are determined by a
slightly different expression:

ri ¼ 1000 � V � ΔCi

Δt �Nx
ð5Þ

Because glutamine is an unstable molecule, i.e., it
spontaneously degrades to pyroglutamate and ammonium
under normal culture conditions, the calculated

Fig. 3 Parallel labeling experiments with different 13C-labeled substrates greatly enhance the resolution of metabolic fluxes in complex
models. The rate of labeling incorporation after the introduction of a 13C-tracer depends on the turnover rate of intracellular metabolites and
exchanges between intracellular and extracellular metabolites. In particular, external lactate can slow down labeling of intracellular pyruvate and TCA
cycle metabolites from 13C-glucose tracers. If isotopic steady state is reached then labeling data can be analyzed with 13C-MFA. However, if the
system has not reached isotopic steady state, then the labeling data must be analyzed using isotopic non-stationary 13C-MFA (13C-NMFA)
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glutamine uptake rate must be corrected for glutamine
degradation, i.e., the measured rate reflects both net
uptake of glutamine by the cells and glutamine degrada-
tion. Glutamine degradation can be expressed as a first-
order degradation process with a degradation constant of
around 0.003/h55. After correcting for glutamine degra-
dation55, the true net glutamine uptake rate is obtained.
For long tracer experiments (e.g., >24 h), it may also be
necessary to correct for evaporation effects. For this
purpose, control experiments without cells are performed.
By measuring the apparent increases in metabolite con-
centrations over time, the rate of evaporation can be
estimated. The dynamics of glutamine degradation are
also easily determined from these control experiments.
For 13C-MFA studies, external rates are often deter-

mined for glucose uptake, lactate secretion, and amino-
acid uptake and secretion. For proliferating cancer cells,
typical values are as follows: 100–400 nmol/106 cells/h for
glucose uptake; 200–700 nmol/106 cells/h for lactate
secretion; 30–100 nmol/106 cells/h for glutamine uptake;
and 2–10 nmol/106 cells/h for uptake or secretion of
other amino acids. Depending on the scope of the study, it
may also be important to measure the rates of other
metabolites such as ammonium, pyruvate, acetate, citrate,
and any other significant nutrients or by-products that
cancer cells exchange with their environment.

Measurement of isotopic labeling
When conducting 13C-tracer experiments, a labeled

substrate is introduced to the culture medium that is then
taken up by the cells and metabolized through various
metabolic pathways. It takes a certain amount of time
before intracellular metabolites reach a constant labeling
state, which is referred to as isotopic steady state46 (Fig. 3).
The time required to reach isotopic steady state depends
on the turnover rate of metabolites in a pathway and the
labeling dynamics of upstream metabolites that feed into
the pathway. The turnover rate of a metabolite pool is
roughly equivalent to the ratio of the metabolite pool size
and the flux through that metabolite pool. For pro-
liferating cells, isotopic steady state can be reached rela-
tively quickly, i.e., within a few hours after the
introduction of the isotopic tracer56. However, in some
cases, due to exchange of intracellular and external
metabolites, significantly slower labeling incorporation
rates can be observed. In particular, external lactate often
acts as a large buffer that slows down labeling of intra-
cellular pyruvate and downstream metabolic pathways,
e.g., tricarboxylic acid (TCA) cycle, when 13C-glucose
tracers are used55. Slow labeling may be observed even if
there is large net secretion of lactate, since external lactate
readily exchanges with intracellular lactate, which in turn
rapidly equilibrates with cytosolic pyruvate. The effective
pool size of intracellular pyruvate thus becomes the

combined pool of intracellular pyruvate, intracellular
lactate, and external lactate. This buffering effect can be
so extreme that certain metabolites may never reach
isotopic steady state55. One strategy to reduce the buf-
fering effect of lactate is to ensure that little or no lactate
is present in the medium at the beginning of 13C-glucose
tracer experiments.
An important inherent assumption of 13C-MFA calcu-

lations is that all metabolites are at isotopic steady state. It
is thus critical to validate this assumption for all tracer
experiments performed. To validate this, isotopic labeling
is measured for at least two time points, e.g., 18 and 24 h,
after the introduction of tracer. If isotopic labeling is
identical for the two time points, then isotopic steady state
is confirmed and the labeling data can be analyzed using
classical 13C-MFA. However, if isotopic labeling is chan-
ging with time, then the data must be analyzed using a
more advanced 13C-MFA approach called isotopic-non-
stationary 13C-MFA, or 13C-NMFA41. Most software
packages for 13C-MFA can only perform classical 13C-
MFA calculations, i.e., assuming isotopic steady state,
although a few software packages such as INCA can
perform both 13C-MFA and 13C-NMFA calculations43.
MS is currently the preferred analytical technique used

for measuring isotopic labeling of intracellular metabo-
lites. With the technological advances in gas chromato-
graphy/MS (GC/MS) and liquid chromatography/MS
(LC/MS) in the past two decades, it is now possible to
measure mass isotopomer distributions for a large num-
ber of intracellular metabolites from as few as one million
cells, including for intermediates of glycolysis pathway:
fructose 6-phosphate (F6P), dihydroxyacetone phosphate,
glycerol 3-phosphate, 3-phosphoglycerate (3PG), phos-
phoenolpyruvate, pyruvate, and lactate; intermediates of
the pentose phosphate pathway (PPP; LC/MS mainly):
xylulose 5-phosphate (X5P), ribose 5-phosphate (R5P),
and sedoheptulose 7-phosphate; intermediates of the
TCA cycle: citrate, α-ketoglutarate (AKG), succinate,
fumarate, and malate; and most amino acids, including
alanine, aspartate, glutamate, glutamine, proline, serine,
and glycine.

Parallel labeling experiments
The selection of an isotopic tracer (or multiple tracers)

is one of the most important considerations when
designing 13C-MFA studies, since this ultimately deter-
mines the quality (i.e., precision and accuracy) of flux
results that can be obtained50. It is now well-known that
there is no single best tracer for 13C-MFA studies. Gen-
erally, 13C-glucose tracers are best for determining fluxes
in upper metabolism (e.g., glycolysis and PPP), while 13C-
glutamine tracers typically produce better resolution of
fluxes in lower parts of metabolism (e.g., TCA cycle and
reductive carboxylation)57,58 (Fig. 3). A powerful approach
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to achieve high resolution of multiple metabolic pathways
is to perform parallel labeling experiments with different
tracers and then integrate all data into a single compre-
hensive flux model59,60. For example, parallel labeling
experiments with [1,2-13C]glucose and [U-13C]glutamine
have been demonstrated to be particularly informative
and complementary56,58,61. When conducting parallel
labeling experiments, it is important that the only differ-
ence between the experiments is which metabolite is
labeled, i.e., concentrations of all nutrients in the media
must be the same for parallel labeling experiments62.
With recent advances in 13C-MFA methodology it is now
fairly straightforward to analyze isotopic labeling data
from parallel labeling experiments45. The Metran soft-
ware was the first tool that allowed comprehensive ana-
lysis of parallel labeling experiments for high-resolution
13C-MFA. Recently, other 13C-MFA software packages
have also included this feature.

Metabolic model for 13C-MFA
All 13C-MFA calculations are based on a model of

biochemical reactions within a specified metabolic net-
work. Determining the scope of the model is an important
decision in 13C-MFA studies. Unfortunately, there is only
limited consensus in the literature on the optimal scope of
metabolic models for flux analysis in cancer cells. This is
in part due to the fact that the appropriate model

complexity will depend to some degree on the specific
choice of isotopic tracer (or tracers), how many parallel
labeling experiments are performed, and how many and
which labeling measurements are collected. In general,
more comprehensive data sets, i.e., based on multiple
parallel labeling experiments with different labeled sub-
strates36,56,60,63, will permit the use of more complex
models for 13C-MFA than smaller data sets obtained
using a single tracer experiment.
Typically, 13C-MFA models will include all major

metabolic pathways of central carbon metabolism such as
glycolysis, PPP, TCA cycle, as well as any relevant reac-
tions that connect these pathways (Fig. 4a). Compart-
mentalization of metabolites and metabolic reactions is an
important feature of mammalian cells that must be cap-
tured in the model. Metabolites and reactions are there-
fore assigned to specific metabolic compartments such as
cytosol or mitochondrion. Certain metabolites will be
present in multiple compartments, for example, pyruvate,
acetyl coenzyme A, citrate, malate, fumarate, oxaloacetate,
and AKG. These metabolites are treated as separate
entities in the model that can have different labeling states
in different compartments. Transport reactions in the
model allow specific metabolites to be transferred
between cellular compartments. Compartment-specific
isozymes, which can operate independently, must be
included as separate reactions in the model (e.g., cytosolic

Fig. 4 13C metabolic fluxes are estimated based on comprehensive compartmentalized models of cellular metabolism. a The diagram
shows important metabolic pathways in cancer metabolism, including glycolysis, pentose phosphate pathway, TCA cycle, reductive carboxylation of
glutamine, and transketolase-like 1 (TKTL1) pathway. One of the key functions of cellular metabolism is to supply anabolic building blocks needed for
cell growth, shown here as draining reactions from central metabolic pathways. b A typical macromolecular composition of cancer cells is shown.
The macromolecular composition and the growth rate of cells determine the rates at which anabolic precursors must be produced to sustain cell
growth. Typical values of anabolic precursor fluxes in proliferating cancer cells are shown
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and mitochondrial isocitrate dehydrogenases; and cyto-
solic and mitochondrial malic enzymes). Finally, 13C-MFA
models will include a lumped biomass formation reaction
that drains anabolic precursors from central metabolism
(and extracellular medium, e.g., essential amino acids) for
the biosynthesis cellular macromolecules55. The stoi-
chiometric coefficients for this lumped biomass reaction
are easily determined based on the macromolecular
composition of cells (Fig. 4b). Recently, a number of GC/
MS-based protocols have been developed that allow bio-
mass compositions of cells to be determined easily and
accurately64–66. Typical values for anabolic precursor
effluxes for proliferating cancer cells are shown in Fig. 4b.

13C-MFA and statistical analysis
Current software tools for 13C-MFA such as Metran and

INCA are designed so that users are not required to have
any extensive background in mathematics, statistics, or
writing computer code. All of the complex math asso-
ciated with performing 13C-MFA computations is hidden
from the user. These software tools accept as inputs: (1) a
user-defined metabolic network model consisting of bio-
chemical reactions and corresponding atom transitions;
and (2) a set of measurements consisting of isotopic
labeling data and external rates. As outputs, the software
returns the following: (1) metabolic fluxes for the entire
network; (2) confidence intervals for all estimated fluxes;
and (3) statistical analysis of the goodness-of-fit (Fig. 2).

13C-MFA should be viewed as an iterative process that
requires careful scrutiny of the analysis results. After the
software returns a result, it is up to the user to determine
how acceptable the result is, and this requires some level
of experience. Generally, it is rare that the first result
returned by the software will be the optimal solution.
There are several important reasons for this. First, as
mentioned in the introduction, in 13C-MFA a highly
nonlinear multi-dimensional parameter estimation pro-
blem is solved40. Problems of this kind have many sub-
optimal local solutions, and there is no guarantee that the
first solution returned by the software will be the global
optimal solution. To address this concern, 13C-MFA is
typically restarted many times with random initial values
for all fluxes and the goodness-of-fit of these iterations is
compared. The goodness-of-fit is expressed by the sum of
squared weighted residuals, or the SSR value40 (Fig. 2).
The lower the SSR value, the better the agreement
between the measured data and the model fit. Assuming
that the metabolic model is correct and data are without
gross measurement errors, the minimized SSR is a sto-
chastic variable with a χ2-distribution. Based on this
property, it is possible to calculate a maximum statistically
acceptable value for SSR, which is roughly equal to the
number of fitted measurements (n) minus the number of
estimated independent parameters (p). More technically,

the acceptable range of SSR values is between χ2α/2(n− p)
and χ21−α/2(n− p), where α is a certain chosen threshold
value, for example, 0.05 for the 95% confidence interval.
The strategy for performing 13C-MFA is thus to restart

flux estimation many times (typically at least 10 times, but
more is preferred) and compare the SSR values. The
solution with the lowest SSR value is then selected as the
optimal solution. Often, multiple iterations will produce
the same low SSR value, which increases the likelihood
that the solution is indeed the global optimal solution. In
practice, however, it is not uncommon that the lowest SSR
value obtained in this way is still greater than the max-
imum statistically allowed SSR. Some common reasons
for this are as follows:
1. Errors in the metabolic model. Mistakes in the user-

specified metabolic model such as incorrect reaction
stoichiometries or errors in atom transitions are
generally easy to identify and correct.

2. Incomplete metabolic model. Omitting important
reactions or pathways from the model will result in
poor fits. Thus, depending on the quality of fit, the
scope of the model may need to be adjusted. In some
cases, it may be necessary to include hypothetical
reactions in the model in order to achieve an
acceptable fit. In this way, 13C-MFA can be used as a
hypothesis generating tool that can eventually lead
to the discovery of novel metabolic pathways or
reactions67–72. As an example, the TKTL1 pathway
was recently discovered in Chinese hamster ovary
cells by this approach73.

3. Gross measurement errors. It is not uncommon that
certain labeling data will contain gross measurement
errors, for example, due to co-elution of metabolites
in GC/MS and LC/MS analyses. Careful inspection
of ion chromatograms can in most cases help to
identify co-elution problems. In such cases, labeling
data for the contaminated metabolite fragments
should be excluded from flux analysis.

4. Incorrect assumptions about measurement errors.
The SSR value is calculated by summing up the
weighted squared differences between the measured
and simulated values. The weighting factors are
inverses of measurement standard deviations
squared. The assumed measurement errors thus
greatly influence the calculated SSR value. Typical
measurement errors used in 13C-MFA studies are as
follows: 0.004 (or 0.4 mol%) for GC/MS data; 0.01
(or 1 mol%) for LC/MS data; and 5–10% relative
error for external rates. In cases when very high or
very low SSR values are obtained, it may be
necessary to reevaluate the assumptions regarding
measurement errors. Moreover, inspection of
weighted residuals can inform if correct
measurement errors have been assigned. Assuming
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measurement errors are random, the weighted
residuals should follow a normal distribution
N(µ= 0, σ2= 1), which can be easily tested40.

Isotopomer spectral analysis
Isotopomer spectral analysis (ISA) is a related and

widely used analysis approach for analyzing de novo fatty
acid biosynthesis74 (Fig. 5). ISA calculations can be per-
formed with most current software tools for 13C-MFA.
Initially developed in early 1990s (before the 13C-MFA
approach was fully formalized), the ISA approach is based
on a relatively simple two-parameter model for analyzing
mass isotopomer distributions of fatty acids from tracer
experiments with fully 13C-labeled substrates, e.g., [U-13C]
glucose. In the classical ISA formulation, two model
parameters are determined: the D-value and the g(t)-
value74. The D-value quantifies the fractional contribution
of the fully 13C-labeled metabolite to lipogenic AcCoA,
and the g(t)-value quantifies the fraction of fatty acids that
were newly synthesized during the labeling time t.
Typically, several parallel labeling experiments are per-

formed with different fully 13C-labeled substrates, e.g.,
[U-13C]glucose and [U-13C]glutamine, and isotopic
labeling is measured for multiple fatty acids is each
experiment, e.g., C16:0, C16:1, C18:0, and C18:1, using
GC/MS. In theory, for a given tracer the D-values should
be identical for all fatty acids, since all fatty acids are
derived from the same cytosolic AcCoA pool. In contrast,
the g(t)-values may be different for each fatty acid since

different fatty acids may be synthesized at different rates.
However, g(t)-values for a particular fatty acid determined
with different tracers, e.g., with [U-13C]glucose and
[U-13C]glutamine, should be the same since the synthesis
rate of a particular fatty acid should not depend on which
substrate is labeled. The ISA approach can be generalized
for analysis of odd-chain fatty acids, e.g., C15:0 and C17:0,
as was recently demonstrated62. Moreover, ISA can be
extended to include additional model parameters62

(Fig. 5). In the classical ISA model, it is assumed that fully
labeled substrates, e.g., [U-13C]glutamine, will produce
only fully labeled AcCoA (i.e., M+ 2-labeled). However,
this assumption may not always be valid. For example,
metabolism of [U-13C]glutamine in the TCA cycle can
result in some loss of 13C, which will produce a mixture of
M+ 1- and M+ 2-labeled AcCoA. Moreover, catabolism
of certain substrates such as [U-13C]leucine will always
produce a mixture of M+ 1- and M+ 2-labeled AcCoA
due to carbon exchange with unlabeled CO2

75. For
example, for the case of [U-13C]leucine, 33% of AcCoA
will be M+ 1-labeled and 67% of AcCoA will be M+ 2-
labeled62. By including an additional fM2 parameter in the
ISA model, losses of 13C atoms can be captured, which
produces more accurate estimates of D- and g(t)-values.
As indicated above, ISA analysis is typically performed

with different fully 13C-labeled substrates in parallel
experiments. These studies provide important insights
into the relative contributions of different nutrients for de
novo lipogenesis13,76. The estimated g(t)-values are also

Fig. 5 The isotopomer spectral analysis (ISA) approach is used to quantify de novo fatty acid biosynthesis based on tracer experiments
with fully 13C-labeled substrates. In the classical ISA formulation, two model parameters are determined, the D-value and the g(t)-value. The ISA
approach can be generalized and extended to include additional model parameters such as fM2
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informative, since they can be used to calculate absolute
de novo biosynthesis rates of fatty acids (nmol/106

cells/h):

Fatty acid biosynthesis rate ¼ FA
t

� gðtÞ
1� g tð Þ ð6Þ

Here FA is the macromolecular content of a particular
fatty acid in cancer cells (in units nmol/106 cells; a typical
value for palmitate is 40 nmol/106 cells), and Δt (h) is the
length of the tracer experiment. The fatty acid content of
cancer cells is easily determined with GC-flame ionization
detector, or using the protocols described by Long and
Antoniewicz65.

Quantifying fluxes in upper metabolism
In the next two sections, we describe briefly common

stable-isotope tracing strategies for determining fluxes in
upper and lower parts of central carbon metabolism,
respectively. When performing flux analysis in upper
metabolism, the drain of metabolic precursors toward
biomass synthesis such as glucose 6-phosphate (G6P) for
carbohydrates, R5P for nucleotides, and glycerol 3-
phosphate for lipids can be generally ignored, since the
glucose uptake rate (~100–400 nmol/106 cells/h) is typi-
cally two orders of magnitude greater than the drain of
anabolic precursors for cell growth (~2–3 nmol/106

cells/h; Fig. 4). However, when performing flux analysis in
lower metabolism, the drain of AcCoA for lipogenesis
(~28 nmol/106 cells/h) cannot be ignored since this flux is
comparable in magnitude to other fluxes in lower
metabolism.
At present, [1,2-13C]glucose is one of the most widely

used tracers to quantify fluxes of glycolysis and PPP
(Fig. 6a). With this tracer the two pathways produce
distinctly different labeling patterns in downstream
metabolites such as 3PG, which can be easily measured
with GC/MS and LC/MS. Metabolism of glucose via
glycolysis produces 3PG that is 50% M+ 2-labeled and
50% unlabeled (i.e., M+ 0), while metabolism of glucose
via oxidative PPP (oxPPP) produces a mixture of M+ 0-,
M+ 1-, and M+ 2-labeled 3PG. For a single pass through
oxPPP, the labeling of 3PG is 60% M+ 0, 20% M+ 1, and
20% M+ 2. The ratio of M+ 1/M+ 2 mass isotopomers
of 3PG thus roughly approximates the relative contribu-
tion of oxPPP to glucose metabolism. However, this
approximation should be used with caution. Specifically,
the reversible G6P isomerase reaction, which inter-
converts G6P and F6P, can reroute a significant fraction of
F6P that is produced via PPP back to G6P to be meta-
bolized via oxPPP a second time (and possibly a third
time), which results in additional losses of 13C (Fig. 6a).
Thus, depending on the equilibration of F6P and G6P, the
M+ 1 and M+ 2 mass isotopomers of 3PG can be sig-
nificantly <20% and the ratio M+ 1/M+ 2 may be

different from unity. Thus, to obtain a reliable estimate of
oxPPP flux, the 3PG labeling data should be analyzed
formally with 13C-MFA.
Recently, a third metabolic pathway was discovered in

cancer cells by which glucose can be metabolized, the
TKTL1 pathway, which converts X5P (an intermediate of
PPP) to glyceraldehyde 3-phosphate and a two-carbon
metabolite, likely acetate, which can be further metabo-
lized to cytosolic AcCoA20,21 (Fig. 6). Unfortunately,
[1,2-13C]glucose and several other commonly used glu-
cose tracers cannot provide a reliable estimate of the
TKTL1 flux. To address this limitation, alternative
glucose-tracing strategies have been developed to better
resolve the three glucose metabolism pathways, glycolysis,
PPP, and TKTL173. One of the best tracer strategies was
based on mixtures of 50% [4,5,6-13C]glucose and 50% of
either [1-13C]glucose, [2-13C]glucose, or [3-13C]glucose
(Fig. 6b). With these tracers, it is possible to determine
precise fluxes of all three metabolic pathways, as recently
demonstrated in Chinese hamster ovary cells73. Other
optimal glucose tracers have also been proposed for
analysis of specific metabolic pathways; for example,
[3,4-13C]glucose was determined to be a particularly good
tracer for quantifying the anaplerotic flux of glucose into
the TCA cycle57,77,78.

Quantifying fluxes in lower metabolism
For analysis of fluxes in lower part of central carbon

metabolism, i.e., downstream of pyruvate, fully labeled
[U-13C]glutamine is often used. Glutamine is a the second
most highly consumed carbon substrate by many cancer
cells (after glucose)79; as a result, [U-13C]glutamine pro-
duces high labeling in metabolites, especially in TCA cycle
intermediates, and rich labeling patterns for flux estima-
tion using 13C-MFA (Fig. 7). Another advantage of using
13C-glutamine as a tracer is that labeling dynamics of 13C-
glutamine are not affected by the buffering effect of
extracellular lactate. Since 13C-glutamine labels mainly
metabolites downstream of pyruvate, isotopic steady state
is reached for the labeled TCA cycle metabolites within a
few hours after [U-13C]glutamine addition, even when
external lactate concentration is high56.
In the past decade, [U-13C]glutamine tracing has played

an important role in elucidating the contribution of glu-
tamine to lipogenesis via reductive carboxylation path-
way13,42, i.e., via the conversion of glutamine to AKG, then
to citrate (i.e., in the reverse direction of TCA cycle,
catalyzed by isocitrate dehydrogenases), and finally to
AcCoA after cleavage by ATP citrate lyase. To highlight
additional flux information that can be obtained from
[U-13C]glutamine tracer experiments, Fig. 7 shows sche-
matically the flow isotopic labeling from [U-13C]gluta-
mine into relevant metabolic pathways. The insert in
Fig. 7 shows an example of labeling data set obtained from
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a [U-13C]glutamine tracer experiment. Metabolism of
[U-13C]glutamine via reductive carboxylation (purple
arrows in Fig. 6) results in the production of M+ 5-
labeled citrate42; after cleavage of citrate by ATP citrate
lyase, M+ 2-labeled AcCoA and M+ 3-labeled oxaloa-
cetate are produced (while labeling of oxaloacetate cannot
be measured directly, it can be inferred from the labeling
of aspartate). In contrast, metabolism of [U-13C]glutamine
via the glutaminolysis pathway along the normal oxidative
direction of the TCA cycle (red arrows in Fig. 6) results in
the production of M+ 4-labeled succinate, fumarate,
malate, and oxaloacetate. M+ 4 malate can also produce
M+ 3-labeled oxaloacetate, after conversion to pyruvate
via malic enzyme, followed by carboxylation of pyruvate
to oxaloacetate by pyruvate carboxylase (green arrows in
Fig. 6). Taken together, [U-13C]glutamine tracer experi-
ments produce rich labeling patterns in TCA cycle
metabolites that permit precise quantification of meta-
bolic fluxes in these pathways using 13C-MFA. In addition
to [U-13C]glutamine, [5-13C]glutamine and [1-13C]gluta-
mine have also been used for 13C-MFA13,36,77. However,
in general, these singly labeled glutamine tracers are not
as informative as [U-13C]glutamine for comprehensive
analysis of cellular metabolism.

Concluding remarks
The isotopic tracing strategies and 13C-MFA methods

reviewed here present powerful tools for elucidating

metabolic flux rewiring in cancer cells. Technically, other
stable isotopes such as 2H, 18O, and 15N can also be used
to study metabolic phenotypes, and for certain applica-
tions these alternative isotope tracers may be pre-
ferred80,81. From a modeling perspective, the application
of multiple isotopes will not cause any problems for MFA.
In fact, one of the motivations for developing the EMU
framework was to permit and encourage the application
of multiple isotopes for flux analysis39. Several pioneering
studies have already made use of this45,82. However, there
are several drawbacks and limitations that should be
considered when contemplating the use of alternative
stable isotopes. For example, 18O tracers are generally
much more expensive than 13C tracers and at present the
number commercially available 18O tracers is limited.
While 15N can be used to investigate metabolic pathways
where the metabolic intermediates contain N atoms, such
as amino-acid pathways, they cannot be used to study
central carbon metabolism. Finally, interpretation of 2H
labeling data is complicated by the presence of significant
deuterium kinetic isotope effects. In contrast to 13C tra-
cers, where it has been demonstrated that the kinetic
isotope effects are negligible83, the kinetic isotope effects
for 2H are substantial84. Thus, determining fluxes from 2H
labeling data is strongly influenced by specific assump-
tions made regarding the magnitude of kinetic isotope
effects for various enzymatic reactions. Still, 2H
tracers can be valuable in resolving specific aspects of

Fig. 6 Two alternative 13C-glucose-tracing strategies for analysis of metabolic fluxes in upper metabolism based on mass isotopomer
measurements of 3-phosphoglycerate (3PG). a The [1,2-13C]glucose tracer allows good resolution of relative glycolysis and pentose phosphate
pathway fluxes. b A mixture of 50% [2-13C]glucose and 50% [4,5,6-13C]glucose is an improved tracer approach that also allows precise quantification
of the transketolase-like 1 (TKTL1) pathway flux
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metabolism such as NADPH metabolism in different
cellular compartments, which cannot be elucidated with
13C tracers85,86.
Currently, one of the biggest challenges for 13C-MFA in

mammalian cells is to resolve compartment-specific
fluxes87. While certain compartment-specific metabolic
fluxes can be determined precisely with 13C-MFA, e.g.,
mitochondrial vs cytosolic malic enzyme fluxes, other
fluxes are much more difficult to resolve, e.g., mito-
chondrial vs cytosolic isocitrate dehydrogenase fluxes. In
theory, resolving compartment-specific fluxes would be
easier if compartment-specific labeling data could be
collected88. However, with current protocols for
quenching metabolism and extracting intracellular label-
ing, all intracellular metabolite pools are sampled. As a
result, the measured labeling data must be modeled as
mixtures from multiple cellular pools36,61,89. To resolve
compartmentalized metabolism, alternative approaches

such as organelle isolation may be valuable in the
future90–92.
When interpreting 13C-MFA results, it is also important

to keep in mind that the accuracy of 13C-MFA calcula-
tions depends strongly on the validity of several modeling
assumptions that collectively form the basis for the
underlying isotopomer models. These inherent assump-
tions include the following: (1) metabolic steady-state
assumption—it is assumed that metabolic fluxes are
constant during the labeling experiment; (2) isotopic
steady-state assumption—it is assumed that isotopic
labeling does not change in time; (3) no kinetic isotope
effect for 13C tracers—it is assumed that enzymes cannot
discriminate between unlabeled (12C) and labeled (13C)
atoms83,93; (4) no metabolite channeling—it is assumed
that substrate tunneling via multi-enzyme complexes can
be ignored; (5) homogeneous metabolite pools—it is
assumed that metabolites within a particular compart-
ment are perfectly mixed; (6) homogeneous cell popula-
tion—it is assumed that all cells in a culture have the same
metabolic phenotype; and (7) no turnover of macro-
molecules—it is assumed that cellular macromolecules
such as proteins, lipids, RNA, and DNA are not broken
down and produced at the same time. If one or more of
these assumptions are shown to be incorrect for a given
biological system, then the 13C-MFA methodology must
be adjusted to account for these effects. For example, the
isotopic 13C-NMFA was developed for analysis of systems
where labeling data are not constant in time41,94, and
dynamic MFA methodologies (DMFA and 13C-DMFA)
were developed for analysis of systems where fluxes are
not constant in time46,95–97. More recently, the co-culture
13C-MFA methodology was developed for analysis of non-
homogeneous cell cultures89. Turnover of macro-
molecules such as glycogen, lipids, and RNA has also been
observed in many biological systems98–100, and these
effects can be captured in 13C-MFA by adding appropriate
dilution fluxes99.
Lastly, we want to emphasize the importance of full

transparency in reporting 13C-MFA results by providing
full access to data, models, methods, results, and statistics.
As described in this review, 13C-MFA results are highly
dependent on assumptions and models used for data
analysis. As cancer research progresses and new insights
are obtained into the unique metabolic features of cancer
cells, we may discover additional reactions or pathways
that have not been considered before. Reanalyzing past
data using updated metabolic models could provide a
powerful approach for testing new hypotheses. A recent
review paper has proposed minimum data standards to
facilitate dissemination of methods, data, and results from
13C-MFA studies44.

Fig. 7 [U-13C]Glutamine tracer experiments produce rich labeling
patterns in TCA cycle metabolites that allow precise
quantification of metabolic fluxes in lower part of central
metabolism, i.e., downstream of pyruvate, using 13C-MFA. The
diagram shows schematically the flow of 13C-labeling from [U-13C]
glutamine into relevant metabolic pathways in cancer cells. The insert
shows an example of labeling data obtained from a [U-13C]glutamine
tracer experiment. Colors of arrows indicate different metabolic
pathways: reductive carboxylation of glutamine (purple);
glutaminolysis (red); conversion of malate to oxaloacetate via malic
enzyme and pyruvate carboxylase (green)
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